首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Wangu gold deposit in northeastern Hunan, South China, is one of many structurally controlled gold deposits in the Jiangnan Orogen. The host rocks (slates of the Lengjiaxi Group) are of Neoproterozoic age, but the area is characterized by a number of Late Jurassic–Cretaceous granites and NE-trending faults. The timing of mineralization, tectonic setting and ore genesis of this deposit and many similar deposits in the Jiangnan Orogen are not well understood. The orebodies in the Wangu deposit include quartz veins and altered slates and breccias, and are controlled by WNW-trending faults. The principal ore minerals are arsenopyrite and pyrite, and the major gangue minerals are quartz and calcite. Alteration is developed around the auriferous veins, including silicification, pyritic, arsenopyritic and carbonate alterations. Field work and thin section observations indicate that the hydrothermal processes related to the Wangu gold mineralization can be divided into five stages: 1) quartz, 2) scheelite–quartz, 3) arsenopyrite–pyrite–quartz, 4) poly-sulfides–quartz, and, 5) quartz–calcite. The Lianyunshan S-type granite, which is in an emplacement contact with the NE-trending Changsha-Pingjiang fracture zone, has a zircon LA-ICPMS U–Pb age of 142 ± 2 Ma. The Dayan gold occurrence in the Changsha-Pingjiang fracture zone, which shares similar mineral assemblages with the Wangu deposit, is crosscut by a silicified rock that contains muscovite with a ca. 130 Ma 40Ar–39Ar age. The gold mineralization age of the Wangu deposit is thus confined between 142 Ma and 130 Ma. This age of mineralization suggests that the deposit was formed simultaneously with or subsequently to the development of NE-trending extensional faults, the emplacement of Late Jurassic–Cretaceous granites and the formation of Cretaceous basins filled with red-bed clastic rocks in northeastern Hunan, which forms part of the Basin and Range-like province in South China. EMPA analysis shows that the average As content in arsenopyrite is 28.7 atom %, and the mineralization temperature of the arsenopyrite–pyrite–quartz stage is estimated to be 245 ± 20 °C from arsenopyrite thermometry. The high but variable Au/As molar ratios (>0.02) of pyrite suggest that there are nanoparticles of native Au in the sulfides. An integration of S–Pb–H–O–He–Ar isotope systematics suggests that the ore fluids are mainly metamorphic fluids originated from host rocks, possibly driven by hydraulic potential gradient created by reactivation of the WNW-trending faults initially formed in Paleozoic, with possible involvement of magmatic and mantle components channeled through regional fault networks. The Wangu gold deposit shares many geological and geochemical similarities as well as differences with typical orogenic, epithermal and Carlin-type gold deposits, and may be better classified as an “intracontinental reactivation” type as proposed for many other gold deposits in the Jiangnan Orogen.  相似文献   

2.
The Lapa gold deposit contains reserves of 2.4 Mt at 6.5 g/t Au and is one of the few deposits located directly within the Cadillac–Larder Lake Fault Zone (CLLFZ), a first-order crustal-scale fault that separates the Archean Abitibi Subprovince from the Pontiac Subprovince to the south. Gold mineralization is predominantly hosted in highly strained and altered, upper greenschist–lower amphibolite facies mafic to ultramafic rocks of the Piché Group. Auriferous ore zones consist of finely disseminated auriferous arsenopyrite–pyrrhotite?±?pyrite and native gold disseminated in biotite- and carbonate-altered wall rocks. Native gold, which is also present in quartz ± dolomite–calcite veinlets, is locally associated with Sb-bearing minerals, especially at depth ≤1 km from surface where the deposit is characterized by a Au–Sb–As association. At vertical depth greater than 1 km, gold is associated with arsenopyrite and pyrrhotite (Au–As association). The mineralogy and paragenesis of the Lapa deposit metamorphosed ore and alteration assemblages record the superposition of three metamorphic episodes (M1, M2, and M3) and three gold mineralizing events. Spatial association between biotitized wall rocks and auriferous arsenopyrite indicates that arsenopyrite precipitation is concomitant with potassic alteration. The predominant Au–As association recognized across the deposit is related to gold in solid solution in arsenopyrite as part of a pre-M2 low-grade auriferous hydrothermal event. However, the occurrence of hornblende?+?oligoclase porphyroblasts overprinting the biotite alteration, and the presence of porous clusters and porphyroblasts of arsenopyrite with native gold and pyrrhotite indicate an auriferous metasomatic event associated with peak M2 prograde metamorphism. Late retrograde metamorphism (M3) overprints the hornblende–oligoclase M2 assemblage within the host rocks proximal to ore by an actinolite–albite assemblage by precipitation of free gold and Sb–sulfosalts at lower PT. The complex relationships between ore, structural features, and metamorphic assemblages at Lapa are related to the tectonometamorphic evolution of the Cadillac–Larder Lake Fault Zone at different times and crustal levels, and varying heat and fluid flow regimes. The Lapa deposit demonstrates that early, low-grade gold mineralization within the Cadillac–Larder Lake Fault Zone has benefited from late gold enrichment(s) during prograde and retrograde metamorphism, suggesting that multi-stage processes may be important to form gold-rich orogenic deposits in first order crustal-scale structures.  相似文献   

