首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we apply De Martonne and Pinna combinative indices to analyze the aridity in Central Serbia. Our dataset consists of mean monthly surface air temperature (MMT) and mean monthly precipitation (MMP) for 26 meteorological stations during the period 1949–2015. MMT and MMP are used for calculating monthly, seasonal, and annual aridity indices for period of 66 years. According to the De Martonne climate classification, we determine five, three, and four types of climate on the monthly, seasonal, and annual basis, respectively. During the observed period, winter was extremely humid, spring and autumn were humid, and summer was semi-humid. Humid and semi-humid climate with Mediterranean vegetation are identified by the annual Pinna combinative index. We find that there is no change in aridity trend in Central Serbia for the period 1949–2015. Aridity indices are additionally compared with the North Atlantic Oscillation and El-Niño South Oscillation in order to establish a possible connection with the large-scale processes. Results are further compared with several earlier studies of aridity in Serbia. With this study, the analysis of aridity in whole Serbia has become complete.  相似文献   

2.
In order to better understand the effect associated with global climate change on Iran’s climate condition, it is important to quantify possible shifts in different climatic types in the future. To this end, monthly mean minimum and maximum temperature, and precipitation from 181 synoptic meteorological stations (average 1970–2005) have been collected from the meteorological organization of Iran. In this paper, to study spatial changes of Iran’s climatic zones affected by climate changes, Extended De Martonne’s classification (originally formulated by De Martonne and extended by Khalili (1992)) was used. Climate change scenarios were simulated in two future climates (average conditions during the 2050s and the 2080s) under each of the SRES A1B and A2, for the CSIRO-MK3, HadCM3, and CGCM3 climate models. Coarse outputs of GCMs were downscaled by delta method. We produced all maps for three time periods (one for the current and two for the future) according to Extended De Martonne’s classification. Finally, for each climatic zone, changes between the current and the future were compared. As the main result, simulated changes indicate shifts to warmer and drier zones. For example, in the current, extra arid-cold (A1.1m2) climate is covering the largest area of the country (21.4 %), whereas in both A1B and A2 scenarios in the 2050s and the 2080s, extra arid-moderate (A1.1m3) and extra arid-warm (A1.1m4) will be the climate and will occupy the largest area of the country, about 21 and 38 %, respectively. This analysis suggests that the global climate change will have a profound effect on the future distribution of severe aridity in Iran.  相似文献   

3.
Cambodia is one of the most vulnerable countries to climate change impacts such as floods and droughts. Study of future climate change and drought conditions in the upper Siem Reap River catchment is vital because this river plays a crucial role in maintaining the Angkor Temple Complex and livelihood of the local population since 12th century. The resolution of climate data from Global Circulation Models (GCM) is too coarse to employ effectively at the watershed scale, and therefore downscaling of the dataset is required. Artificial neural network (ANN) and Statistical Downscaling Model (SDSM) models were applied in this study to downscale precipitation and temperatures from three Representative Concentration Pathways (RCP 2.6, RCP 4.5 and RCP 8.5 scenarios) from Global Climate Model data of the Canadian Earth System Model (CanESM2) on a daily and monthly basis. The Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were adopted to develop criteria for dry and wet conditions in the catchment. Trend detection of climate parameters and drought indices were assessed using the Mann-Kendall test. It was observed that the ANN and SDSM models performed well in downscaling monthly precipitation and temperature, as well as daily temperature, but not daily precipitation. Every scenario indicated that there would be significant warming and decreasing precipitation which contribute to mild drought. The results of this study provide valuable information for decision makers since climate change may potentially impact future water supply of the Angkor Temple Complex (a World Heritage Site).  相似文献   

