首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. ?Ca-tourmaline has been synthesized hydrothermally in the presence of Ca(OH)2 and CaCl2-bearing solutions of different concentration at T = 300–700 °C at a constant fluid pressure of 200 MPa in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthesis of tourmaline was possible at 400 °C, but only above 500 °C considerable amounts of tourmaline formed. Electron microprobe analysis and X-ray powder data indicate that the synthetic tourmalines are essentially solid solutions between oxy-uvite, CaMg3- Al6(Si6O18)(BO3)3(OH)3O, and oxy-Mg-foitite, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O. The amount of Ca ranges from 0.36 to 0.88 Ca pfu and increases with synthesis temperature as well as with bulk Ca-concentration in the starting mixture. No hydroxy-uvite, CaMg3(MgAl5)(Si6O18)(BO3)3(OH)3(OH), could be synthesized. All tourmalines have < 3 Mg and > 6 Al pfu. The Al/(Al + Mg)-ratio decreases from 0.80 to 0.70 with increasing Ca content. Al is coupled with Mg and Ca via the substitutions Al2□Mg−2Ca−1 and AlMg−1H−1. No single phase tourmaline could be synthesized. Anorthite ( + quartz in most runs) has been found coexisting with tourmaline. Other phases are chlorite, tremolite, enstatite or cordierite. Between solid and fluid, Ca is strongly fractionated into tourmaline ( + anorthite). The concentration ratio D = Ca(fluid)/Ca(tur) increases from 0.20 at 500 °C up to 0.31 at 700 °C. For the assemblage turmaline + anorthite + quartz + chlorite or tremolite or cordierite, the relationship between Ca content in tourmaline and in fluid with temperature can be described by the equation (whereby T = temperature in °C, Ca(tur) = amount of Ca on the X-site in tourmaline, Ca( fluid) = concentration of Ca2+ in the fluid in mol/l). The investigations may serve as a first guideline to evaluate the possibility to use tourmaline as an indicator for the fluid composition.
Zusammenfassung. ?Synthese von Ca-Turmelin im System CaO-MgO-Al 2 O 3 -SiO 2 -B 2 O 3 -H 2 O-HCl Im System CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl wurde Ca-Turmalin hydrothermal aus Ca(OH)2 and CaCl2-haltigen L?sungen bei T = 300–700 °C und einem konstanten Fluiddruck von 200 MPa synthetisiert. Die Synthese von Turmalin war m?glich ab 400 °C, aber nur oberhalb von 500 °C bildeten sich deutliche Mengen an Turmalin. Elektronenstrahl-Mikrosondenanalysen und R?ntgenpulveraufnahmen zeigen, da? Mischkristalle der Reihe Oxy-Uvit, CaMg3Al6(Si6O18)(BO3)3(OH)3O, und Oxy-Mg-Foitit, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O gebildet wurden. Der Anteil an Ca variiert zwischen 0.36 und 0.88 Ca pfu und nimmt mit zunehmender Synthesetemperatur und zunehmender Ca-Konzentration im System zu. Hydroxy-Uvit, CaMg3(MgAl5) (Si6O18)(BO3)3(OH)3(OH), konnte nicht synthetisiert werden. Alle Turmaline haben < 3 Mg und > 6 Al pfu. Dabei nimmt das Al/(Al + Mg)- Verh?ltnis mit zunehmendem Ca-Gehalt von 0.80 auf 0.70 ab. Al ist gekoppelt mit Mg und Ca über die Substitutionen Al2□Mg−2Ca−1 und AlMg−1H−1. Einphasiger Turmalin konnte nicht synthetisiert werden. Anorthit (+ Quarz in den meisten F?llen) koexistiert mit Turmalin. Andere Phasen sind Chlorit, Tremolit, Enstatit oder Cordierit. Ca zeigt eine deutliche Fraktionierung in den Festk?rpern Turmalin (+ Anorthit). Das Konzentrationsverh?ltnis D = Ca(fluid)/Ca(tur) nimmt von 0.20 bei 500 °C auf 0.31 bei 700 °C zu. Für die Paragenese Turmalin + Anorthit + Quarz mit Chlorit oder Tremolit oder Cordierit gilt folgende Beziehung zwischen Ca-Gehalt in Turmalin und Fluid und der Temperatur: (wobei T = Temperatur in °C, Ca(tur) = Anteil an Ca auf der X-Position in Turmalin, Ca(fluid) = Konzentration von Ca2+ im Fluid in mol/l). Die Untersuchungen dienen zur ersten Absch?tzung, ob Turmalin als Fluidindikator petrologisch nutzbar ist.


Received July 24, 1998;/revised version accepted October 21, 1999  相似文献   

2.
 Calorimetric and PVT data for the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-sursassite) have been obtained. The enthalpy of drop solution of three different samples was measured by high-temperature oxide melt calorimetry in two laboratories (UC Davis, California, and Ruhr University Bochum, Germany) using lead borate (2PbO·B2O3) at T=700 C as solvent. The resulting values were used to calculate the enthalpy of formation from different thermodynamic datasets; they range from −221.1 to −259.4 kJ mol−1 (formation from the oxides) respectively −13892.2 to −13927.9 kJ mol−1 (formation from the elements). The heat capacity of Mg5Al5Si6O21(OH)7 has been measured from T=50 C to T=500 C by differential scanning calorimetry in step-scanning mode. A Berman and Brown (1985)-type four-term equation represents the heat capacity over the entire temperature range to within the experimental uncertainty: C P (Mg-sursassite) =(1571.104 −10560.89×T −0.5−26217890.0 ×T −2+1798861000.0×T −3) J K−1 mol−1 (T in K). The P V T behaviour of Mg-sursassite has been determined under high pressures and high temperatures up to 8 GPa and 800 C using a MAX 80 cubic anvil high-pressure apparatus. The samples were mixed with Vaseline to ensure hydrostatic pressure-transmitting conditions, NaCl served as an internal standard for pressure calibration. By fitting a Birch-Murnaghan EOS to the data, the bulk modulus was determined as 116.0±1.3 GPa, (K =4), V T,0 =446.49 3 exp[∫(0.33±0.05) × 10−4 + (0.65±0.85)×10−8 T dT], (K T/T) P  = −0.011± 0.004 GPa K−1. The thermodynamic data obtained for Mg-sursassite are consistent with phase equilibrium data reported recently (Fockenberg 1998); the best agreement was obtained with Δf H 0 298 (Mg-sursassite) = −13901.33 kJ mol−1, and S 0 298 (Mg-sursassite) = 614.61 J K−1 mol−1. Received: 21 September 2000 / Accepted: 26 February 2001  相似文献   