3.
The Tirek gold deposit hosted in the Archean shield is one of the richest sources of mined gold for Algeria. The deposit is controlled by the East Ouzzal shear zone (EOSZ), a transcurrent N–S lithospheric fault. The EOSZ is a late Pan-African dextral-ductile shear zone separating two contrasting Precambrian domains: the Archean In Ouzzal block to the west (Orthogenesis with subordinate metasediments reworked and granulitized during the ca. 2 Ga Eburnean event) and a middle Proterozoic block to the east involved in the ca. 600 Ma Pan-African event. The auriferous quartz veins are mainly oriented in two directions, N–S veins hosted in mylonitic rocks and NE–SW veins hosted in gabbroic or gneissic bands. The NE–SW veins contain the richest ore. Gold ore is found in a system of veins and lenticular quartz veinlets arranged in anastomosing networks. The hydrothermal alteration associated with these veins is characteristically a carbonate-sericite-albite-pyrite assemblage. Gold is the main metal of economic importance; it is disseminated in the quartz as grains or fibers along microcracks and as microscopic grains in the host rocks. Microthermometric results and Raman laser data from fluid inclusions demonstrate that the ore-forming fluids contained H2O-CO2±CH4 and were low salinity. Homogenization temperatures are commonly 250–310 °C. In the Tirek deposit, the role of the shear zone that hosts the mineralization was to drain the hydrothermal fluid. Interactions between the fluid and the mafic host rocks and CO2 also contributed to the formation of the hydrothermal gold deposit at Tirek.  相似文献   

4.
At the Sandpiper gold deposit in the Tanami region of northern Australia sericite is intimately intergrown with arsenopyrite in gold-bearing quartz veins and breccias, suggesting sericite crystallisation synchronous with gold-bearing fluid flow. This ore-stage sericite yields a 40Ar/39Ar plateau age of 1785 ± 32 Ma (2σ including both analytical and systematic uncertainties). Recalculation using revised and more precise values for the 40K decay constants and the age of the Fish Canyon Sanidine standard shifts the age to 1794 ±12 Ma (2σ including all known uncertainties). Given the possibility of post-mineralisation isotopic resetting this age can be conservatively interpreted as a minimum constraint on the timing of gold deposition although, given local geological relationships and estimates for the argon retentivity of white mica, we consider complete isotopic resetting to be unlikely. The preferred interpretation is, therefore, that the sericite 40Ar/39Ar age indicates the timing of gold mineralisation. Thesericite age accords with a limited dataset of 207Pb/206Pb xenotime ages of ca 1800 Ma from other gold deposits in the Tanami region, interpreted as mineralisation ages. The agreement between independently derived ages from several gold deposits lends support for a widespread gold-mineralising event at ca 1800 Ma in the Tanami region.  相似文献   