4.
This study surveys the most recent projections of future climate change provided by 20 Atmospheric-Ocean General Circulation Models (AOGCMs) participating in the Coupled Model Intercomparison Project 3 (CMIP3) with focus on the Italian region and in particular on the Italian Greater Alpine Region (GAR). We analyze historical and future simulations of monthly-mean surface air temperature (T) and total precipitation (P). We first compare simulated T and P from the AOGCMs with observations over Italy for the period 1951–2000, using bias indices as a metric for estimating the performance of each model. Using these bias indices and different ensemble averaging methods, we construct ensemble mean projections of future climate change over these regions under three different IPCC emission scenarios (A2, A1B, and B1). We find that the emissions pathway chosen has a greater impact on future simulated climate than the criteria used to obtain the ensemble means. Across all averaging methods and emission scenarios, the models project annual mean increase in T of 2–4°C over the period 1990–2100, with more pronounced increases in summer and warming of similar magnitude at high and low elevations areas (according to a threshold of 400 m). The models project decreases in annual-mean P over this same time period both over the Italian and GAR regions. This decrease is more pronounced over Italy, since a small increase in precipitation over the GAR is projected in the winter season.  相似文献   

5.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

6.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC_CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC_CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC_CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC_CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

7.
Three statistical downscaling methods are compared with regard to their ability to downscale summer (June–September) daily precipitation at a network of 14 stations over the Yellow River source region from the NCEP/NCAR reanalysis data with the aim of constructing high-resolution regional precipitation scenarios for impact studies. The methods used are the Statistical Downscaling Model (SDSM), the Generalized LInear Model for daily CLIMate (GLIMCLIM), and the non-homogeneous Hidden Markov Model (NHMM). The methods are compared in terms of several statistics including spatial dependence, wet- and dry spell length distributions and inter-annual variability. In comparison with other two models, NHMM shows better performance in reproducing the spatial correlation structure, inter-annual variability and magnitude of the observed precipitation. However, it shows difficulty in reproducing observed wet- and dry spell length distributions at some stations. SDSM and GLIMCLIM showed better performance in reproducing the temporal dependence than NHMM. These models are also applied to derive future scenarios for six precipitation indices for the period 2046–2065 using the predictors from two global climate models (GCMs; CGCM3 and ECHAM5) under the IPCC SRES A2, A1B and B1scenarios. There is a strong consensus among two GCMs, three downscaling methods and three emission scenarios in the precipitation change signal. Under the future climate scenarios considered, all parts of the study region would experience increases in rainfall totals and extremes that are statistically significant at most stations. The magnitude of the projected changes is more intense for the SDSM than for other two models, which indicates that climate projection based on results from only one downscaling method should be interpreted with caution. The increase in the magnitude of rainfall totals and extremes is also accompanied by an increase in their inter-annual variability.  相似文献   

8.
There is great interest in understanding how climate change will impact aridity through the interaction of precipitation changes with rising temperatures. The Aridity Index (AI), Climatic Moisture Deficit (CMD), and Climatic Moisture Surplus (CMS) are metrics commonly used to quantify and map patterns in aridity and water cycling. Here we show that these metrics have different patterns of change under future climate—based on an ensemble of nine general circulation climate models—and the different metrics are appropriate for different purposes. Based on these differences between the metrics, we propose that aridity can be dissected into three different types—hydrological (CMS), agricultural (CMD), and meteorological. In doing this, we propose a novel modified version of the Aridity Index, called AI+, that can be useful for assessing changes in meteorological aridity. The AI?+?is based on the same ratio between precipitation and evapotranspiration as the traditional AI, but unlike the traditional AI, the AI?+?only accounts for changes to precipitation during months when precipitation is less than reference/potential evapotranspiration (i.e. there is a deficit). Moreover, we show that the traditional AI provides a better estimate of change in moisture surplus driven by changes to precipitation during the wet season, rather than changes in deficit that occur during the drier seasons. These results show that it is important to select the most appropriate metric for assessing climate driven changes in aridity.  相似文献   