3.
Summary ?A mineralogical classification of sulfides containing base metals (BM) and platinum group elements (PGE) is proposed based on BM-PGE ratios. Group A comprises BM sulfides carrying PGE as trace or minor elements (e.g., pentlandite). Group B is characterized by BM/PGE > 1 comprising kharaelakhite and some poorly defined minerals (thiospinels and monosulfides) which are described in detail. In group C, all sulfides with BM/PGE < 1 are summarized, comprising PGE-rich thiospinel, minerals related to the thiospinel group (e.g. xingzhongite, konderite, inaglyite), and the Pd-Pt±Ni sulfides. A number of BM-PGE sulfides are described from podiform chromite occurrences in ultramafic portions of ophiolite complexes in the southern Urals (Kempirsai, Kazakhstan) and the Eastern Alps (Kraubath, Austria). Copper- and (Ir, Rh, Pt)-rich thiospinel (general formula AB2S4, with A = Cu, Ni, Fe and B = Ir, Rh, Pt) is present in complex assemblages in Kraubath, usually intergrown with laurite, Pt-Fe alloy and Rh sulfide. These thiospinels are commonly associated with lamellae and inclusions of Ni-and/or Fe-rich (Ir, Rh) sulfide showing either monosulfide or BM-rich thiospinel stoichiometry. In massive chromitite from Kempirsai, (Ni,Cu,Fe,Ir,Rh,Os) sulfides are intergrown with laurite-erlichmanite, Ir-Os alloy, and rarely, PGE sulfarsenides (e.g. irarsite), and usually have monosulfide (BM,PGE)S compositions. A small number of grains have (BM+PGE)/S matching PGE-rich thiospinel (cuproiridsite) and BM-rich thiospinel (Ni,Cu,Fe)1.5(Ir,Rh)1.5S4. In the occurrences studied, monosulfides exhibit sulfur-deficient stoichiometries (e.g., (BM,PGE)1−xS) and are characterized by BM/PGE ranging from 0.8 to 2.2. Although anisotropic in reflected light, their reflectance spectra (Y% = 33–38) differ only slightly from those of isotropic cuproiridsite and cuprorhodsite (Y% = 36–38). At least three groups of monosulfides can be distinguished on chemical grounds using literature data: monosulfides dominated by Ni and Ir (“iridian millerite”) with BM/PGE ranging from 1.6 to 5.9, monosulfides dominated by Fe and Rh (“rhodian pyrrhotite”) with BM/PGE ranging from 1.6 to 7.1, and monosulfides dominated by Cu, Ir or Rh (“xingzhongite”-type) with BM/PGE ranging from 0.6 to 1.1. While the first two types presumably crystallize in a hexagonal NiAs structure and exhibit extensive solid solution between each other, xingzhongite is cubic (BM-rich thiospinel?) and usually poor in Ni and Fe. Monosulfides and thiospinel may form from PGE-rich base metal sulfide liquids after cooling and equilibration in chromite-precipitating magmatic systems.
Zusammenfassung ?Buntmetall-PGE-Sulfide aus dem Ural und den Ostalpen: Charakterisierung und Bedeutung für die Mineral-Systematik In diesem Beitrag wird eine Einteilung von Sulfiden mit bedeutenden Konzentrationen von Buntmetallen (BM) und Platingruppenelementen (PGE) aufgrund ihrer BM/PGE-Verh?ltnisse vorgestellt. Gruppe A enth?lt Buntmetallsulfide mit Spuren- oder Nebenelementgehalten von PGE (z.B. Pentlandit). Sulfide der Gruppe B sind charakterisiert durch BM/PGE-Verh?ltnisse > 1, z.B. Kharaelakhit sowie einige schlecht definierte Minerale (Thiospinelle und Monosulfide), die im folgenden n?her beschrieben werden. In Gruppe C werden alle Sulfide mit BM/PGE < 1 zusammengefasst, wie z.B. PGE-reiche Thiospinelle, einige mit Thiospinell verwandte Minerale (z.B. Xingzhongit, Konderit, Inaglyit), sowie die Pd-Pt±Ni Sulfide. Verschiedene BM-PGE Sulfide treten als Einschlüsse in ophiolitischen podiformen Chromiten im Südural (Kempirsai, Kasachstan) und in den Ostalpen (Kraubath, ?sterreich) auf. In Kraubath sind Cu- und (Ir, Rh, Pt)-reiche Thiospinelle (generelle Formel AB2S4, mit A = Cu, Ni, Fe und B = Ir, Rh, Pt) in Verwachsung mit Laurit, Pt-Fe Legierungen und Rh-Sulfiden recht h?ufig. Soche Thiospinelle sind manchmal mit Lamellen und winzigen Einschlüssen eines Ni- und/oder Fe-reichen (Ir, Rh)-Sulfids assoziiert, das st?chiometrisch entweder einem Monosulfid oder einem BM-reichen Thiospinell entspricht. In massiven Chromititen von Kempirsai sind (Ni, Cu, Fe, Ir, Rh, Os)-Monosulfide mit Laurit-Erlichmanit, Ir-Os Legierungen und selten PGE-Sulfarseniden (Irarsit) vergesellschaftet. Die (BM+PGE)/S Verh?ltnisse einiger K?rner entsprechen denen von PGE-reichem Thiospinell (Cuproiridsit) bzw. BM-reichem Thiospinell [(Ni,Cu,Fe)1.5(Ir,Rh)1.5S4]. In den meisten F?llen weisen die Monosulfide leichte Schwefeldefizite auf [z.B. (BM,PGE)1−xS] und sind charakterisiert durch BM/PGE Verh?ltnisse von 0.8 bis 2.2. Obwohl sie im Auflicht, soweit erkennbar, schwach anisotrop sind, differieren ihre Reflexionsspektren (Y% = 33–38) nur schwach von isotropem Cuproiridsit und Cuprorhodsit (Y% = 36–38). Zumindest drei chemische Gruppen von Monosulfiden konnten anhand einer Literaturrecherche identifiziert werden: Ni- und Ir-dominierte Monosulfide (“Iridium-Millerit”) haben BM/PGE Verh?ltnisse von 1.6 bis 5.9; Fe- und Rh-dominierte Monosulfide (“Rhodium-Magnetkies”) haben BM/PGE Verh?ltnisse von 1.6 bis 7.1; Cu-, Ir oder Rh-dominierte Minerale vom “Xingzhongit-Type” habben BM/PGE-Verh?ltnisse von 0.6 bis 1.1. Die ersten beiden Typen kristallisieren wahrscheinlich in einer hexagonalen NiAs-Struktur und weisen weitgehende Mischbarkeiten miteinander auf. Xingzhongit dagegen ist kubisch (BM-reicher Thiospinell?) und hat general niedrige Ni- und Fe-Gehalte BM-PGE-Monosulfide und Thiospinelle bilden sich wahrscheinlich aus kleinen PGE- und BM-reichen Sulfidschmelztropfen bei der Abkühlung und ?quilibrierung von Chromit.


