首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
利用青藏高原玛多地区高寒草甸和玉树隆宝地区高寒湿地的观测资料,比较分析了土壤水分、地表反照率和土壤热通量在土壤完全融化期、土壤逐渐冻结期、土壤完全冻结期和土壤逐渐融化期的变化情况,并计算了各月份的感热通量和潜热通量。结果表明:在10~50 cm深处,土壤完全融化期高寒湿地土壤含水量为0.66~0.82 m3·m-3,高寒草甸土壤含水量为0.15~0.18 m3·m-3,土壤完全冻结期高寒湿地土壤含水量为0.13~0.21 m3·m-3,高寒草甸土壤含水量为0.01~0.04 m3·m-3。高寒草甸和高寒湿地地表反照率在土壤冻结期间较高,融化期间较低。高寒草甸土壤热通量年变化幅度小,高寒湿地土壤热通量年变化幅度大。高寒草甸月平均感热通量均高于高寒湿地,高寒湿地月平均潜热通量均高于高寒草甸。  相似文献   

2.
张戈  赖欣  刘康 《高原气象》2023,(3):575-589
土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G  相似文献   

3.
半干旱地区吉林通榆"干旱化和有序人类活动"长期观测实验   总被引:38,自引:10,他引:28  
简单介绍了吉林通榆"干旱化和有序人类活动"长期观测实验,该实验站同时也是国际协同加强观测计划(CEOP)的地面观测站.分析了2002年10月~2003年3月(CEOP-EOP3)非生长季观测到的近地面层微气象及能量通量资料.结果表明,在非生长季,半干旱地区农田和退化草地下垫面近地面层能量收支基本一致;感热通量占主要地位,占净辐射通量的70%左右;潜热通量及地热流都很小,通常小于30 W m-2.土壤温度日变化主要集中在地表以下20 cm土壤层,20 cm以下土壤温度日变化很小,但存在明显的季节变化.在非生长季,土壤表层10 cm厚度内,草地下垫面土壤体积含水量比农田大;20 cm以下深度土壤体积含水量的日变化很小,同样存在季节变化.  相似文献   

4.
针对青藏高原中部高寒草甸表层植被根系密集、土壤有机质含量较高的特征,利用陆面模式Noah-M P对1998年5 9月安多站水热过程进行模拟,初步评估了对土壤温度影响较大的物理过程,对比分析了土壤垂直分层、有机质和根系对土壤水热、地表能量模拟的影响。结果表明:Noah-MP模式中地表热交换、辐射传输等6个物理过程对土壤温度的影响较大;考虑垂直分层和有机质影响后,模式对土壤含水量的模拟有所改善,但浅层仍存在较大干偏差;加入根系的影响后,浅层土壤含水量的平均偏差显著减小,由原来的-0.094 m3·m-3减少到-0.016 m3·m-3,浅层土壤温度在模拟后期偏冷,但在深层有一定改善;同时地表感热通量和潜热通量也有明显改善,平均偏差分别由原来的24.3W·m-2、-22.5 W·m-2减小到5.9 W·m-2、1.2 W·m-2。  相似文献   

