首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
Mineral paragenescs in the prehnite-pumpellyite to greenschistfades transition of the Karmutsen metabasites are markedly differentbetween amygdule and matrix, indicating that the size of equilibriumdomain is very small. Characteristic amygdule assemblages (+chlorite + quartz) vary from: (1) prehnite + pumpeUyite + epidote,prehnite + pumpellyite + calcite, and pumpellyite + epidote+ calcite for the prehnite-pumpellyite facies; through (2) calcite+ epidote + prehnite or pumpellyite for the transition zone;to (3) actinolite + epidote + calrite for the greenschist facies.Actinolite first appears in the matrix of the transition zone.Na-rich wairakites containing rare analcime inclusions coexistwith epidote or Al-rich pumpellyite in one prehnite-pumpellyitefacies sample. Phase relations and compositions of these wairakite-bearingassemblages further suggest that pumpellyite may have a compositionalgap between 0.10 and 0.15 XFe?. Although the facies boundaries are gradational due to the multi-varianceof the assemblages, several transition equilibria are establishedin the amygdule assemblages. At low Xco2, pumpellyite disappearsprior to prehnite by a discontinuous-type reaction, pumpellyite+ quartz + CO2 = prehnite + epidote + calcite + chlorite + H2O,whereas prehnite disappears by a continuous-type reaction, prehnite+ CO2 = calcite + epidote + quartz-l-H2O. On the other hand,at higher XCO2 a prehnite-out reaction, prehnite + chlorite+ H2O + CO2 = calcite + pumpellyite + quartz, precedes a pumpellyiteoutreaction, pumpellyite + CO2 = calcite + epidote + chlorite +quartz + H2O. The first appearance of the greenschist faciesassemblages is defined at both low and high XCOj by a reaction,calcite + chlorite + quartz = epidote + actinolite+ H2O + CO2.Thus, these transition equilibria are highly dependent on bothXFe3+ + of Ca-Al silicates and XH20 of the fluid phase. Phaseequilibria together with the compositional data of Ca-Al silicatesindicate that the prehnite-pumpellyite to greenschist faciestransition for the Karmutsen metabasites occurred at approximately1.7 kb and 300?C, and at very low Xco2, probably far less than0.1.  相似文献   

2.
The 6km-thick Karmutsen metabasites, exposed over much of Vancouver Island, were thermally metamorphosed by intrusions of Jurassic granodiorite and granite. Observation of about 800 thin sections shows that the metabasites provide a complete succession of mineral assemblages ranging from the zeolite to pyroxene hornfels facies around the intrusion. The reaction leading to the appearance of actinolite, which is the facies boundary between prehnite-pumpellyite and prehnite-actinolite facies, was examined using calcite-free Karmutsen metabasites collected from the route along the Elk river. In the prehnite-pumpellyite facies, X Fe3+[Fe3+/(Fe3++Al)] in prehnite, pumpellyite and epidote buffered by the four-phase assemblage prehnite+pumpellyite+epidote+chlorite systematically decreases with increasing metamorphic grade. Such a trend is the reverse of that proposed by Cho et al. (1986); this may be related to the higher in the Mt. Menzies area. The actinolite-forming reaction depends on the value of X Fe3+ in pumpellyite. If using a low value of Fe3+, 3.89 Pr(0.06)+0.48 Ep(0.26)+0.60 Chl+H2O=2.10 Pm (0.08)+0.17 Act+0.88 Qz is delineated. The number in parentheses stands for the X Fe3+value in Ca-Al silicates. On the other hand, replacing the X Fe3+ of 0.08 in pumpellyite with a higher X Fe3+ value (0.24) changes the reaction to 0.41 Pm+0.02 Chl+0.42 Qz=0.11 Pr+0.62 Ep+0.10 Act+H2O. The first (hydration) reaction forms pumpellyite and actinolite on the high-temperature side, whereas the second (dehydration) reaction consumes pumpellyite to form prehnite, epidote and actinolite. The former reaction seems to explain the textural relationship of Ca-Al silicates in the study area. However, actinolite-forming reaction changes to a different reaction depending on the compositions of the participating minerals, although in the other area even physical conditions may be similar to those in the study area. Chemographic analysis of phase relations in the PrA facies indicates that the appearance of prehnite depends strongly on the bulk FeO/MgO ratio: this may explain the rarity of prehnite in common metabasites in spite of the expected dominant occurrence in the conventional pseudo-quaternary (Ca-Al-Fe3+-FM) system. An increasing FeO/MgO ratio stabilizes the Pr+Act assemblage and reduces the stability of the Pm+Act one. Therefore, the definition of pumpellyite-actinolite facies should include not only Pm+Act but also the absence of Pr+Act assemblages. In addition to the possible role of high (Cho and Liou 1987) and/or high to mask the appearance of prehnite, the effect of the FeO/MgO ratio is emphasized.  相似文献   