5.
The Qianhe gold deposit in the Xiong’ershan area is located along the southern margin of the Archean-Paleoproterozoic North China Craton. The deposit consists of six orebodies that are hosted in Paleoproterozoic andesites to basaltic andesites and structurally controlled by roughly EW-trending faults. Individual orebodies comprise auriferous quartz veins and disseminated Au-bearing pyrite within hydrothermally altered rocks on both sides of, or close to, the veins. Ore-related hydrothermal alteration has produced various mixtures of K-feldspar, quartz, sericite, chlorite, epidote, carbonate, and sulfides. Pyrite is the most important ore mineral, associated with minor amounts of galena, sphalerite, and chalcopyrite. Other trace minerals include molybdenite, arsenopyrite, scheelite, rutile, xenotime, and parisite. Gold occurs mostly as native gold and electrum enclosed in pyrite or along microfractures of sulfides and quartz. Microthermometric measurements of primary inclusions in auriferous quartz suggest that gold and associated minerals were precipitated in the range of 160–305 °C from aqueous or carbonic-aqueous fluids with salinities of 6–22 wt% NaCl equiv. Samples of molybdenite coexisting with Au-bearing pyrite have Re–Os model ages of 134–135 Ma, whereas ore-related hydrothermal sericite separates yield 40Ar/39Ar plateau ages between 127 and 124 Ma. The Re–Os and 40Ar/39Ar ages are remarkably consistent with zircon U–Pb ages (134.5?±?1.5 and 127.2?±?1.4 Ma; 1σ) of the biotite monzogranite from the Heyu-intrusive complex and granitic dikes in and close to the Qianhe gold mine, indicating a close temporal and thus possibly genetic relationship between gold mineralization and granitic magmatism in the area. Fluid inclusion waters extracted from auriferous quartz have δD values of ?80 to ?72 ‰, whereas the calculated δ 18OH2O values range from 3.1 to 3.8 ‰. The hydrogen and oxygen isotopes from this study and previous work indicate that ore fluids were likely derived from degassing of magmas, with addition of minor amounts of meteoric water. Gold mineralization at Qianhe is temporarily coincident with pervasive bimodal magmatism, widespread fault-basin formation, and well development of metamorphic core complexes in the whole eastern North China Craton that have been interpreted as reflecting reactivation of the craton in the late Mesozoic after prolonged stabilization since its formation in the late Paleoproterozoic. It is therefore concluded that the Qianhe gold deposit formed as a result of this craton reactivation event.  相似文献   

6.
Gold deposits in the Syama and Tabakoroni goldfields in southern Mali occur along a north-northeast trending mineralised litho-structural corridor that trends for approximately 40 km. The deposits are interpreted to have formed during a craton-wide metallogenic event during the Eburnean orogeny. In the Syama goldfield, gold mineralisation in 9 deposits is hosted in the hanging-wall of the Syama-Bananso Shear Zone in basalt, greywacke, argillite, lamprophyre, and black shale. Gold is currently mined primarily from the oxidised-weathered zone of the ore bodies. In the Syama deposit, mineralisation hosted in altered basalt is associated with an intense ankerite–quartz–pyrite stockwork vein systems, whereas disseminated style mineralisation is also present in greywackes. In contrast, the Tellem deposit is hosted in quartz–porphyry rocks.In the Tabakoroni goldfield, gold mineralisation is hosted in quartz veins in tertiary splay shears of the Syama-Bananso Shear Zone. The Tabakoroni orebody is associated with quartz, carbonate and graphite (stylolite) veins, with pyrite and lesser amounts of arsenopyrite. There are four main styles of gold mineralisation including silica-sulphide lodes in carbonaceous fault zones, stylolitic quartz reefs in fault zones, quartz–Fe–carbonate–sulphide lodes in mafic volcanics, and quartz–sulphide stockwork veins in silicified sediments and porphyry dykes. The several deposit styles in the goldfield thus present a number of potential exploration targets spatially associated with the regional Syama-Bananso Shear Zone and generally classified as orogenic shear-hosted gold deposits.  相似文献   