Received June 17, 1998;/Revised version accepted July 1, 1999  相似文献   

4.
Water solubility in pyrope to 100 kbar   总被引:14,自引:0,他引:14  
The solubility and incorporation mechanism of water in natural, almost pure pyrope from Dora Maira, Western Alps was investigated. The infrared spectrum of the natural, untreated sample (58 ppm water) shows several exceptionally sharp bands in the OH-stretching region, including a single band at 3601.9 cm−1 and a band system with main components at 3640.5, 3650.8 and 3660.6 cm−1. High-temperature and high-pressure infrared spectra suggest that the two absorption features arise from almost free OH groups in sites with different compressibility and thermal expansivity, with the site causing the 3601.9 cm−1 band being much stiffer. Pyrope samples were annealed in a piston-cylinder or multi-anvil apparatus for several days in the presence of excess water, excess SiO2 and excess Al2SiO5 to determine the equilibrium solubility of water in pyrope to 100 kbar. Total solubility increases with pressure, however, this is exclusively due to the high-frequency band system, while the intensity of the low-frequency band decreases with pressure. At 1000 °C and the oxygen fugacity of the Ni-NiO buffer, the bulk solubility can be described by the equation c OH =Af H2O 0.5exp(−PΔV/RT) with A = 0.679 ppm/bar0.5 and ΔV = 5.71 cm3/mol. This equation implies the incorporation of water in the crystal as isolated OH groups. With increasing temperature, solubility appears to decrease with ΔH = − 14 kJ/mol. At Fe-FeO buffer conditions, solubility is 30 to 50% lower than with the Ni-NiO buffer, suggesting that the incorporation of OH is not coupled to the reduction of Fe3+. Possibly, the 3601.9 cm−1 band is associated with the tetrahedral OH B defect and the high-frequency system with the dodecahedral OH Li defect. Based on the experimentally established solubility model, it is estimated that garnet in a hot subducted slab will transport 170 ppm of water into the mantle beyond the breakdown limit of amphibole. In a cold slab, 470 ppm of water can be incorporated into garnet at the breakdown limit of phengite. These numbers imply that a significant fraction of the total water in the hydrosphere has been recycled into the mantle since the Proterozoic. Received: 6 January 1997 / Accepted: 27 March 1997  相似文献   

5.
 Infrared absorption spectra of brucite Mg (OH)2 were measured under high pressure and high temperature from 0.1 MPa 25 °C to 16 GPa 360 °C using infrared synchrotron radiation at BL43IR of Spring-8 and a high-temperature diamond-anvil cell. Brucite originally has an absorption peak at 3700 cm−1, which is due to the OH dipole at ambient pressure. Over 3 GPa, brucite shows a pressure-induced absorption peak at 3650 cm−1. The pressure-induced peak can be assigned to a new OH dipole under pressure. The new peak indicates that brucite has a new proton site under pressure and undergoes a high-pressure phase transition. From observations of the pressure-induced peak under various PT condition, a stable region of the high-pressure phase was determined. The original peak shifts to lower wavenumber at −0.25 cm−1 GPa−1, while the pressure-induced peak shifts at −5.1 cm−1 GPa−1. These negative dependences of original and pressure-induced peak shifts against pressure result from enhanced hydrogen bond by shortened O–H···O distance, and the two dependences must result from the differences of hydrogen bond types of the original and pressure-induced peaks, most likely from trifurcated and bent types, respectively. Under high pressure and high temperature, the pressure-induced peak disappears, but a broad absorption band between 3300 and 3500 cm−1 was observed. The broad absorption band may suggest free proton, and the possibility of proton conduction in brucite under high pressure and temperature. Received: 16 July 2001 / Accepted: 25 December 2001  相似文献   