3.
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasively altered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote, prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilites or spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphic grades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. This indicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area have formed as a result of Caledonian regional metamorphism. We suggest that the previously denoted spilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks. The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite facies for the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpeilyite to lower greenschist facies for the lower part of the Middle Ordovician vol  相似文献   

4.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

5.
Metabasalts with abundant pumpellyite have been dredged in the Vema fracture zone, Atlantic ocean, and contain prehnite+pumpellyite±epidote+chlorite+white mica. The prehnite — pumpellyite association in these rocks differs from the prehnite-epidote association for most of the prehnite — pumpellyite facies metabasalts from the ocean crust described previously. The occurrence of pumpellyite is discussed in terms of temperature conditions, and oxygen fugacity and the pumpellyiterich metabasalts are believed to be recrystallized by hydrothermal circulation of seawater at about 250° C under a very low pressure (<1 kb).The bulk composition of the rocks demonstrates a strong chemical modification during hydrothermal metamorphism, similar to what is observed under greenschist facies conditions, except for potassium which can be uptaken from seawater by the rocks.  相似文献   

6.
Serpentinite/talc‐matrix mélanges, bearing blocks of blueschist metavolcanics, occur within the Heathcote and Governor Fault Zones of the southern Lachlan Orogen. In the Heathcote Fault Zone, serpentinite‐matrix mélange consists of blocks or small pods of boninite, andesite, ultramafic rocks, chert and volcanogenic sandstone variably metamorphosed to prehnite‐pumpellyite, greenschist, or greenschist to blueschist facies. In the Governor Fault Zone, blueschist metavolcanics occur as blocks within serpentinite/talc matrix that is interleaved with prehnite‐pumpellyite to greenschist facies, intermediate pressure slate and phyllite. Ar/Ar dating of white mica from slaty mud‐matrix (broken formation) indicates that the main fabric development occurred at 446 ± 2 Ma. U–Pb (SHRIMP) dating of titanite from blueschists in the Governor Fault Zone indicates that metamorphism occurred at approximately 450 Ma, close to the time of mélange formation. Previously published, Ar/Ar dating of white mica from phyllite and biotite from metadiorite in the Heathcote Fault Zone suggest that blueschist metamorphism occurred at a similar time. These ages are supported by field relationships. Illite crystallinity and b0 data from white mica, and the preservation of blueschist blocks indicate that these fault zones maintained low temperatures both during and after intermediate‐ to high‐pressure metamorphism. Occurrences of blueschists in the Arthur Lineament of the Tyennan (Delamerian) Orogen in Tasmania, and in the New England Orogen, have different ages, and in conjunction with the occurrences described here, suggest that subduction‐accretion processes contributed significantly to the development of the Tasmanides from Cambrian through to Carboniferous times.  相似文献   