9.
Climate indices facilitate the interpretation of expected climate change impacts for many sectors in society, economy, and ecology. The new localized data set of climatic change signals for temperature and precipitation presented by Zubler et al. (Clim Change, 2013) is applied for an analysis of frequently used climate indices in Switzerland. The indices considered are: number of summer days and tropical nights, growing season length, number of frost days and ice days, heating and cooling degree days, and the number of days with fresh snow. For the future periods 2020-49, 2045-74 and 2070–2099 the indices are computed using a delta-change approach based on the reference period 1980–2009 for the emission scenarios A1B, A2, and RCP3PD. The scenario data suggest the following relevant findings: (1) a doubling of the number of summer days by the end of the century under the scenarios A1B and A2, (2) an appearance of tropical nights even above 1500 m asl, (3) a possible reduction of the number of frost days by more than 3 months at altitudes higher than 2500 m asl, (4) a decline of heating degree days by about 30 % until the end of the century, and (5) the near disappearance of days with fresh snow at low altitudes. It is also shown that the end-of-the-century projections of all indices strongly depend on the chosen emission scenario.  相似文献   

10.
The authors have applied an automated regression-based statistical method, namely, the automated statistical downscaling (ASD) model, to downscale and project the precipitation climatology in an equatorial climate region (Peninsular Malaysia). Five precipitation indices are, principally, downscaled and projected: mean monthly values of precipitation (Mean), standard deviation (STD), 90th percentile of rain day amount, percentage of wet days (Wet-day), and maximum number of consecutive dry days (CDD). The predictors, National Centers for Environmental Prediction (NCEP) products, are taken from the daily series reanalysis data, while the global climate model (GCM) outputs are from the Hadley Centre Coupled Model, version 3 (HadCM3) in A2/B2 emission scenarios and Third-Generation Coupled Global Climate Model (CGCM3) in A2 emission scenario. Meanwhile, the predictand data are taken from the arithmetically averaged rain gauge information and used as a baseline data for the evaluation. The results reveal, from the calibration and validation periods spanning a period of 40 years (1961–2000), the ASD model is capable to downscale the precipitation with reasonable accuracy. Overall, during the validation period, the model simulations with the NCEP predictors produce mean monthly precipitation of 6.18–6.20 mm/day (root mean squared error 0.78 and 0.82 mm/day), interpolated, respectively, on HadCM3 and CGCM3 grids, in contrast to 6.00 mm/day as observation. Nevertheless, the model suffers to perform reasonably well at the time of extreme precipitation and summer time, more specifically to generate the CDD and STD indices. The future projections of precipitation (2011–2099) exhibit that there would be an increase in the precipitation amount and frequency in most of the months. Taking the 1961–2000 timeline as the base period, overall, the annual mean precipitation would indicate a surplus projection by nearly 14~18 % under both GCM output cases (HadCM3 A2/B2 scenarios and CGCM3 A2 scenario). According to the model simulation, the September–November periods might be the more significant months projecting the increment of the precipitation amount around over 50 %, while the precipitation deficit would be seen in March–May periods.  相似文献   

11.
Aridity in Vojvodina, Serbia   总被引:2,自引:1,他引:1  
For investigating aridity in Vojvodina, two parameters were used: the De Martonne aridity index and the Pinna combinative index. These indices were chosen as the most suitable for the analysis of climate in Vojvodina (a region in northern part of Serbia). Also, these indices were calculated from data obtained from 10 meteorological stations for the period from 1949 to 2006. The spatial distribution of the annual and seasonal De Martonne and the Pinna combinative indices as well as the mean monthly values of the De Martonne index and aridity trends of these indices are presented. There were two, four, and five types of climate on a yearly, seasonal, and monthly basis in Vojvodina, according to the De Martonne climate classification which consists of a total of seven types. In addition, semi-humid and humid climate types were represented in the region, on a yearly basis. The winter season was dominated by wetter types of climate, while the summer season was characterized by drier ones. During the spring and autumn seasons, there were types of climate which range between both aforementioned types. Two out of three climate types, which can be identified using the Pinna combinative index, were registered in Vojvodina region. The most dominant climate type was the semidry Mediterranean with formal Mediterranean vegetation, while the humid type was only identified in one small part of southwestern Vojvodina. The calculated values of both aridity indices showed that there were no annual trends. Therefore, it can be considered that there were no recent aridity changes during the observed period. For paleoclimate, the general story is more complex. The lack of aridity trends in the recent period from 1949 to 2006 supports the fact that Vojvodina has very well preserved loess–palaeosol sequences from the Middle and Late Pleistocene, which indicates that crucial point for their preservation was caused by the weak aridity variability in the region.  相似文献   