5.
湿地是由陆地和水体形成的自然综合体,具有重要的生态、水文和生物地球化学功能,黄河源高寒湿地作为黄河重要的水源涵养区,对其下垫面水热交换特征及关键影响参数的研究具有非常重要的意义。本文利用中国科学院西北生态环境资源研究院麻多黄河源气候与环境变化观测站2014年6~8月观测资料,分析了黄河源区高寒湿地-大气间暖季水热交换特征,并利用公用陆面模式(Community Land Model,简称CLM)模拟了热通量变化,提出针对高寒湿地的粗糙度优化方案。主要结果如下:(1)暖季向上、向下短波与净辐射的平均日变化规律一致,向上、向下长波平均日变化平缓,地表温度升高相对于向下短波具有滞后性,潜热通量始终为正值并大于感热通量;(2)温度变化显著层结为20 cm以上土壤浅层,存在明显的日循环规律,土壤中热量09:00(北京时,下同)下传至5 cm深度,温度升高,11:00至10 cm深度,13:00至20 cm深度,18:00后开始上传,温度降低,40 cm及以下深度受此影响较小,热量在土壤中整体由浅层向深层输送;(3)土壤湿度平均日变化小,5 cm深度为土壤湿度最小层,10 cm深度为最大层;(4)麻多高寒湿地动力学粗糙度Z0m在暖季变化稳定,可作为常数,Z0m=0.0143 m;(5)提出更加适合高寒湿地下垫面暖季附加阻尼kB-1参数化方案,使得热通量模拟效果较CLM原始方案有所提高。以上结果对于研究湿地下垫面陆面过程具有重要意义。  相似文献   

6.
《高原气象》2021,40(3):455-471
选取青藏高原(下称高原)东部玛曲、玛多和垭口3个野外站点的观测资料,针对不连续积雪过程,研究高原东部不同季节的积雪过程对地表能量和土壤水热的影响。结果表明:受积雪高反照率的影响,高原东部地区各季节降雪后净短波辐射减小,净辐射较降雪前减小60%~140%;积雪积累期内感热、潜热及土壤热通量均减小,感热通量和土壤热通量出现负值。春、秋两季积雪过程中,能量以感热、潜热和土壤热通量三种形式分配;冬季积雪过程中能量以感热和土壤热通量分配为主,潜热通量较小,日均值在10 W·m~(-2)左右;而夏季积雪消融期潜热通量较大,日均值可达80 W·m~(-2)左右。各季节积雪的反复积累和消融过程对大气及土壤均以降温作用为主。秋季降雪后,气温和浅层土壤温度降低,当土壤温度降到冰点以下时,土壤提前进入冻结期;而春季降雪后,则可能使得正在发生融化的土壤又再次冻结。冬季晴天积雪过程中,在积雪积累期,积雪对土壤起增温作用,0~20 cm土壤温度日均值升高1~2℃,导致浅层冻结土壤融化,土壤含水量略增加,在消融期,积雪对土壤仍起降温作用;而冬季阴天积雪对土壤均为冷却作用。夏季积雪积累期较短,降雪对土壤同样起明显的降温作用。  相似文献   

7.
不同土壤类型的热通量变化特征   总被引:3,自引:0,他引:3  
利用2004—2007年中国科学院中国生态系统研究网络(CERN)生态站实测土壤热通量、辐射等资料,分析了不同土壤类型表层热通量的日变化和季节变化,以及不同土壤类型的热通量与总辐射、净辐射的关系。结果表明,由于导热率越大,热量传输就越快;热容量越小,热量传输也越快,造成土壤热通量的日较差和年较差较大,所以黄绵土和紫色土的表层热通量日较差最大(220~280 W.m-2),高寒草甸土和水稻土最小(55W.m-2);季节变化中土壤表层热通量的年较差变化范围在12~28W.m-2之间,灰漠土最大,为28W.m-2,热通量年较差从大到小依次为灰漠土、黄绵土、盐碱潮土、红壤土、紫色土、沼泽土、水稻土和高寒潮土,高寒潮土最小,为12W.m-2。不同土壤类型的热通量与总辐射、净辐射呈正相关关系,但不同土壤类型的土壤热通量在12:00(地方时)所占净辐射的比例各不相同,高寒草甸土最小,约为8%;黄绵土最大,为38%,多数土壤的热通量占净辐射的比例在15%~20%之间,这充分表明不同土壤类型表层热通量的传输存在很大差异。  相似文献   