7.
The geochemistry of the metavolcanic rocks from the Granjeno Schist in northeastern Mexico indicates an origin in different tectonic environments: mid‐ocean ridge and ocean island. High ratios of Hf/Th and Th/Nb (4.4–14 and 0.08–0.15), low ratios of LaN/YbN and LaN/SmN (0.74–1.7 and 0.60–1.4) and depleted LREE patterns in metabasalt display mid‐ocean ridge characteristics. In contrast, the pattern of trace‐element ratios and REEs in metabasalt and metapillow lava 60 km to the west indicates a magma source with ocean‐island basalt characteristics. Both areas were metamorphosed during the Late Carboniferous (300 ± 4 Ma). Estimated metamorphic conditions deduced from white mica and chlorite compositions, distinguish greenschist facies (350 °C and 4 kbar) for the mid‐ocean ridge basalt, and prehnite–pumpellyite facies (250 °C and 2.5 kbar) for the ocean‐island‐type basalt. This metamorphism took place at an active continental margin during Pennsylvanian time. Our new tectonic model, which differs from earlier models, suggests that the origin of the Granjeno Schist is related to a subduction zone located at the western margin of Pangaea, active after Laurentia–Gondwana collision. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract. We report whole‐rock chemical data for the greenstones from the Kunimiyama area in the Northern Chichibu Belt and their implications on the tectonic setting of these rocks. The Kunimiyama greenstones are associated with stratiform fer‐romanganese deposits or bedded cherts in the northern part of the study area, but are closely associated with a thick limestone block or bedded cherts in the southern part. The constituent minerals of greenstones are albitized plagioclase, clinopy‐roxene, chlorite, calcite, epidote, pumpellyite, prehnite, quartz, celadonite, sericite and opaque minerals such as iron oxyhy‐droxide and hematite. These mineral assemblages, epidote + pumpellyite + chlorite and chlorite + pumpellyite + prehnite, suggest that the metamorphic grade of greenstones from the Kunimiyama area is prehnite‐pumpellyite facies. The whole‐rock chemical compositions of greenstones associated with ferromanganese deposits are generally similar to those of normal mid‐ocean ridge basalt (N‐MORB). In contrast, the chemical compositions of the greenstones associated with the limestone block are comparable to those of ocean island alkaline basalt. Greenstones associated with bedded cherts are of enriched MORB and ocean island basalt, as well as N‐MORB origins, suggesting they probably formed as a result of plume‐related MOR volcanism in the Panthalassa Ocean in Early Permian and by tectonic mixing of ocean island basalts with oceanic ridge crustal fragments during accretion/subduction processes. These geological and geochemical lines of evidence suggest that the Kunimiyama greenstones are allochthonous blocks of accreted oceanic crust and seamounts. The ferromanganese deposits are frequently accompanied by reddish greenstones. Compared to common greenish greenstones, the reddish greenstones are characterized by high MnO and rare earth element contents and distinct negative Ce anomalies, implying a slight contribution of hydro thermal component forming the ferromanganese deposits.  相似文献   

9.
A new petrogenetic grid for low-grade metabasites   总被引:7,自引:0,他引:7  
Abstract We have used internally-consistent thermodynamic data to present calculated phase equilibria for the system Na2O-CaO-MgO-Al2O3-SiO2-H2O (NCMASH), in the range 0–500° C and 0.1–10 kbar, involving the phases anorthite, glaucophane, grossular, heulandite, jadeite, laumontite, lawsonite, paragonite, prehnite, pumpellyite, stilbite, tremolite, wairakite, zoisite with excess albite, clinochlore, quartz and pure water. Average activity terms derived from published mineral chemical data were included for clinochlore, glaucophane, prehnite, pumpellyite, tremolite, and zoisite. The new petrogenetic grid delineates stability fields and parageneses of common index minerals in zeolite, prehniteactinolite, prehnite-pumpellyite, pumpellyite-actinolite, blueschist and greenschist facies metabasites. The stability fields of mineral assemblages containing prehnite, pumpellyite, epidote, actinolite (+ albite + chlorite + quartz) were analysed in some detail, using activity data calculated from five specific samples. For example, the prehnite-actinolite facies covers a P-T field ranging from about 220 to 320° C at pressures below 4.5 kbar. The transition from the prehnite-actinolite and pumpellyite-actinolite to greenschist facies occurs at about 250–300° C at 1–3 kbar and at about 250–350° C at 3–8 kbar. P-T fields of individual facies overlap considerably due to variations in chemical composition.  相似文献   