7.
The Yangjingou gold deposit in Jilin Province lies 11 km south of the large-scale Xiaoxinancha gold–copper deposit. Yangjingou orebodies are structurally controlled fault- or fracture-related auriferous quartz veins. This type of mineralization is significantly different from that of the Xiaoxinancha porphyry gold–copper deposit, and has mineral assemblages and fluid inclusion compositions typical of orogenic gold deposits. We suggest that the Yangjingou deposit is the first orogenic gold deposit discovered in the Yanbian area, even in all of NE China. Here, we present new isotopic dating and trace element analysis of the ore-hosting monzogranite and auriferous quartz veins within the deposit, in order to determine the age and tectonic setting of metallogenesis, and the geological conditions controlling gold mineralization. LA-ICP-MS U–Pb dating of zircons separated from the monzogranite yielded an age of 262.3 ± 1.3 Ma, indicating intrusion during the late Permian. Hydrothermal muscovite from auriferous quartz veins yielded a 40Ar/39Ar plateau age of 241.57 ± 1.2 Ma, indicating that gold mineralization occurred at 241 Ma. Trace element and REE compositions of the monzogranite and auriferous quartz veins are both indicative of the formation from a region of the upper mantle that previously underwent crustal contamination. Geochronological analysis indicates that the diagenesis and mineralization resulting in the Yangjingou gold deposit occurred during the late Permian–Early Triassic. The tectonic evolution of the region and comparison of this deposit with other mineralizing events indicate that the orebody formed during orogenesis associated with collision between the North China and Siberian cratons.  相似文献   

8.
The Tanami Region, a poorly exposed, mostly Paleoproterozoic province within the North Australian Craton, hosts a number of significant gold deposits in diverse settings. Rare exposures of 2,520–2,500 Ma amphibolite facies Archean gneiss and metasedimentary rocks form basement to the thick overlying metasedimentary succession of the 1,880–1,830 Ma Tanami Group. The basal unit of the Tanami Group is the Dead Bullock Formation, a fining-upward deep-water succession dominated by siltstone, carbonaceous siltstone, iron-rich siltstone and mafic sills. Carbonaceous- and iron-rich lithologies in the upper Dead Bullock Formation represent important hosts for gold mineralization. The conformably overlying Killi Killi Formation represents turbiditic sedimentary rocks that are correlated with the widespread Lander Rock beds of the Arunta Region. Sedimentation of the Tanami Group was terminated by regional deformation and greenschist to amphibolite facies metamorphism during the Tanami Event (D1/M1), at around 1,830 Ma. The Tanami Group is unconformably overlain by rhyolite, siliciclastic sedimentary rocks, and felsic ignimbrite of the Ware Group that were deposited at about 1,825–1,810 Ma. Subsequent ESE–WNW to SE–NW directed shortening (D2), followed by NE–SW to E–W directed shortening (D3), has resulted in open NE F2- and NW F3-trending folds in both the Tanami and Ware Groups. Voluminous granitoids, dominated by I-type, biotite granodiorite, and monzogranite were intruded in the interval 1,825–1,790 Ma and have been subdivided using geochemical criteria into the Birthday, Frederick, and Grimwade Suites. Basalt and immature sedimentary rocks of the Mount Charles Formation are restricted in extent to the Tanami mine corridor, and are interpreted to reflect a continental rift succession that was deposited around 1,800 Ma, with an early Archean sedimentary provenance. Steep S to SE dipping F4-fold structures of Tanami and Ware Group metasedimentary rocks, many spatially associated with 1,825–1,790 Ma granitoid intrusions, indicate a period of SSE-directed regional shortening (D4) syn-to-post the regional granitoid intrusive phase. A network of N to NW striking faults, several of which are interpreted as oblique thrusts with a component of left lateral movement, indicates a period of D5 convergence during WSW–ENE to E–W directed shortening. The Tanami mine corridor fault system comprises a network of N, NE to ENE striking D5 faults that merge with N to NW striking faults and probably accommodated movement between granite core domains. D5 faulting is associated with the main phase of gold mineralization in suitable structural–lithological traps. The Paleoproterozoic basement of the Tanami Region is unconformably overlain by quartz sandstone, lithic arenite, and conglomerate of the Pargee Sandstone. Pargee Sandstone may represent syn-tectonic sedimentation related to the 1,730 Ma Strangways Orogeny, and is unconformably overlain by the late Paleoproterozoic platform cover succession of the Birrindudu Group. The Paleoproterozoic basement and cover sequences have subsequently undergone several episodes of faulting, collectively termed D6+. The Paleoproterozoic evolution of the Tanami Region is interpreted to have occurred in an intracratonic setting, but was fundamentally influenced by tectonic events in the adjacent Halls Creek Orogen (1,835–1,805 Ma Halls Creek Orogeny) and Arunta Region (1,815–1,800 Ma Stafford Event). The boundaries between the Tanami Region and Kimberley Region to the northwest and the Arunta Region to the southeast are transitional, and are largely defined by the presence or absence of identifiable Dead Bullock Formation.  相似文献   