8.
青藏高原湿地土壤冻结、融化期间的陆面过程特征   总被引:4,自引:0,他引:4       下载免费PDF全文
利用青藏高原中部玉树隆宝湿地2015年7月-2016年7月的观测资料,分析了土壤冻结、融化前后土壤温、湿度和地表能量收支特征,结果表明:冻土持续时期为12月至次年4月,深层土壤的冻结较浅层土壤滞后,融化过程快于冻结过程,5-40 cm土壤全部冻结历时51 d,全部融化历时19 d。土壤体积含水量年变化幅度达0.6 m3/m3。冻结过程5-40 cm土壤体积含水量下降,融化过程5-10 cm土壤体积含水量升高。土壤冻结之后,感热通量白天的值升高,潜热通量白天的值降低,净辐射和土壤热通量均降低,土壤热通量日变化幅度增大。土壤融化之后,潜热通量、净辐射和土壤热通量白天的值升高。地表反照率、鲍恩比、土壤热导率和土壤热扩散率冻结后增大融化后减小,土壤热容量冻结后减小融化后增大。  相似文献   

9.
青藏高原高寒湿地作为大江大河支流的发源地,其冻融过程对该地区及下游的生态系统和气候调节有重要意义。利用青藏高原腹地三江源区隆宝高寒湿地试验站的高时间分辨率土壤温湿数据,对冻融过程中土壤温湿的季节、日以及冻融转换期变化特征进行分析和探讨。结果表明:(1)高寒湿地土壤冻融过程中,土壤温度整体表现出夏高冬低的变化特征,冻结期5 cm、40 cm、20 cm、30 cm和10 cm地温依次增大,地温随深度变化存在一定的不规律性,而非冻结期则正好相反;土壤湿度在冻结期自上而下逐渐降低,融化期自上而下逐渐增加。(2)土壤表层5 cm和深层40 cm地温存在显著的日变化特征,表层较深层变化更显著,且夏季变化幅度最大;土壤含水率较稳定,除表层有一定波动,其他各层无明显日变化。(3)冻融转换期,土壤温度垂直分布存在显著的三层结构,10 cm和30 cm处与邻近层的温度差异是导致这种特殊分布的主要原因;随着深度的加深,土壤含水率冻结期(融化期)逐渐增加(减少),且深层比浅层的变化时间明显滞后。  相似文献   

10.
高寒草原水热交换的季节性特征显著,土壤冻融过程对地-气水热交换有着重要的影响.本文利用黄河源区汤岔玛小流域2014年5月至2015年5月陆面过程观测数据,将土壤冻融过程划分为完全融化(TT)和完全冻结(FF)两种状态与融冻(T-F)和冻融(F-T)两个过程,并分析了期间高寒草原下垫面净辐射、感热通量、潜热通量和地表热通...  相似文献   

11.
Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau. It plays a crucial role in runoff regulation. Investigations on the mechanisms of water and heat exchanges are necessary to understand the land surface processes over the alpine wetland. This study explores the characteristics of hydro-meteorological factors with in situ observations and uses the Community Land Model 5 to identify the main factors controlling water and heat exchanges.Latent heat flux and therm...  相似文献   

12.
盘锦湿地芦苇生态系统长期通量观测研究   总被引:14,自引:3,他引:11       下载免费PDF全文
针对2004年5月26日-2005年10月15日盘锦湿地芦苇生态系统碳通量、感热通量和潜热通量资料进行分析。结果表明:芦苇湿地具有较强的碳汇作用;2005年芦苇湿地固定二氧化碳为13.32 t/hm2,日平均感热通量和潜热通量分别为2 464 kJ/m2和3 880 kJ/m2。2004年和2005年6~9月的日累积值波文比平均值均为0.15。芦苇湿地碳通量、感热通量和潜热通量的日动态呈单峰单谷型变化,极值出现在中午前后,夜间线形平直。芦苇生长季白天通量绝对值远较夜间大,白天碳吸收,夜间碳排放。CO2浓度年平均日变化曲线亦为单谷单峰型,夜间浓度较高且逐渐升高,直到日出前达到峰值;日出后急剧下降,傍晚又开始逐渐增加。芦苇湿地感热通量昼正夜负,潜热通量与林地不同,全天为正。各通量季节变化明显,冬季CO2通量日变化不明显,趋近于零;感热通量总体向上输送,春季数值较大,生长季数值较小;潜热通量冬季最小,接近0,春季开始显著增加,生长季达到最大。  相似文献   