6.
Summary Batiferrite, ideally Ba[Ti2Fe10]O19, was found in the Quaternary volcanic rocks near üdersdorf, Graulai, and Altburg, western Eifel area, Germany. The new mineral typically occurs as euhedral platy grains in cavities of melilite- and leucite-nephelinite basalts. Associated minerals are hematite, magnetite, titanite, g?tzenite, clinopyroxene, nepheline, and biotite. It exhibits a hexagonal tabular habit flattened on {0001}, diameter 0.5–1 mm, thickness 20–125 μm, and {10&1macr;3}, {10&1macr;0} as observable forms. The mineral is opaque, of black color with submetallic lustre, and shows a ferrimagnetic behavior. VHN50 is 793 with a range of 710–841 from ten indentations. The quantitative reflectance measurements of Ro/Re on oriented grains in air and oil immersion, respectively, are [%]: for 470 nm 22.1/20.1 and 8.4/7.1, for 546 nm 21.0/19.4 and 7.8/6.6, for 589 nm 20.2/18.8 and 7.4/6.3, and for 650 nm 19.3/18.3 and 6.8/5.9. The bireflectance is distinct (air) to weak (oil), and parallel (0001) a moderate anisotropy with straight extinction can be observed. Typical microprobe analyses give [wt%] K2O 0.28–0.33, Na2O 0.17–0.20, SrO 0.46–0.55, BaO 11.80–12.17, MgO 1.27–1.47, Al2O3 0.31–0.33, TiO2 13.11–13.63, MnO 2.38–2.57, Fe2O3 61.36–63.12, FeO 5.49–5.86 (Fe3+/Fe2+ calculated for charge compensation), which is equivalent to (Ba0.84Na0.06K0.06Sr0.05)1.01(Fe8.48 3+Fe0.86 2+Ti1.82Mg0.37Mn0.37Al0.06)11.96O19 as the average composition based on 19 oxygen atoms. Batiferrite is a magnetoplumbite-type mineral with hexagonal symmetry, space group P6 3 /mmc (no. 194), a = 5.909(1) ?, c = 23.369(4) ?, V = 706.6(2) ?3, Z = 2, and a calculated density of 5.016 gcm−3. The structure was refined to R1 = 0.031 for 278 unique reflections with Fo 2 > 4σ (Fo 2) and R1 = 0.079 for all 452 unique observations using single crystal X-ray data. The strongest reflections of the X-ray powder diffraction pattern are [d obs, I/Io, (hkl)]: 2.631, 100, (114); 2.799, 80, (107); 1.478, 70, (220); 2.429, 60, (203); 1.672, 50, (217). The new mineral is comparable to the other Ba containing magnetoplumbite-type minerals haggertyite and hawthorneite, the iron content, however, is much higher and in the range of magnetoplumbite. The large cation site (A) is dominated by Ba, and four of the five remaining crystallographic cation sites in the structure are dominated by Fe (M1, 2, 3, 5), the octahedrally coordinated M4-site is dominated by Ti. No oxygen vacancy on the O3-site like in plumboferrite can be observed. Batiferrite is named for its main chemical composition and the relationship to the M-type hexaferrites (polytype 5H).
Zusammenfassung Batiferrit, ein neues ferrimagnetisches Mineral des Magnetoplumbit-Typs aus den quart?ren Vulkaniten der West-Eifel, Deutschland Das neue Mineral Batiferrite, mit der Idealformel Ba[Ti2Fe10]O19, wurde an drei Fundpunkten in den Quart?ren Vulkangesteinen der westlichen Eifel, Deutschland, in der N?he von üdersdorf, Graulai und Altburg gefunden. Das neue Mineral tritt typischerweise bl?ttchenf?rmig in kleinen Hohlr?umen von Melilith- und Leucit-Nephelininit Basalten auf. Vergesellschaftete Minerale sind H?matit, Magnetit, Titanit, G?tzenit, Klinopyroxen, Nephelin und Biotit. Der Habitus ist hexagonal tafelig nach {0001}, mit einem Durchmesser von 0.5–1 mm und einer Dicke von 20–125 μm, zus?tzlich k?nnen die Formen {10&1macr;3} und {10&1macr;0} beobachtet werden. Das Mineral ist opak, hat eine schwarze Farbe mit einem leicht metallischen Glanz, und ist ferromagnetisch. Die H?rte VHN50 ist 793 mit einem Bereich von 710–841 aus 10 Eindruckbestimmungen. Die quantitativen Reflexionsmessungen von Ro/Re an orientierten K?rnern in Luft beziehungsweise ?limmersion, ergaben [%]: für 470 nm 22.1/20.1 und 8.4/7.1, für 546 nm 21.0/19.4 und 7.8/6.6, für 589 nm 20.2/18.8 und 7.4/6.3, und für 650 nm 19.3/18.3 und 6.8/5.9. Die Bireflexion ist deutlich (Luft) bis schwach (?l) und parallel (0001) kann eine mittlere Anisotropie mit gerader Ausl?schung beobachtet werden. Eine typische Mikrosondenanalyse ergibt [wt%] K2O 0.28–0.33, Na2O 0.17–0.20, SrO 0.46–0.55, BaO 11.80–12.17, MgO 1.27–1.47, Al2O3 0.31–0.33, TiO2 13.11–13.63, MnO 2.38–2.57, Fe2O3 61.36–63.12, FeO 5.49–5.86 (Fe3+/Fe2+ berechnet zum Ladungsausgleich), die mittlere chemische Formel auf der Basis von 19 Sauerstoffatomen lautet (Ba0.84Na0.06K0.06Sr0.05)1.01 (Fe8.48 3+Fe0.86 2+Ti1.82Mg0.37Mn0.37Al0.06)11.96O 19. Batiferrit ist ein Mineral der Magnetoplumbitgruppe, hat hexagonale Symmetrie mit der Raumgruppe P63/mmc (Nr. 194), a = 5.909(1) ?, c = 23.369(4) ?, V = 706.6(2) ?3, Z = 2, und einer berechneten Dichte von 5.016 gcm−3. Die Struktur wurde aus Einkristall-R?ntgendaten bis zu einem R1-Wert von 0.031 für 278 Fo 2 > 4σ(Fo 2), und einem R1-Wert von 0.079 für alle 452 Fo 2 verfeinert. Die st?rksten Beugungsreflexe der Pulver-R?ntgendaten sind [dobs, I/Io, (hkl)]: 2.631, 100, (114); 2.799, 80, (107); 1.478, 70, (220); 2.429, 60, (203); 1.672, 50, (217). Das neue Mineral weist deutliche ?hnlichkeiten zu den anderen beiden Ba-reichen Mineralen Haggertyit und Hawthorneit der Magnetoplumbit-Gruppe auf, jedoch ist der Eisengehalt wesentlich h?her und im Bereich des Minerals Magnetoplumbit. Der gro?e Kationenplatz (A) ist von Barium dominiert, vier (M1, 2, 3, 5) der restlichen fünf kristallographischen Kationenpl?tze in der Struktur sind fast ausschlie?lich mit Fe, die oktaedrisch koordinierte M4-Position ist überwiegend mit Ti besetzt. An der O3-Position konnte kein Sauerstoffdefizit wie in Plumboferrit festgestellt werden. Batiferrit ist nach seiner chemischen Beschaffenheit und nach seiner Zugeh?hrigkeit zu den M-Typ Hexaferriten (Polytyp 5H) benannt.


Received December 14, 1999; accepted March 2, 2000  相似文献   

7.
Near-infrared (NIR) absorption bands related to total water (4000 and 7050 cm−1), OH groups (4500 cm−1) and molecular H2O (5200 cm−1) were studied in two polymerised glasses, a synthetic albitic composition and a natural obsidian. The water contents of the glasses were determined using Karl Fischer titration. Molar absorption coefficients were calculated for each of the bands using albitic glasses containing between 0.54 and 9.16 wt.% H2O and rhyolitic glasses containing between 0.97 and 9.20 wt.% H2O. Different combinations of baseline type and intensity measure (peak height/area) for the combination bands at 4500 and 5200 cm−1 were used to investigate the effect of evaluation procedure on calculated hydrous species concentrations. Total water contents calculated using each of the baseline/molar absorption coefficient combinations agree to within 5.8% relative for rhyolitic and 6.5% relative for albitic glasses (maximum absolute differences of 0.08 and 0.15 wt.% H2O, respectively). In glasses with water contents >1 wt.%, calculated hydrous species concentrations vary by up to 17% relative for OH and 11% relative for H2O (maximum absolute differences of 0.33 and 0.43 wt.% H2O, respectively). This variation in calculated species concentrations is typically greater in rhyolitic glasses than albitic. In situ, micro-FTIR analysis at 300 and 100 K was used to investigate the effect of varying temperature on the NIR spectra of the glasses. The linear and integral molar absorption coefficients for each of the bands were recalculated from the 100 K spectra, and were found to vary systematically from the 300 K values. Linear molar absorption coefficients for the 4000 and 7050 cm−1 bands decrease by 16–20% and integral molar absorption coefficients by up to 30%. Depending on glass composition and baseline type, the integral molar absorption coefficients for the absorption bands related to OH groups and molecular H2O change by up to −5.8 and +7.4%, respectively, while linear molar absorption coefficients show less variation, with a maximum change of ∼4%. Using the new molar absorption coefficients for the combination bands to calculate species concentrations at 100 K, the maximum change in species concentration is 0.08 wt.% H2O, compared with 0.39 wt.% which would be calculated if constant values were assumed for the combination band molar absorption coefficients. Almost all the changes in the spectra can therefore be interpreted in terms of changing molar absorption coefficient, rather than interconversion between hydrous species. Received: 17 December 1998 / Revised, accepted 8 July 1999  相似文献   