10.
Two contrasting styles of metamorphism are preserved in the central Southern Cross Province. An early, low‐grade and low‐strain event prevailed in the central parts of the Marda greenstone belt and was broadly synchronous with the first major folding event (D1) in the region. Mineral assemblages similar to those encountered in sea‐floor alteration are indicative of mostly prehnite‐pumpellyite facies conditions, but locally actinolite‐bearing assemblages suggest conditions up to mid‐greenschist facies. Geothermobarometry indicates that peak metamorphic conditions were of the order of 250–300°C at pressures below 180 MPa in the prehnite‐pumpellyite facies, but may have been as high as 400°C at 220 MPa in the greenschist facies. A later, higher grade, high‐strain metamorphic event was largely confined to the margins of the greenstone belts. Mineral assemblages and geothermobarometry suggest conditions from upper greenschist facies at P–T conditions of about 500°C and 220 MPa to upper amphibolite facies at 670°C and 400 MPa. Critical mineral reactions in metapelitic rocks suggest clockwise P–T paths. Metamorphism was diachronous across the metamorphic domains. Peak metamorphic conditions were reached relatively early in the low‐grade terrains, but outlasted most of the deformation in the higher grade terrains. Early metamorphism is interpreted to be a low‐strain, ocean‐floor‐style alteration event in a basin with high heat flow. In contrast, differential uplift of the granitoids and greenstones, with conductive heat input from the granitoids into the greenstones, is the preferred explanation for the distribution and timing of the high‐strain metamorphism in this region.  相似文献   

11.
The pumpellyite–actinolite facies proposed by Hashimoto is defined by the common occurrence of the pumpellyite–actinolite assemblage in basic schists. It can help characterize the paragenesis of basic and intermediate bulk compositions, which are common constituents of various low-grade metamorphic areas. The dataset of mutually consistent thermodynamic properties of minerals gives a positive slope for the boundary between the pumpellyite–actinolite and prehnite–pumpellyite facies in PT space. In the Sanbagawa belt in Japan, the mineral parageneses of hematite-bearing and -free basic schists, as well as pelitic schists have been well documented. The higher temperature limit of this facies is defined by the disappearance of the pumpellyite+epidote+actinolite+chlorite assemblage in hematite-free basic schists with XFe3+ of epidote around 0.20–0.25 and the appearance of epidote+actinolite+chlorite assemblage with XEpFe3+≤0.20. In hematite-bearing basic schists, there is a continuous change of paragenesis to higher grade, epidote–glaucophane or epidote–blueschist facies. In pelitic schists, the albite+lawsonite+chlorite assemblage does occur but only rarely, and its assemblage cannot be used to determine the regional thermal structure. The lower temperature equivalence of the pumpellyite–actinolite assemblage is not observed in the field. The Mikabu Greenstone complex and the northern margin of the Chichibu complex, which are located to the south of the Sanbagawa belt, are characterized by clinopyroxene+chlorite or lawsonite+actinolite assemblages, which are lower temperature assemblages than the pumpellyite+actinolite assemblage. These three metamorphic complexes belong to the same subduction-metamorphic complex. The pumpellyite–actinolite facies or subfacies can be useful to help reveal the field thermal structure of metamorphic complexes  相似文献   