12.
The study makes a probabilistic assessment of drought risks due to climate change over the southeast USA based on 15 Global Circulation Model (GCM) simulations and two emission scenarios. The effects of climate change on drought characteristics such as drought intensity, frequency, areal extent, and duration are investigated using the seasonal and continuous standard precipitation index (SPI) and the standard evapotranspiration index (SPEI). The GCM data are divided into four time periods namely Historical (1961–1990), Near (2010–2039), Mid (2040–2069), and Late (2070–2099), and significant differences between historical and future time periods are quantified using the mapping model agreement technique. Further, the kernel density estimation approach is used to derive a novel probability-based severity-area-frequency (PBS) curve for the study domain. Analysis suggests that future increases in temperature and evapotranspiration will outstrip increases in precipitation and significantly affect future droughts over the study domain. Seasonal drought analysis suggest that the summer season will be impacted the most based on SPI and SPEI. Projections based on SPI follow precipitation patterns and fewer GCMs agree on SPI and the direction of change compared to the SPEI. Long-term and extreme drought events are projected to be affected more than short-term and moderate ones. Based on an analysis of PBS curves, especially based on SPEI, droughts are projected to become more severe in the future. The development of PBS curves is a novel feature in this study and will provide policymakers with important tools for analyzing future drought risks, vulnerabilities and help build drought resilience. The PBS curves can be replicated for studies around the world for drought assessment under climate change.  相似文献   

13.
Dynamical downscaling of global climate simulations is the most adequate tool to generate regional projections of climate change. This technique involves at least a present climate simulation and a simulation of a future scenario, usually at the end of the twenty first century. However, regional projections for a variety of scenarios and periods, the 2020s or the 2050s, are often required by the impact community. The pattern scaling technique is used to estimate information on climate change for periods and scenarios not simulated by the regional model. We based our study on regional simulations performed over southern South America for present climate conditions and two emission scenarios at the end of the twenty first century. We used the pattern scaling technique to estimate mean seasonal changes of temperature and precipitation for the 2020s and the 2050s. The validity of the scalability assumptions underlying the pattern scaling technique for estimating near future regional climate change scenarios over southern South America is assessed. The results show that the pattern scaling works well for estimating mean temperature changes for which the regional changes are linearly related to the global mean temperature changes. For precipitation changes, the validity of the scalability assumption is weaker. The errors of estimating precipitation changes are comparable to those inherent to the regional model and to the projected changes themselves.  相似文献   

14.
The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.  相似文献   

15.
Regional or local scale hydrological impact studies require high resolution climate change scenarios which should incorporate some assessment of uncertainties in future climate projections. This paper describes a method used to produce a multi-model ensemble of multivariate weather simulations including spatial–temporal rainfall scenarios and single-site temperature and potential evapotranspiration scenarios for hydrological impact assessment in the Dommel catchment (1,350 km2) in The Netherlands and Belgium. A multi-site stochastic rainfall model combined with a rainfall conditioned weather generator have been used for the first time with the change factor approach to downscale projections of change derived from eight Regional Climate Model (RCM) experiments for the SRES A2 emission scenario for the period 2071–2100. For winter, all downscaled scenarios show an increase in mean daily precipitation (catchment average change of +9% to +40%) and typically an increase in the proportion of wet days, while for summer a decrease in mean daily precipitation (−16% to −57%) and proportion of wet days is projected. The range of projected mean temperature is 7.7°C to 9.1°C for winter and 19.9°C to 23.3°C for summer, relative to means for the control period (1961–1990) of 3.8°C and 16.8°C, respectively. Mean annual potential evapotranspiration is projected to increase by between +17% and +36%. The magnitude and seasonal distribution of changes in the downscaled climate change projections are strongly influenced by the General Circulation Model (GCM) providing boundary conditions for the RCM experiments. Therefore, a multi-model ensemble of climate change scenarios based on different RCMs and GCMs provides more robust estimates of precipitation, temperature and evapotranspiration for hydrological impact assessments, at both regional and local scale.  相似文献   