8.
 One well-defined OH Raman band at 3651 ± 1 cm−1 and one weak feature near 3700 ± 5 cm−1 are recognized for the hydrous γ-phase of Mg2SiO4. Like the hydrous β-phase, the H2O content in the γ-phase shifts most of the corresponding silicate modes towards lower frequencies. Variations in Raman spectra of the hydrous γ-phase were investigated up to about 200 kbar at room temperature and in the range 81–873 K at atmospheric pressure. Unlike the anhydrous γ-phase, which remains intact up to at least 873 K, the hydrous γ-phase sometimes converts to a defective forsterite structure above 800 K. Although the hydrous γ-phase remains intact up to at least 800 K, Raman signals of the OH bands disappear completely above 423 K. The Raman frequency of the well-defined OH band decreases linearly with increasing temperature between 81 and 423 K. In the region of the silicate vibrations, the Raman frequencies of the two most intense bands increase nonlinearly with increasing pressure, and decrease with increasing temperature. The frequencies for all other weak bands, however, decreased linearly with increasing temperature. The latter most likely reflects the larger scatter of the data for the weak bands. Received: 27 April 2001 / Accepted: 12 September 2001  相似文献   

9.
Summary ?The low-pressure eutectic for the coprecipitation of calcite, portlandite, and periclase/brucite (with H2O-rich vapor) has served as a model for the existence and crystallization of carbonatite magmas. Attempts to determine conditions for the appearance of dolomite at this eutectic have been unsuccessful. We have discovered a second low-temperature eutectic for more magnesian liquids which excludes portlandite and includes dolomite (all results are vapor-saturated). Addition of Ca(OH)2-Mg(OH)2 to CaCO3-MgCO3 at 0.2 GPa depresses the liquidus to temperatures below the crest of the calcite-dolomite solvus; the vapor-saturated liquidus surface falls steeply, and the field boundary for liquids coexisting with calcite and periclase reaches a peritectic at 880 °C, where a narrow field for liquidus dolomite begins, extending down to the eutectic at 659 °C for the coprecipitation of calcite, dolomite and periclase (brucite should replace periclase at slightly higher pressures). The calcite liquidus is very large. The field boundary for coexistence of calcite and dolomite extends approximately in the direction from CaMg(CO3)2 towards Mg(OH)2. The results illustrate conditions for the formation of mineral-specific cumulates from variable magma compositions. Hydrous (or sodic) carbonate-rich liquids with compositions from CaCO3 to CaMg(CO3)2 will precipitate calcite-carbonatites first, followed by calcite-dolomite-carbonatites, with the prospect of precipitating dolomite-carbonatite alone through a limited temperature interval, and with periclase joining the assemblage in the closing stages. Periclase in the Fe-free system may represent the ubiquitous occurrence of magnetite in natural carbonatites. The restricted range for the precipitation of dolomite-carbonatites adds credibility to the evidence for primary magnesiocarbonatite (near-dolomite composition) magmas. Magnesiocarbonatite magmas can precipitate much calcite-carbonatite rock.
Zusammenfassung ?Calciokarbonatitische und magnesiokarbonatitische Gesteine und Magmen im System CaO-MgO-CO 2 -H 2 O bei 0.2 GPa Das Niedrigdruck-Eutektikum der gemeinsamen Ausscheidung von Calcit, Portlandit und Periklas/Brucit (mit H2O-reicher Fluidphase) diente als Modell um die Existenz und Kristallisation karbonatitischer Magmen zu erkl?ren. Versuche die Bedingungen des Auftretens von Dolomit an diesem Eutektikum zu bestimmen blieben bisher ergebnislos. Wir entdeckten ein zweites Niedrigtemperatur-Eutektikum für magnesiumreichere Schmelzen, das Portlandit ausschlie?t, aber Dolomit inkludiert (alle Ergebnisse bei Fluids?ttigung). Die Zugabe von Ca(OH)2-Mg(OH)2 zu CaCO3-MgCO3 bei 0.2 GPa senkt den Liquidus auf Temperaturen unter die Solvus-Schwelle von Calcit-Dolomit. Die fluidges?ttigte Liquidusfl?che verl?uft steil und die Grenzfl?che von Schmelze, die mit Calcit und Periklas koexistiert erreicht ein Peritektikum bei 880 °C. Dort ?ffnet sich ein schmales Feld für Liquidus-Dolomit, das bis zum Eutektikum bei 659 °C reicht, an dem Calcit, Dolomit und Periklas (Brucit sollte Periklas bei geringfügig h?heren Drucken ersetzen) gemeinsam ausgeschieden werden. Der Calcit- Liquidus ist sehr gro?. Die Linie an der Calcit und Dolomit koexistieren erstreckt sich ungef?hr von CaMg(CO3)2 zu Mg(OH)2. Die Ergebnisse zeigen die Bildungsbedingungen für die Bildung mineralspezifischer Kumulate aus unterschiedlichen Magmenzusammensetzungen. Aus w?ssrigen (oder Na-reichen) karbonatreichen Schmelzen mit Zusammensetzungen zwischen CaCO3 und CaMg(CO3)2 werden sich zuerst Calcitkarbonatite und dann Calcit-Dolomitkarbonatite ausscheiden, mit der M?glichkeit Dolomitkarbonatite über ein sehr eingeschr?nktes Temperaturintervall zu bilden und mit Periklas, der zu dieser Vergesellschaftung im Endstadium hinzukommt. Periklas im Fe-freien System k?nnte das weitverbreitete Analog zu Magnetit in natürlichen Karbonatiten sein. Der enge Bereich für die Ausscheidung von Dolomitkarbonatiten untermauert die Existenz prim?rer magnesiokarbonatitischer Magmen (nahe der Zusammensetzung von Dolomit). Magnesiokarbonatitische Magmen k?nnen daher entsprechende Mengen an calcitkarbonatitischen Gesteinen ausscheiden.