9.
《International Geology Review》2012,54(15):1885-1901
The Dachang gold deposit is located in the Late Triassic Songpan-Ganzi Fold Belt, NE Tibetan Plateau. Gold ore is concentrated as veins along secondary faults and fracture zones in the Bayan Har Group metaturbidites. No exposed felsic plutons are present in the vicinity of the deposit. The auriferous veins contain <15% sulphide minerals, mainly arsenopyrite, pyrite, and stibnite. Gold is commonly enclosed within arsenopyrite and pyrite. Typical alteration around the ore bodies includes silicification, sericitization, and weak carbonatization.

Gold-bearing quartz samples have δ18O values of 16.9–21.2‰ (V-SMOW) from which δ18OH2O values of 6.2–9.6‰ can be calculated from the fluid inclusion temperatures (or 10.0 to 12.7‰ if we used the average arsenopyrite geothermometer temperature of 301°C). The δD values of fluid inclusions in quartz range from –90‰ to –72‰. δ34S values of gold-bearing sulphides mainly range from –5.9‰ to –2.8‰ (V-CDT). Pyrite and arsenopyrite in ores have 206Pb/204Pb ratios of 18.2888 to 18.4702, 207Pb/204Pb ratios of 15.5763 to 15.6712, and 208Pb/204Pb ratios of 38.2298 to 38.8212. These isotopic compositions indicate that the ore-forming fluids were of metamorphic origin, and the S and Pb may have been derived from the host metaturbidites of the Bayan Har Group. The Dachang Au deposit has geological and geochemical features similar to orogenic gold deposits. We propose that the ores formed when the Songpan-Ganzi Fold Belt was intensely deformed by Late Triassic folding and thrusting. Large-scale thrusting resulted in regional allochthons of different scales, followed by secondary faults or fracture zones that controlled the ore bodies.  相似文献   

10.
西准噶尔宝贝金矿地质与容矿火山岩的锆石SHRIMP年龄   总被引:35,自引:0,他引:35  
位于西准噶尔的宝贝金矿主要由石英脉型矿石组成,主要含金矿物为银金矿,以裂隙金和包裹金的形式赋存在毒砂、黄铁矿和石英中。宝贝金矿的黄铁矿普遍含As(最高达3.88%,平均1.49%)。根据脉穿切和矿物共生组合可将宝贝金矿的成矿作用划分出四个成矿阶段:钠长石–石英阶段(I)、银金矿–黄铁矿–毒砂–石英阶段(II)、多金属硫化物浸染状矿化阶段(III)和碳酸盐化阶段(IV),其中第II和III阶段为主要成矿期。利用锆石SHRIMP方法测定了赋矿围岩(酸性凝灰岩)的形成时代,其U–Pb谐和年龄为328.1±1.8 Ma(MSWD=1.6, n=13)。该年龄代表宝贝金矿赋矿围岩的形成时间,即西准噶尔地区大规模中酸性火山岩的喷发时间。  相似文献   

11.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

12.
Gold deposits at El Sid are confined to hydrothermal quartz veins which contain pyrite, arsenopyrite, sphalerite and galena. These veins occur at the contact between granite and serpentinite and extend into the serpentinite through a thick zone of graphite schist. Gold occurs in the mineralized zone either as free gold in quartz gangue or dissolved in the sulfide minerals. Ore-microscopic study revealed that Au-bearing sulfides were deposited in two successive stages with early pyrite and arsenopyrite followed by sphalerite and galena. Gold was deposited during both stages, largely intergrown with sphalerite and filling microfractures in pyrite and arsenopyrite.Spectrochemical analyses of separated pyrite, arsenopyrite, sphalerite and galena showed that these sulfides have similar average Au contents. Pyrite is relatively depleted in Ag and Te. This suggests that native gold was deposited in the early stage of mineralization. Arsenopyrite and galena show relatively high concentrations of Te. They are also respectively rich in Au and Ag. Tellurides are, thus, expected to be deposited together with arsenopyrite and galena.  相似文献   