16.
This paper describes the projection of climate change scenarios under increased greenhouse gas emissions, using the results of atmospheric-ocean general circulation models in the Coupled Model Intercomparison Project phase 3 dataset. A score is given to every model based on global and regional performance. Four out of 20 general circulation models (GCMs) were selected based on skill in predicting observed annual temperature and precipitation conditions. The ensemble of these four models shows superiority over the individual model scores. These models were subjected to increases in future anthropogenic radiative forcings for constructing climate change scenarios. Future climate scenarios for Tamil Nadu were developed with MAGICC/SCENGEN software. Model results show both temperature and precipitation increases under increased greenhouse gas scenarios. Northeast and northwest parts of Tamil Nadu show a greater increase in temperature and precipitation. Seasonally, the maximum rise in temperature occurred during the MAM season, followed by DJF, JJA, and SON. Decreasing trends of precipitation were observed during DJF and MAM.  相似文献   

17.
This study assesses future climate change over East Asia using the Global/Regional Integrated Model system—Regional Model Program (RMP). The RMP is forced by two types of future climate scenarios produced by the Hadley Center Global Environmental Model version 2 (HG2); the representative concentration pathways (RCP) 4.5 and 8.5 scenarios for the intergovernmental panel on climate change fifth assessment report (AR5). Analyses for the current (1980–2005) climate are performed to evaluate the RMP’s ability to reproduce precipitation and temperature. Two different future (2006–2050) simulations are compared with the current climatology to investigate the climatic change over East Asia centered in Korea. The RMP satisfactorily reproduces the observed seasonal mean and variation of precipitation and temperature. The spatial distribution of the simulated large-scale features and precipitation by the RMP is generally less reflective of current climatic conditions than that is given by the HG2, but their inter-annual variations in East Asia are better captured by the RMP. Furthermore, the RMP shows higher reproducibility of climate extremes including excessive heat wave and precipitation events over South Korea. In the future, strong warming is distinctly coupled with intensified monsoonal precipitation over East Asia. In particular, extreme weather conditions are increased and intensified over South Korea as follows: (1) The frequency of heat wave events with temperature greater than 30 °C is projected to increase by 131 and 111 % in the RCP 8.5 and 4.5 downscaling, relative to the current climate. (2) The RCP 8.5 downscaling shows the frequency and variability of heavy rainfall to increase by 24 and 31.5 %, respectively, while the statistics given by the RCP 4.5 downscaling are similar to those of the current climate.  相似文献   

18.
Climate changes over China from the present (1990–1999) to future (2046–2055) under the A1FI (fossil fuel intensive) and A1B (balanced) emission scenarios are projected using the Regional Climate Model version 3 (RegCM3) nests with the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). For the present climate, RegCM3 downscaling corrects several major deficiencies in the driving CCSM, especially the wet and cold biases over the Sichuan Basin. As compared with CCSM, RegCM3 produces systematic higher spatial pattern correlation coefficients with observations for precipitation and surface air temperature except during winter. The projected future precipitation changes differ largely between CCSM and RegCM3, with strong regional and seasonal dependence. The RegCM3 downscaling produces larger regional precipitation trends (both decreases and increases) than the driving CCSM. Contrast to substantial trend differences projected by CCSM, RegCM3 produces similar precipitation spatial patterns under different scenarios except autumn. Surface air temperature is projected to consistently increase by both CCSM and RegCM3, with greater warming under A1FI than A1B. The result demonstrates that different scenarios can induce large uncertainties even with the same RCM-GCM nesting system. Largest temperature increases are projected in the Tibetan Plateau during winter and high-latitude areas in the northern China during summer under both scenarios. This indicates that high elevation and northern regions are more vulnerable to climate change. Notable discrepancies for precipitation and surface air temperature simulated by RegCM3 with the driving conditions of CCSM versus the model for interdisciplinary research on climate under the same A1B scenario further complicated the uncertainty issue. The geographic distributions for precipitation difference among various simulations are very similar between the present and future climate with very high spatial pattern correlation coefficients. The result suggests that the model present climate biases are systematically propagate into the future climate projections. The impacts of the model present biases on projected future trends are, however, highly nonlinear and regional specific, and thus cannot be simply removed by a linear method. A model with more realistic present climate simulations is anticipated to yield future climate projections with higher credibility.  相似文献   