Received July 20, 1998;/revised version accepted August 18, 1999  相似文献   

10.
 Enthalpies of drop solution (ΔH drop-sol) of CaGeO3, Ca(Si0.1Ge0.9)O3, Ca(Si0.2Ge0.8)O3, Ca(Si0.3Ge0.7)O3 perovskite solid solutions and CaSiO3 wollastonite were measured by high-temperature calorimetry using molten 2PbO · B2O3 solvent at 974 K. The obtained values were extrapolated linearly to the CaSiO3 end member to give ΔH drop-sol of CaSiO3 perovskite of 0.2 ± 4.4 kJ mol−1. The difference in ΔH drop-sol between CaSiO3, wollastonite, and perovskite gives a transformation enthalpy (wo → pv) of 104.4 ± 4.4 kJ mol−1. The formation enthalpy of CaSiO3 perovskite was determined as 14.8 ± 4.4 kJ mol−1 from lime + quartz or −22.2 ± 4.5 kJ mol−1 from lime + stishovite. A comparison of lattice energies among A2+B4+O3 perovskites suggests that amorphization during decompression may be due to the destabilizing effect on CaSiO3 perovskite from a large nonelectrostatic energy (repulsion energy) at atmospheric pressure. By using the formation enthalpy for CaSiO3 perovskite, phase boundaries between β-Ca2SiO4 + CaSi2O5 and CaSiO3 perovskite were calculated thermodynamically utilizing two different reference points [where ΔG(P,T )=0] as the measured phase boundary. The calculations suggest that the phase equilibrium boundary occurs between 11.5 and 12.5 GPa around 1500 K. Its slope is still not well constrained. Received: 20 September 2000 / Accepted: 17 January 2001  相似文献   

11.
Low-temperature heat capacity measurements for MgCr2O4 have only been performed down to 52 K, and the commonly quoted third-law entropy at 298 K (106 J K−1 mol−1) was obtained by empirical extrapolation of these measurements to 0 K without considering the magnetic or electronic ordering contributions to the entropy. Subsequent magnetic measurements at low temperature reveal that the Néel temperature, at which magnetic ordering of the Cr3+ ions in MgCr2O4 occurs, is at ∼15 K. Hence a substantial contribution to the entropy of MgCr2O4 has been missed. We have determined the position of the near-univariant reaction MgCr2O4+SiO2=MgSiO3+Cr2O3. The reaction, which has a small positive slope in P-T space, has been bracketed at 100 K intervals between 1273 and 1773 K by reversal experiments. The reaction is extremely sluggish, and lengthy run times with a flux (H2O, BaO-B2O3 or K2O-B2O3) are needed to produce tight reversal brackets. The results, combined with assessed thermodynamic data for Cr2O3, MgSiO3 and SiO2, give the entropy and enthalpy of formation of MgCr2O4 spinel. As expected, our experimental results are not in good agreement with the presently available thermodynamic data. We obtain Δ f H 298=−1759.2±1.5 kJ mol−1 and S 298=122.1±1.0 J K−1 mol−1 for MgCr2O4. This entropy is some 16 J K−1 mol−1 more than the calorimetrically determined value, and implies a value for the magnetic entropy of MgCr2O4 consistent with an effective spin quantum number (S') for Cr3+ of 1/2 rather than the theoretical 3/2, indicating, as in other spinels, spin quenching. Received: 9 May 1997 / Accepted: 28 July 1997  相似文献   

12.
 The incorporation of hydrogen (deuterium) into the coesite structure was investigated at pressures from 3.1 to 7.5 GPa and temperatures of 700, 800, and 1100 °C. Hydrogen could only be incorporated into the coesite structure at pressures greater 5.0 GPa and 1100 °C . No correlation between the concentration of trace elements such as Al and B and the hydrogen content was observed based on ion probe analysis (1335 ± 16 H ppm and 17 ± 1 Al ppm at 7.5 GPa, 1100 °C). The FTIR spectra show three relatively intense bands at 3575, 3516, and 3459 cm−11 to ν3, respectively) and two very weak bands at 3296 and 3210 cm−14 and ν5, respectively). The band at 3516 cm−1 is strongly asymmetric and can be resolved into two bands, 3528 (ν2a) and 3508 (ν2b) cm−1, with nearly identical areas. Polarized infrared absorption spectra of coesite single-crystal slabs, cut parallel to (0 1 0) and (1 0 0), were collected to locate the OH dipoles in the structure and to calibrate the IR spectroscopy for quantitative analysis of OH in coesite (ɛ i ,tot=190 000 ± 30 000 l mol−1 H2O cm−2). The polarized spectra revealed a strong pleochroism of the OH bands. High-pressure FTIR spectra at pressures up to 8 GPa were performed in a diamond-anvil cell to gain further insight into incorporation mechanism of OH in coesite. The peak positions of the ν1, ν2, and ν3 bands decrease linearly with pressure. The mode Grüneisen parameters for ν1, ν2, and ν3 are −0.074, −0.144 and −0.398, respectively. There is a linear increase of the pressure derivatives with band position which follows the trend proposed by Hofmeister et al. (1999). The full widths at half maximum (FWHM) of the ν1, ν2, and ν3 bands increase from 35, 21, and 28 cm−1 in the spectra at ambient conditions to 71, 68, and 105 in the 8 GPa spectra, respectively. On the basis of these results, a model for the incorporation of hydrogen in coesite was developed: the OH defects are introduced into the structure by the substitution Si4+(Si2)+4O2−= [4](Si2) + 4OH, which gives rise to four vibrations, ν1, ν2a, ν2b, and ν3. Because the OH(D)-bearing samples do contain traces of Al and B, the bands ν4 and ν5 may be coupled to Al and/or B substitution. Received: 19 December 2000 / Accepted: 23 April 2001  相似文献   