13.
Gold mineralization in Southern Granulite Terrain (SGT) of India has close spatial relationship with the shear zones (Moyar–Bhavani) present in Cauvery Suture Zone. Gold is found to be associated with primary quartz veins, placers and laterites. The gold prospects in SGT can be broadly grouped into three provinces i) Wynad-Nilgiri, ii) Malappuram and iii) Attappadi. The auriferous quartz veins are within the deformed biotite/hornblende bearing gneisses and amphibolite. Wall rock alteration is conspicuous around the mineralized veins and gives an assemblage of muscovite–calcite–ankerite–chlorite–biotite–pyrite related to fluid–rock interaction at the time of vein formation. Fluid inclusion studies of vein quartz gives an idea of the nature of the ore forming fluids, the fluid involved in gold mineralization is of low saline and aqueous-carbonic in composition and quite similar to the orogenic lode gold deposits reported world-wide. Micro-thermometric data indicates fluid immiscibility (phase separation) during trapping of fluid inclusions and this must have played an important role in gold deposition. Geochronological studies of mineral separates from Wynad-Nilgiri province using Rb–Sr and Sm–Nd isochron methods of the auriferous quartz veins gave an age of approximately 450 Ma for the vein formation. The present studies on SGT gold mineralization indicate 1. During the Pan-African orogeny, extensive fluid influx from mantle and metamorphism extracted gold from a mafic source and were focused along major structural discontinuities of Moyar–Bhavani Shear Zone, 2. The aqueous–carbonic ore fluid interacted with rocks of the upper crust and triggered a set of metasomatic changes responsible for the dissolved components such as Ca, Si and Fe and finally precipitating in the veins and 3. The mineralizing fluid with dissolved gold in sulphide complex got destabilized due to fluid immiscibility and wall rock alteration leading to the deposition of gold with associated sulphide minerals in the vein system.  相似文献   

14.
The distribution of mineral deposits, characterised as barite deposits, hematite-rich auriferous deposits and auriferous tourmaline–sulfide deposits, displays a regional sulfate–hematite–sulfide zoning along the thrust-delineated limbs of the Mariana anticline, in the south-eastern part of the Quadrilátero Ferrífero of Minas Gerais, Brazil. Cross-cut relationships of barite veins and sulfide lodes indicate that sulfidation occurred in a late-tectonic context, which is here attributed to the collapse of the ~0.6-Ga Brasiliano thrust front. Reconnaissance S-isotopic data from barite and pyrite (Antônio Pereira barite deposit and its adjacent gold deposit, respectively), and arsenopyrite (Passagem de Mariana gold deposit), suggest a new interpretation for the hydrothermal fluid overprint in the Mariana anticline. The Antônio Pereira barite has Δ33S values that are near zero, constraining the sulfate source to rocks younger than 2.45 Ga. The barite-δ34S values are between +19.6 and +20.8?‰. The Passagem arsenopyrite and tourmaline have Co/Ni ratios that define a positive linear trend with the Antônio Pereira pyrite. The latter has homogenous δ34S values, between +8.8 and +8.9?‰, which are compatible with thermochemical reduction of aqueous sulfate with the S-isotopic composition of the Antônio Pereira barite.  相似文献   

15.
Gold-bearing quartz lodes from the Egat gold mine, South Eastern Desert of Egypt, are associated with pervasively silicified, highly sheared ophiolitic metagabbro and island-arc metavolcanic rocks. The mineralized quartz veins and related alteration haloes are controlled by NNW-trending shear/fault zones. Microscopic and electron probe microanalyses (EPMA) data of the ore and gangue minerals reveal that fine-grained auriferous sulfarsenides represent early high-temperature (355–382 °C) phases, with formation conditions as (fS2?=??10, and fO2 around ?31). A late, low-temperature (302–333 °C) assemblage includes coarse pyrite, arsenopyrite, and free-milling gold grains (88–91 wt.% Au), with formation conditions as (fS2?=??8 and fO2 around ?30). Gold was impounded within early sulfarsenides, while free-milling gold blebs occur along microfractures in quartz veins and as inclusions in late sulfides. Infiltration of hydrothermal fluids under brittle–ductile shear conditions led to mobilization of refractory Au from early sulfarsenide phases and reprecipitated free gold, simultaneous with silicification of the host rocks. The positive correlation between Au and As favors and verifies the use of As as the best pathfinder for gold targets, along the NNW-trending shear zones.  相似文献   