12.
An exceptionally well-exposed part of the Flin Flon Greenstone Belt (Manitoba/Saskatchewan) is used to characterize the mineral assemblage evolution associated with prehnite–pumpellyite through amphibolite facies metamorphism of basalts. Data from these rocks are combined with a large literature data set to assess the ability of current thermodynamic models to reproduce natural patterns, evaluate the use of metabasic rocks at these grades to estimate pressure–temperature (P–T) conditions of metamorphism, and to comment on the metamorphic devolatilization that occurs. At Flin Flon, five major isograds (actinolite-in, prehnite- and pumpellyite-out, hornblende-in, oligoclase-in, and actinolite-out) collectively represent passage from prehnite–pumpellyite to lower amphibolite facies conditions. The evolution in mineral assemblages occurs in two narrow (~1,000 m) zones: the prehnite–pumpellyite to greenschist facies (PP-GS) transition and greenschist to amphibolite facies (GS-AM) transition. Across the GS-AM transition, significant increases in the hornblende and oligoclase proportions occur at the expense of actinolite, albite, chlorite, and titanite, whereas there is little change in the proportions of epidote. The majority of this mineral transformation occurs above the oligoclase-in isograd within the hornblende–actinolite–oligoclase zone. Comparison with thermodynamic modelling results suggests data set 5 (DS5) of Holland and Powell (1998, Journal of Metamorphic Geology, 16 (3):309–343) and associated activity–composition (a–x) models is generally successful in reproducing natural observations, whereas data set 6 (DS6) (Holland & Powell, 2011, Journal of Metamorphic Geology, 29 (3):333–383) and associated a–x models fail to reproduce the observed mineral isograds and compositions. When the data from Flin Flon are combined with data from the literature, two main pressure-sensitive facies series for metabasites are revealed, based on prograde passage below or above a hornblende–albite bathograd at ~3.3 kbar: a low-pressure ‘actinolite–oligoclase type’ facies series, characterized by the appearance of oligoclase before hornblende, and a moderate- to high-pressure ‘hornblende–albite type’ facies series, characterized by the appearance of hornblende before oligoclase. Concerning the PP-GS transition, the mineral assemblage evolution in Flin Flon suggests it occurs over a small zone (<1,000 m), in which assemblages containing true transitional assemblages (prehnite and/or pumpellyite coexisting with actinolite) are rare. This contrasts with thermodynamic modelling, using either DS5 or DS6, which predicts a wide PP-GS transition involving the progressive appearance of epidote and actinolite and disappearance of pumpellyite and prehnite. Patterns of mineral assemblages and thermodynamic modelling suggest a useful bathograd (‘CHEPPAQ bathograd’), separating prehnite–pumpellyite-bearing assemblages at low pressures and pumpellyite–actinolite-bearing assemblages at higher pressures, occurs at ~2.3 to 2.6 kbar. Observations from the Flin Flon sequence suggests devolatilization across the GS-AM transition (average: ~1.8 wt% H2O) occurs over a very narrow interval within the actinolite–hornblende–oligoclase zone, associated with the loss of >75% of the total chlorite. By contrast, modelling of the GS-AM transition zone predicts more progressive dehydration of ~2 wt% H2O over a >50°C interval. Observations from the field suggest devolatilization across the PP-GS transition occurs over a very narrow interval given the rarity of transitional assemblages. Modelling suggests fluid release of 1.0–1.4 wt% resulting from prehnite breakdown over a ~10°C interval. This fluid may not be entirely lost from the rock package due to involvement in the hydration of igneous mineralogy across the PP-GS transition as observed in the Flin Flon sequence.  相似文献   

13.
Coexisting primary minerals and hydrous alteration minerals in basalt lavas of the Upper Permian Broughton Formation of the Sydney Basin are indicative of the involvement of a hydrothermal fluid phase during low‐grade metamorphism. Variation and zonation of alteration phases in vesicles and vugs indicate that the alteration minerals developed in response to several episodes of precipitation, with early CO2‐rich fluids producing assemblages rich in calcite and chlorite‐smectite while later CO2‐poor fluids precipitated Ca‐zeolites, prehnite and pumpellyite. Vesicular parts of flows typically show much higher contents of alteration minerals than more massive parts of the same flow, but no systematic increase in either the style or intensity of alteration with increasing depth in the lava pile is evident. The presence of Ca‐zeolites, prehnite, pumpellyite and rare epidote suggests uppermost zeolite facies to lowermost prehnite‐pumpellyite facies metamorphism. Stability relationships of the metamorphic phases based on experimental and theoretical studies, used in conjunction with measured parameters for modern geothermal systems, indicate a peak metamorphic temperature of ~200–230°C while the extant stratigraphy indicates that the maximum depth of burial was ~ 1200 m. Alteration developed in response to circulation of hot, aqueous fluids generated by thermal convection cells associated with the Permian lavas and/or a large buried intrusion.  相似文献   

14.
Pumpellyite from four-phase assemblages (pumpellyite + epidote + prehnite + chlorite; pumpellyite + epidote + actinolite + chlorite; pumpellyite + epidote + Na-amphibole + chlorite, together with common excess phases), considered to be low variance in a CaO-(MgO + FeO)-Al2O3-Fe2O3 (+Na2O + SiO2+ H2O) system, have been examined in areas which underwent metamorphism in the prehnite-pumpellyite, pumpellyite-actinolite and low-temperature blueschist facies respectively. The analysed mineral assemblages are compared for nearly constant (basaltic) chemical composition at varying metamorphic grade and for varying chemical composition (basic, intermediate, acidic) at constant metamorphic conditions (low-temperature blueschist facies). In the studied mineral assemblages, coexisting phases approached near chemical equilibrium. At constant (basaltic) bulk rock composition the MgO content of pumpellyite increases, and the XFe3+ of both pumpellyite and epidote decreases with increasing metamorphic grade, the Fe3+ being preferentially concentrated in epidote. Both pumpellyite and epidote compositions vary with the bulk rock composition at isofacial conditions; pumpellyite becomes progressively enriched in Fe and depleted in Mg from basic to intermediate and acidic bulk rock compositions. The compositional comparison of pumpellyites from high-variance (1–3 phases) assemblages in various bulk rock compositions (basic, intermediate, acidic rocks, greywackes, gabbros) shows that the compositional fields of both pumpellyite and epidote are wide and variable, broadly overlapping the compositional effects observed at varying metamorphic grade in low-variance assemblages. The intrinsic stability of both Fe- and Al-rich pumpellyites extends across the complete range of the considered metamorphic conditions. Element partitioning between coexisting phases is the main control on the mineral composition at different P-T conditions.  相似文献   