13.
Summary ?The petrology and P-T evolution of mica schists from two regional scale tectonic (shear) zones that separate high grade terrains (“mobile belts”) from cratons are described. These are the 2.4–1.9 Ga Tanaelv Belt, a suture zone that separates the Lapland granulite complex from the Karelian craton (Kola Peninsula–Fennoscandia), and the 2.69 Ga Hout River Shear Zone that separates the > 2.9 Ga Kaapvaal craton from the 2.69 Ga South Marginal Zone of the Limpopo high-grade terrain (South Africa). Two metamorphic zones are identified in strongly deformed mica schists from the 1.9 Ga Korva Tundra Group of the Tanaelv belt: (1) a chlorite-staurolite zone tectonically overlaying gneisses of the Karelian craton, and (2) a kyanite-biotite zone tectonically underlying garnet amphibolites of the Tanaelv Belt, which are in tectonic contact with the Lapland granulite complex. The prograde reaction Chl+St+Ms ↠ Ky+Bt+Qtz+H2O clearly defines a boundary between zones (1) and (2). Rotated garnet porphyroblasts from zone (1) contain numerous inclusions (Otz, Chl, Ms), and show clear Mg/Fe chemical zoning, suggesting garnet growth during prograde metamorphism. The metamorphic peak, T = 650°C and P = 7.5 kbar, is recorded in the kyanite-biotite zone and characterized by unzoned snowball garnet. In many samples of mica schists euhedral garnet porphyroblasts of the retrograde stage are completely devoid of mineral inclusions while N Mg decreases from core to rim, indicating a decrease in P-T from 650°C, 7.5 kbar to 530°C, 5 kbar. The Hout River Shear Zone (South Africa) shows metamorphic zonation from greenschists through epidote amphibolites to garnet amphibolites. Rare strongly deformed mica schists (Chl+Grt+Pl+Ms+Bt+Qtz) occur as thin layers among epidote-amphibolites only. Garnet porphyroblasts in the schists are similar to that of the Tanaelv Belt recording a prograde P-T path with peak conditions of T = 600°C and P∼ 5.5 kbar. The retrograde stage is documented by the continuous reaction Prp+2Ms+Phl ↠ 6Qtz+3East recording a minimum T = 520°C and P ∼ 3.3 kbar. Similar narrow clock-wise P-T loops recorded in mica schists from both studied shear zones suggest similarities in the geodynamic history of both shear zones under consideration.
Zusammenfassung ?P-T Pfade und tektonische Entwicklung von Scherzonen, die hochgradige Terranes von Kratonen trennen: Zwei Beispiele von der Halbinsel Kola (Russland) und der Limpopo-Region (Südafrika) Die Petrologie und P-T Entwicklung von Glimmerschiefern aus zwei regionalen tektonischen Scherzonen, die hochgradige Terranes (“mobile belts”) von Kratonen trennen, werden beschrieben. Diese sind der 2.4−1.9 Ga Tanaev Belt, eine Suturzone, die die Lappland Granulite vom karelischen Pluton (Halbinsel Kola - Fennoskandien) trennt, sowie die 2.69 Ga Hout River Shear Zone, die den > 2.9 Ga Kaapvaal Kraton von der 2.69 Ga South Marginal Zone des hochgradigen Limpopo Terranes (Südafrika) trennt. Zwei metamorphe Zonen sind in stark deformierten Glimmerschiefern der 1.9 Ga Korva Tundra Group zu unterscheiden: (1) eine Chlorit-Staurolith-Zone, die den Gneisen des karelischen Kratons auflagert, und (2) eine Kyanit-Biotit-Zone, die die Granatamphibolite des Tanaev Belt unterlagert und in tektonischem Kontakt mit dem Lappland Granulitkomplex steht. Die prograde Reaktion Chl+St+Ms ↠ Ky+Bt+Qtz+H2O trennt die beiden Zonen. Rotierte Granatporphyroblasten aus der Zone (1) enthalten zahlreiche Einschlüsse (Qtz, Chl, Ms) und zeigen eine Mg/Fe Zonierung, die Granatwachstum w?hrend des prograden Metamorphosestadiums nahelegen. Der Metamorphoseh?hepunkt (650°C, 7.5 kbar) wurde in der Kyanit-Biotit-Zone erreicht und ist durch nicht zonierte Schneeballgranate charakterisiert. In vielen Glimmerschieferproben sind die euhedralen Granatporphyroblasten des retrograden Stadiums vollkommen einschlu?frei und N Mg nimmt vom Kern zum Rand hin ab. Das zeigt eine Abnahme der P-T Bedingungen von 650°C, 7.5 kbar auf 530°C, 5 kbar an. Die Hout River Shear Zone in Südafrika zeigt eine metamorphe Zonierung von Grünschiefern, über Epidotamphibolite zu Granatamphiboliten. Selten kommen stark deformierte Glimmerschiefer (Chl+Grt+Pl+Ms+Bt+Qtz) als dünne Lagen zwischen den Epidotamphiboliten vor. Die Granatporphyroblasten sind ?hnlich wie die aus dem Tanaev Belt und belegen eine prograde P-T Entwicklung mit Peak-Bedingungen von 600°C und ≈ 5.5 kbar. Das retrograde Stadium ist durch die kontinuierliche Reaktion Prp+2Ms+Phl ↠ 6Qtz+3East mit minimal 530°C und ≈ 3.3 kbar dokumentiert. Die sehr ?hnlichen P-T Pfade der Glimmerschiefer belegen ?hnlichkeiten in der geodynamischen Geschichte der beiden bearbeiteten Scherzonen.


Received January 29, 1999;/revised version accepted August 10, 1999  相似文献   

14.
 The polarized single-crystal Raman spectra of synthetic H2O-containing alkali-free beryl were recorded at room and low temperatures, and the polarized single-crystal IR spectra at room temperature. The H2O molecule in the channel cavities is characterized by a Raman-active symmetric stretching vibration (ν1) at 3607 cm−1 and an IR-active asymmetric stretch (ν3) at 3700 cm−1 at room temperature. At low temperatures this ν3 mode is observed in the Raman. Weak ν1 and ν3 modes of a second type of H2O are also observed in the Raman spectra but only at 5 K. The H⋯&middot;H vector of the most abundant type of H2O is parallel to the channel axis of beryl along [0 0 0 1]. The components of the polarizability tensor of the ν1 mode of H2O are similar to, but not exactly the same as, those of a free H2O molecule. The Raman measurements indicate that the H2O molecule is rotationally disordered around [0 0 0 1]. External translation and librational modes of H2O could be observed as overtones with the internal H2O-stretching modes. In the case of the librational motions, normal modes could also be observed directly in the Raman spectra at ∼200 cm−1. The energies of the translational modes can be determined from an analysis of the overtones and are about 9 cm−1 in energy (i.e., Tz). The energies of the librational modes are about 210 cm−1 for Rx and 190 cm−1 for Ry. Received: 8 April 1999 / Accepted: 5 April 2000  相似文献   