16.
Gold mineralization at Hutti is confined to a series of nine parallel, N–S to NNW–SSE trending, steeply dipping shear zones. The host rocks are amphibolites and meta-rhyolites metamorphosed at peak conditions of 660±40°C and 4±1 kbar. They are weakly foliated (S1) and contain barren quartz extension veins. The auriferous shear zones (reefs) are typically characterized by four alteration assemblages and laminated quartz veins, which, in places, occupy the entire reef width of 2–10 m, and contain the bulk of gold mineralization. A <1.5 m wide distal chlorite-sericite (+biotite, calcite, plagioclase) alteration zone can be distinguished from a 3–5 m wide proximal biotite-plagioclase (+quartz, muscovite, calcite) alteration zone. Gold is both spatially and temporally associated with disseminated arsenopyrite and pyrite mineralization. An inner chlorite-K-feldspar (+quartz, calcite, scheelite, tourmaline, sphene, epidote, sericite) alteration halo, which rims the laminated quartz veins, is characterized by a pyrrhotite, chalcopyrite, sphalerite, ilmenite, rutile, and gold paragenesis. The distal chlorite-sericite and proximal biotite-plagioclase alteration assemblages are developed in microlithons of the S2–S3 crenulation cleavage and are replaced along S3 by the inner chlorite-K-feldspar alteration, indicating a two-stage evolution for gold mineralization. Ductile D2 shearing, alteration, and gold mineralization formed the reefs during retrograde evolution and fluid infiltration under upper greenschist to lower amphibolite facies conditions (560±60°C, 2±1 kbar). The reefs were reactivated in the D3 dextral strike-slip to oblique-slip environment by fault-valve behavior at lower greenschist facies conditions (ca. 300–350°C), which formed the auriferous laminated quartz veins. Later D4 crosscutting veins and D5 faults overprint the gold mineralization. The alteration mineralogy and the structural control of the deposit clearly points to an orogenic style of gold mineralization, which took place either during isobaric cooling or at different levels of the Archean crust. From overlaps in the tectono-metamorphic history, it is concluded that gold mineralization occurred during two tectonic events, affecting the eastern Dharwar craton in south India between ca. 2550 – 2530 Ma: (1) The assemblage of various terranes of the eastern block, and (2) a tectono-magmatic event, which caused late- to posttectonic plutonism and a thermal perturbation. It differs, however, from the pre-peak metamorphic gold mineralization at Kolar and the single-stage mineralization at Ramagiri. Notably, greenschist facies gold mineralization occurred at Hutti 35–90 million years later than in the western Dharwar craton. Editorial handling: G. Beaudoin  相似文献   