19.
The topography of hilly landscapes modifies crop environment changing the fluxes of water and energy, increasing risk in these vulnerable agriculture systems, which could become more accentuated under climate change (drought, increased variability of rainfall). In order to quantify how wheat production in hilly terrain will be affected by future climate, a newly developed and calibrated micro-meteorological model for hilly terrain was linked to a crop growth simulation model to analyse impact scenarios for different European regions. Distributions of yield and growing length of rainfed winter wheat and durum wheat were generated as probabilistic indices from baseline and low (B2) and high (A2) emission climate scenarios provided from the Hadley Centre Regional Climate Model (HadRM3). We used site-specific terrain parameters for two sample catchments in Europe, ranging from humid temperate (southeast UK) to semi-arid Mediterranean (southern Italy). Results for baseline scenario show that UK winter wheat is mainly affected by annual differences in precipitation and yield distributions do not change with terrain, whilst in the southern Mediterranean climate yield variability is significantly related to a slope × elevation index. For future climate, our simulations confirm earlier predictions of yield increase in the UK, even under the high emission scenario. In the southern Mediterranean, yield reduction is significantly related to slope × elevation index increasing crop failure in drier elevated spots but not in wet years under baseline weather. In scenarios for the future, the likelihood of crop failure rises sharply to more than 60%, and even in wet years, yields are likely to decrease in elevated spots.  相似文献   

20.
A general increase in precipitation has been observed in Germany in the last century, and potential changes in flood generation and intensity are now at the focus of interest. The aim of the paper is twofold: a) to project the future flood conditions in Germany accounting for various river regimes (from pluvial to nival-pluvial regimes) and under different climate scenarios (the high, A2, low, B1, and medium, A1B, emission scenarios) and b) to investigate sources of uncertainty generated by climate input data and regional climate models. Data of two dynamical Regional Climate Models (RCMs), REMO (REgional Model) and CCLM (Cosmo-Climate Local Model), and one statistical-empirical RCM, Wettreg (Wetterlagenbasierte Regionalisierungsmethode: weather-type based regionalization method), were applied to drive the eco-hydrological model SWIM (Soil and Water Integrated Model), which was previously validated for 15 gauges in Germany. At most of the gauges, the 95 and 99 percentiles of the simulated discharge using SWIM with observed climate data had a good agreement with the observed discharge for 1961–2000 (deviation within ±10 %). However, the simulated discharge had a bias when using RCM climate as input for the same period. Generalized Extreme Value (GEV) distributions were fitted to the annual maximum series of river runoff for each realization for the control and scenario periods, and the changes in flood generation over the whole simulation time were analyzed. The 50-year flood values estimated for two scenario periods (2021–2060, 2061–2100) were compared to the ones derived from the control period using the same climate models. The results driven by the statistical-empirical model show a declining trend in the flood level for most rivers, and under all climate scenarios. The simulations driven by dynamical models give various change directions depending on region, scenario and time period. The uncertainty in estimating high flows and, in particular, extreme floods remains high, due to differences in regional climate models, emission scenarios and multi-realizations generated by RCMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号