15.
Abstract The 6-km-thick Karmutsen metabasites, exposed over much of Vancouver Island, were thermally metamorphosed by intrusions of Jurassic granodiorite and granite. Observations of about 800 thin sections from the Campbell River and Buttle Lake area show that the metabasites provide a complete succession of mineral assemblages ranging from the zeolite to pyroxene hornfels facies around the intrusion. The most important observations are as follows. (1) The compositional change of Ca-amphiboles with increasing metamorphic grade is not straightforward. The tremolite component decreases from the prehnite–actinolite facies to the greenschist facies with a compensating tschermak component increase, but the tendency is not clear thereafter. Instead, the edenite component increases from the amphibolite facies to the pyroxene hornfels facies. (2) The most pargasitic Ca-amphibole occurs in high-Fe2+/Mg metabasite from the greenschist/amphibolite transition zone. (3) The reasons for such irregular compositional trends, even in the rather uniform MORB-like composition of the Karmutsen metabasites, are non-ideal solid solutions of Ca-amphibole at low temperature and the effective control by bulk rock composition in the amphibolite facies. (4) The data from this study support, but do not prove, a transition loop for the actinolite–hornblende compositional gap rather than a solvus. If the gap is a solvus, its shape is asymmetric, and is highly dependent on the other compositional parameters such as Fe3+/Al and Fe2+/Mg. (5) The XNaA/XA±XAb) ratios between Ca-amphibole and plagioclase are most useful as an indicator of metamorphic grade even within the amphibolite facies, and these change systematically from 0.2 to 0.5 from the greenschist to pyroxene hornfels facies. (6) The compositional trend of Ca-amphibole from the Karmutsen metabasites indicates a typical low-P/T metamorphic facies series on a Rbk–Gln–Tr–Ts diagram.  相似文献   

16.
Moderately manganiferous siliceous pelagites near Meyers Pass, Torlesse Terrane, South Canterbury, New Zealand, have been metamorphosed in the prehnite–pumpellyite facies. A conodont colour index measurement suggests T max in the range 190–300 °C. Porphyroblastic manganaxinite, manganoan pumpellyite, manganoan chlorite and trace spessartine-rich garnet and sphalerite have formed in an extremely fine-grained quartz–albite–berthierine–phengite–titanite groundmass. Porphyroblastic manganaxinite semischists and schists are distinctive rocks in prehnite–pumpellyite to lower-grade greenschist and blueschist facies of New Zealand and Japan. Mn in the manganoan pumpellyites substitutes for Ca in W sites. Total Fe/(Fe+Mg) ratios in chlorite are dependent on oxidation state, being ≤0.22 in red hematitic hemipelagites, and ≥0.61 in low-f O2 grey metapelagites. In the low-f O2 metapelagites, manganoan berthierine with little or no chlorite is inferred in the groundmass and iron-rich chlorite occurs as porphyroblasts and veinlets, whereas in the red rocks, Mg-rich chlorite occurs both in groundmasses and veinlets. Variably high Si in the manganoan chlorites correlates with evidence for contaminant phases. The Mn content of chlorite contributing to garnet growth is dependent on metamorphic grade; incipient spessartine indicates a saturation value of 6–8% MnO in chlorite in low-f O2 rocks at Meyers Pass. Lower MnO contents are recorded for otherwise analogous rocks with increasing metamorphic grade, but at a given grade coexisting chlorite and garnet are richer in Mn where f O2 is high. Manganaxinite and manganoan pumpellyite also contributed to reactions forming grossular–spessartine solid solutions. Formation of garnet in siliceous pelagites is dependent on both Mn and Ca content. The spessartine component increases with grade into the greenschist facies. Partial recrystallization of berthierine to chlorite and the growth of porphyroblastic patches of other minerals was facilitated by brittle fracture and access of fluids to an otherwise impermeable matrix; to this extent the very low-grade metamorphism was episodic.  相似文献   