13.
高山草甸下垫面夏季近地层能量输送及微气象特征   总被引:8,自引:5,他引:3  
李跃清  刘辉志  冯健武 《大气科学》2009,33(5):1003-1014
利用青藏高原东坡理塘站2007年6~8月的观测资料, 分析了高原东坡草甸下垫面夏季近地层气象要素和湍流通量日变化特征, 并用涡动相关法估算地面的曳力系数。结果表明: 水平风速、 动量通量、 摩擦速度等均在下午最大, 早晨最小。二氧化碳浓度表现为早晚高、 中午低的日变化特征, 比湿的最大值出现在早晨。地表辐射、 热量平衡各分量最高值出现在中午, 最低值出现在早晨。地表反照率表现出早晚高中午低的 “U” 型分布, 日平均值为0.164。夏季地面热源强度在白天午后表现为强的热源, 在夜里表现为弱的冷、 热源交替出现。夏季近地层地气热量交换中, 感热输送作用小, 潜热输送占主要地位。  相似文献   

14.
利用藏东南峡谷地区排龙站、丹卡站、卡布站、墨脱站四个站点2018年11月至2019年10月的涡动协方差仪观测资料,分析藏东南峡谷地区不同位置入口、中段和末端地表通量变化的特征及其与局地降水的关系.研究表明:地表通量月平均日变化特征为夜间潜热通量大于感热通量,日间呈单峰变化特征.排龙站和丹卡站感热11月至次年4月较强,5...  相似文献   

15.
青藏高原多年冻土区典型下垫面冻融过程作用分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用青藏高原腹地安多站土壤观测资料,根据10cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,并结合感热通量、积雪深度、相对湿度和降水资料定性的探讨了冻融过程对地气热量、水分交换的影响。结果表明:各层土壤在东亚季风爆发前期由上至下完成融化过程,10月中旬~12月上旬完成冻结过程,融化期普遍长于冻结期。土壤湿度大值区在时间上集中在高原雨季,空间上10cm深度以上为湿度大值区,而且上层土壤的温度梯度要明显大于下层。在融化阶段整层土壤的温度长期保持0℃的等温相变现象,此时,表层土壤温度日变化幅度为全年最大,最高日变幅达22.5℃。安多站地面除12月个别天数和1月上旬是冷源外,全年为地面热源,近地面感热通量从1月开始增大,到6月上旬达到峰值,之后逐渐减小。同时,感热通量的变化对相对湿度、降水和积雪的变化较为敏感。   相似文献   

16.
陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地区的模拟性能进行了检验与对比。通过比较观测值与模拟值,验证了模式在高原季节性冻土地区的适用性,发现CLM4.0较CLM3.0在模拟结果上有了一定提高。CLM4.0加入了未冻水参数化方案,使模式可以模拟到冬季土壤冻结后存留的未冻水,显著增加了冻融期间土壤含水量的模拟,同时减小了土壤含冰量的模拟值。并因此增大了模拟的冻土热容量,减小了热导率,使冻融期间土壤温度的模拟也有了一定改善。但是模拟中也发现对于较深层土壤,温度模拟值在冻融期间较观测显著偏低。另外,在消融(冻结)过程阶段CLM4.0模拟的土壤含水量骤增(骤降)的时间均较观测提前。消融过程、冻结过程阶段模拟时间偏短,而完全冻结、完全消融阶段模拟时间偏长。因此CLM对于高原冻土地区的模拟仍是其需要重点改进的地方之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号