17.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

18.
《Ore Geology Reviews》2009,35(4):580-596
The Semna gold deposit is one of several vein-type gold occurrences in the central Eastern Desert of Egypt, where gold-bearing quartz veins are confined to shear zones close to the boundaries of small granitoid stocks. The Semna gold deposit is related to a series of sub-parallel quartz veins along steeply dipping WNW-trending shear zones, which cut through tectonized metagabbro and granodiorite rocks. The orebodies exhibit a complex structure of massive and brecciated quartz consistent with a change of the paleostress field from tensional to simple shear regimes along the pre-existing fault segments. Textural, structural and mineralogical evidence, including open space structures, quartz stockwork and alteration assemblages, constrain on vein development during an active fault system. The ore mineral assemblage includes pyrite, chalcopyrite, subordinate arsenopyrite, galena, sphalerite and gold. Hydrothermal chlorite, carbonate, pyrite, chalcopyrite and kaolinite are dominant in the altered metaggabro; whereas, quartz, sericite, pyrite, kaolinite and alunite characterize the granodiorite rocks in the alteration zones. Mixtures of alunite, vuggy silica and disseminated sulfides occupy the interstitial open spaces, common at fracture intersections. Partial recrystallization has rendered the brecciation and open space textures suggesting that the auriferous quartz veins were formed at moderately shallow depths in the transition zone between mesothermal and epithermal veins.Petrographic and microthermometric studies aided recognition of CO2-rich, H2O-rich and mixed H2O–CO2 fluid inclusions in the gold-bearing quartz veins. The H2O–CO2 inclusions are dominant over the other two types and are characterized by variable vapor: liquid ratios. These inclusions are interpreted as products of partial mixing of two immiscible carbonic and aqueous fluids. The generally light δ34S of pyrite and chalcopyrite may suggest a magmatic source of sulfur. Spread in the final homogenization temperatures and bulk inclusion densities are likely due to trapping under pressure fluctuation through repeated fracture opening and sealing. Conditions of gold deposition are estimated on basis of the fluid inclusions and sulfur isotope data as 226–267 °C and 350–1100 bar, under conditions transitional between mesothermal and epithermal systems.The Semna gold deposit can be attributed to interplay of protracted volcanic activity (Dokhan Volcanics?), fluid mixing, wallrock sulfidation and a structural setting favoring gold deposition. Gold was transported as Au-bisulfide complexes under weak acid conditions concomitant with quartz–sericite–pyrite alteration, and precipitated through a decrease in gold solubility due to fluid cooling, mixing with meteoric waters and variations in pH and fO2.  相似文献   

19.
The Bepkong gold deposit is located in the Wa–Lawra belt of the Paleoproterozoic Baoulé-Mossi domain of the West African Craton, in NW Ghana. It occurs in pelitic and volcano-sedimentary rocks, metamorphosed to greenschist facies, in genetic association with zones of shear interpreted to form during the regional D3 deformational event, denominated DB1 at the deposit scale. The ore zone forms a corridor-like body composed of multiple quartz ± carbonate veins surrounded by an alteration envelope, characterized by the presence of chlorite, calcite, sericite, quartz and disseminated pyrite, arsenopyrite plus subordinate pyrrhotite and chalcopyrite. The veins contain only small proportions of pyrite, whereas most of the sulphides, particularly arsenopyrite, occur in the altered host rock, next to the veins. Pyrite is also common outside of the ore zone. Gold is found in arsenopyrite, where it occurs as invisible gold and as visible – albeit micron-size – grains in its rims, and as free gold within fractures cross-cutting this sulphide. More rarely, free gold also occurs in the veins, in fractured quartz. In the ore zone, pyrite forms euhedral crystals surrounding arsenopyrite, but does not contain gold, suggesting that it formed at a late stage, from a gold-free hydrothermal fluid.  相似文献   

20.
The Dungash historic gold mine is located in the South Eastern Desert of Egypt. The gold-bearing quartz veins are hosted by the metavolcanic and metavolcaniclastic rocks along an ENE–WSW trending shear zone. Alteration types recorded in the wall rocks are sericitization, silicification, carbonatization, chloritization, sulfidization, ferruginization, and listwanitization. The ore mineral assemblage comprises arsenopyrite, pyrite, native gold, pyrrhotite, sphalerite, chalcopyrite, and galena. The primary sulfide mineral assemblage formed during a hypogene hydrothermal stage whereas anglesite and goethite occur as secondary supergene phases. Microthermometric fluid inclusion analysis revealed that the auriferous quartz precipitated from a moderately saline (5 to 11.22 wt% NaClequiv) solution at temperatures above the recorded homogenization temperatures (T h), which range from 380 to 177 °C. The minimum pressures of trapping are between 350 and 400 bars. The fluid evolution during mineralization is explained by mixing of a magmatic fluid with meteoric waters. Initially, the high temperature and moderately saline magmatic fluid dominated and progressively became diluted with meteoric waters. Highest gold content is recorded in the carbonatized zone and the quartz veins. However, gold content in the carbonatized zone of the footwall exceeds several times its content in the quartz veins and the carbonatized zone of the hanging wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号