17.
The Heathcote Greenstone Belt is composed mainly of Lower Cambrian metavolcanic rocks and is one of three outcropping belts of the apparent basement to the Lachlan Fold Belt in SE Australia. The greenstones may be assigned to two broad magma series. A younger tholeiitic series with mid‐ocean ridge basalt (MORB) affinities has intruded through, and been erupted upon low‐Ti, intermediate SiO2 lavas. The latter were originally boninites (both clinoenstatite‐phyric and more fractionated orthopyroxene‐phyric varieties) and plagioclase‐phyric, low‐Ti andesites. They have partially re‐equilibrated to the lower greenschist facies and outcrop mainly in the central segment of the Heathcote Greenstone Belt, where deeper stratigraphic levels are exposed. Tholeiitic lavas and sills metamorphosed to the prehnite‐pumpellyite facies dominate the northern and southern segments. As the association boninite/low‐Ti lavas/MORB is known only from modern West Pacific‐type settings involving island arcs and backarc basins, the early history of the Lachlan Fold Belt is inferred to have taken place in a similar setting.  相似文献   

18.
In this study, we have deduced the thermal history of the subducting Neotethys from its eastern margin, using a suite of partially hydrated metabasalts from a segment of the Nagaland Ophiolite Complex (NOC), India. Located along the eastern extension of the Indus‐Tsangpo suture zone (ITSZ), the N–S‐trending NOC lies between the Indian and Burmese plates. The metabasalts, encased within a serpentinitic mélange, preserve a tectonically disturbed metamorphic sequence, which from west to east is greenschist (GS), pumpellyite–diopside (PD) and blueschist (BS) facies. Metabasalts in all the three metamorphic facies record prograde metamorphic overprints directly on primary igneous textures and igneous augite. In the BS facies unit, the metabasalts interbedded with marble show centimetre‐ to metre‐scale interlayering of lawsonite blueschist (LBS) and epidote blueschist (EBS). Prograde HP/LT metamorphism stabilized lawsonite + omphacite (XJd = 0.50–0.56 to 0.26–0.37) + jadeite (XJd = 0.67–0.79) + augite + ferroglaucophane + high‐Si phengite (Si = 3.6–3.65 atoms per formula unit, a.p.f.u.) + chlorite + titanite + quartz in LBS and lawsonite + glaucophane/ferroglaucophane ± epidote ± omphacite (XJd = 0.34) + chlorite + phengite (Si = 3.5 a.p.f.u.) + titanite + quartz in EBS at the metamorphic peak. Retrograde alteration, which was pervasive in the EBS, produced a sequence of mineral assemblages from omphacite and lawsonite‐absent, epidote + glaucophane/ferroglaucophane + chlorite + phengite + titanite + quartz through albite + chlorite + glaucophane to lawsonite + albite + high‐Si phengite (Si = 3.6–3.7 a.p.f.u.) + glaucophane + epidote + quartz. In the PD facies metabasalts, the peak mineral assemblage, pumpellyite + chlorite + titanite + phengitic white mica (Si = 3.4–3.5 a.p.f.u.) + diopside appeared in the basaltic groundmass from reacting titaniferous augite and low‐Si phengite, with prehnite additionally producing pumpellyite in early vein domains. In the GS facies metabasalts, incomplete hydration of augite produced albite + epidote + actinolite + chlorite + titanite + phengite + augite mineral assemblage. Based on calculated TM(H2O), T–M(O2) (where M represents oxide mol.%) and PT pseudosections, peak PT conditions of LBS are estimated at ~11.5 kbar and ~340 °C, EBS at ~10 kbar, 325 °C and PD facies at ~6 kbar, 335 °C. Reconstructed metamorphic reaction pathways integrated with the results of PT pseudosection modelling define a near‐complete, hairpin, clockwise PT loop for the BS and a prograde PT path with a steep dP/dT for the PD facies rocks. Apparent low thermal gradient of 8 °C km?1 corresponding to a maximum burial depth of 40 km and the hairpin PT trajectory together suggest a cold and mature stage of an intra‐oceanic subduction zone setting for the Nagaland blueschists. The metamorphic constraints established above when combined with petrological findings from the ophiolitic massifs along the whole ITSZ suggest that intra‐oceanic subduction systems within the Neotethys between India and the Lhasa terrane/the Karakoram microcontinent were also active towards east between Indian and Burmese plates.  相似文献   

19.
张翊钧 《地球学报》1988,10(1):105-115
在沸石相变质条件下,花岗岩里浊沸石交代了斜长石和石英,在酸性火山岩里产生明矾石、埃洛石或高岭石。经受绿纤石-葡萄石相变质的花岗岩,其中黑云母变为钙铝榴石、帘石、绿纤石和葡萄石集合体,同时斜长石发生绢云母化。绿片岩相内酸性岩的浅色矿物有石英、微斜长石、钠长石和绿帘石,暗色矿物有绿泥石和黑云母。在角闪岩相变质的酸性岩中,开始出现中、基性斜长石,其中暗色矿物黑云母的镁铁比值要大于角闪石的镁铁比值。经受麻粒岩相变质后,紫苏花岗岩的矿物组成没有变化,但有铀、钍和钾的迁出。  相似文献   

20.
Abstract Sodic amphiboles are common in Franciscan type II and type III metabasites from Cazadero, California. They occur as (1) vein-fillings, (2) overgrowths on relict augites, (3) discrete tiny crystals in the groundmass, and (4) composite crystals with metamorphic Ca–Na pyroxenes in low-grade rocks. They become coarse-grained and show strong preferred orientation in schistose high-grade rocks. In the lowest grade, only riebeckite to crossite appears; with increasing grade, sodic amphibole becomes, first, enriched in glaucophane component, later coexists with actinolite, and finally, at even higher grade, becomes winchite. Actinolite first appears in foliated blueschists of the upper pumpellyite zone. It occurs (1) interlayered on a millimetre scale with glaucophane prisms and (2) as segments of composite amphibole crystals. Actinolite is considered to be in equilibrium with other high-pressure phases on the basis of its restricted occurrence in higher grade rocks, textural and compositional characteristics, and Fe/Mg distribution coefficient between actinolite and chlorite. Detailed analyses delineate a compositional gap for coexisting sodic and calcic amphiboles. At the highest grade, winchite appears at the expense of the actinolite–glaucophane pair. Compositional characteristics of Franciscan amphiboles from Ward Creek are compared with those of other high P/T facies series. The amphibole trend in terms of major components is very sensitive to the metamorphic field gradient. Na-amphibole appears at lower grade than actinolite along the higher P/T facies series (e.g. Franciscan and New Caledonia), whereas reverse relations occur in the lower P/T facies series (e.g. Sanbagawa and New Zealand). Available data also indicate that at low-temperature conditions, such as those of the blueschist and pumpellyite–actinolite facies, large compositional gaps exist between Ca- and Na-amphiboles, and between actinolite and hornblende, whereas at higher temperatures such as in the epidote–amphibolite, greenschist and eclogite facies, the gaps become very restricted. Common occurrence of both sodic and calcic amphiboles and Ca–Na pyroxene together with albite + quartz in the Ward Creek metabasites and their compositional trends are characteristic of the jadeite–glaucophane type facies series. In New Caledonia blueschists, Ca–Na pyroxenes are also common; Na-amphiboles do not appear alone at low grade in metabasites, instead, Na-amphiboles coexist with Ca-amphiboles throughout the progressive sequence. However, for metabasites of the intermediate pressure facies series, such as those of the Sanbagawa belt, Japan and South Island, New Zealand, Ca–Na pyroxene and glaucophane are not common; sodic amphiboles are restricted to crossite and riebeckite in composition and clinopyroxenes to acmite and sodic augite, and occur only in Fe2O3-rich metabasites. The glaucophane component of Na-amphibole systematically decreases from Ward Creek, New Caledonia, through Sanbagawa to New Zealand. This relation is consistent with estimated pressure decrease employing the geobarometer of Maruyama et al. (1986). Similarly, the decrease in tschermakite content and increase in NaM4 of Ca-amphiboles from New Zealand, through Sanbagawa to New Caledonia is consistent with the geobarometry of Brown (1977b). Therefore, the difference in compositional trends of amphiboles can be used as a guide for P–T detail within the metamorphic facies series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号