15.
 Thermodynamic properties of high-pressure minerals that are not recoverable from synthesis experiments by conventional quenching methods (“unquenchable” phases) usually are calculated from equation of state data and phase diagram topologies. The present study shows that, with cryogenic methods of recovery and sample treatment, phases with a suitable decomposition rate can be made accessible to direct thermodynamic measurements. A set of samples of Ca(OH)2-II has been synthesized in a multianvil device and subsequently recovered by cooling the high-pressure assembly with liquid nitrogen. Upon heating from liquid nitrogen to room temperature, the material transformed back to Ca(OH)2-I. The heat effect of this backtransformation was measured by differential scanning calorimetry. A commercial differential scanning calorimeter (Netzsch DSC 404), modified to allow sample loading at liquid nitrogen temperature was used to heat the material from −150 to +200 °C at rates varying between 5 and 15 °C min−1. The transformation started around −50 °C very gradually, and peaked at about 0 °C. To obtain a baseline correction, each sample was scanned under exactly the same conditions after the backtransformation was complete. Because of the relative sluggishness, onset and offset temperatures were not well defined as compared to fast (e.g., melting) reactions. To aid in integration, the resulting signals were successfully fitted using a generic asymmetric peak model. The enthalpy of backtransformation was determined to be ΔH =−10.37 ± 0.50 kJ mol−1. From previous in situ X-ray diffraction experiments, the location of the direct transformation in P-T space has been constrained to 5.7 ± 0.4 GPa at 500 °C (Kunz et al. 1996). With the reaction volume known from the same study, and assuming that ΔC p of the transformation remains negligible between the conditions of our measurements and 500 °C, our result gives an estimate of the entropy of transition and the P-T slope of the reaction curve. To a first approximation, the values ΔS = −16.00 ± 0.65 J(mol · K)−1 and dP/dT = 0.0040 ± 0.0002 GPa/K have been determined. These results need to be refined by equation of state data for Ca(OH)2-II. Received: 30 December 1999 / Accepted: 10 April 2000  相似文献   

16.
 The monoclinic titanite-like high-pressure form of calcium disilicate has been synthesized and quenched to ambient conditions to form the triclinic low-pressure phase containing silicon in four-, five- and sixfold coordination. The enthalpy of formation of the quench product has been measured by high-temperature oxide melt calorimetry. The value obtained from samples from a series of several synthesis experiments is ΔH f = (−26.32 ± 4.27) kJ mol−1 for the formation from the component oxides, or ΔH f  = (−2482.81 ± 4.59) kJ mol−1 for the formation from the elements. The result is identical within experimental error to available estimates, although the previously predicted energy difference between the monoclinic and triclinic phases could not be verified. Received: 16 February 2000 / Accepted: 14 July 2000  相似文献   

17.
Summary Investigations of natural and synthetic quartz specimens by cathodoluminescence (CL) microscopy and spectroscopy, electron paramagnetic resonance (EPR) and trace-element analysis showed that various luminescence colours and emission bands can be ascribed to different intrinsic and extrinsic defects. The perceived visible luminescence colours in quartz depend on the relative intensities of the dominant emission bands between 380 and 700 nm. Some of the CL emissions of quartz from the UV to the yellow spectral region (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) can be related to intrinsic lattice defects. Extrinsic defects such as the alkali (or hydrogen)-compensated [AlO4/M+] centre have been suggested as being responsible for the transient emission band at 380–390 nm and the short-lived blue-green CL centered around 500 nm. CL emissions between 620 and 650 nm in the red spectral region are attributed to the nonbridging oxygen hole centre (NBOHC) with several precursors. The weak but highly variable CL colours and emission spectra of quartz can be related to genetic conditions of quartz formation. Hence, both luminescence microscopy and spectroscopy can be used widely in various applications in geosciences and techniques. One of the most important fields of application of quartz CL is the ability to reveal internal structures, growth zoning and lattice defects in quartz crystals not discernible by means of other analytical techniques. Other fields of investigations are the modal analysis of rocks, the provenance evaluation of clastic sediments, diagenetic studies, the reconstruction of alteration processes and fluid flow, the detection of radiation damage or investigations of ultra-pure quartz and silica glass in technical applications. Zusammenfassung Ursachen, spektrale Charakteristika und praktische Anwendungen der Kathodolumineszenz (KL) von Quarz – eine Revision Untersuchungen von natürlichen und synthetischen Quarzproben mittels Kathodolumineszenz (KL) Mikroskopie und -spektroskopie, Elektron Paramagnetischer Resonanz (EPR) und Spurenelementanalysen zeigen verschiedene Lumineszenzfarben und Emissionsbanden, die unterschiedlichen intrinsischen und extrinsischen Defekten zugeordnet werden k?nnen. Die sichtbaren Lumineszenzfarben von Quarz werden durch unterschiedliche Intensit?tsverh?ltnisse der dominierenden Emissionsbanden zwischen 380 und 700 nm verursacht. Einige der KL Emissionen vom UV bis zum gelben Spektralbereich (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) stehen im Zusammenhang mit intrinsischen Defekten. Die kurzlebigen Lumineszenzemissionen bei 380–390 nm sowie 500 nm werden mit kompensierten [AlO4/M+]-Zentren in Verbindung gebracht. Die KL-Emissionen im roten Spektralbereich bei 620 bis 650 nm haben ihre Ursache im “nonbridging oxygen hole centre” (NBOHC) mit verschiedenen Vorl?uferzentren. Die unterschiedlichen KL-Farben und Emissionsspektren von Quarz k?nnen oft bestimmten genetischen Bildungsbedingungen zugeordnet werden und erm?glichen deshalb vielf?ltige Anwendungen in den Geowissenschaften und in der Technik. Eine der gravierendsten Einsatzm?glichkeiten ist die Sichtbarmachung von Internstrukturen, Wachstumszonierungen und Defekten im Quarz, die mit anderen Analysenmethoden nicht oder nur schwer nachweisbar sind. Weitere wesentliche Untersuchungsschwerpunkte sind die Modalanalyse von Gesteinen, die Eduktanalyse klastischer Sedimente, Diageneseuntersuchungen, die Rekonstruktion von Alterationsprozessen und Fluidmigrationen, der Nachweis von Strahlungssch?den oder die Untersuchung von ultrareinem Quarz und Silikaglas für technische Anwendungen. Received March 29, 2000 Accepted October 27, 2000  相似文献   

18.
 The heat capacity of end-member titanite and (CaTiSiO5) glass has been measured in the range 328–938 K using differential scanning calorimetry. The data show a weak λ-shaped anomaly at 483 ± 5 K, presumably associated with the well-known low-pressure P21/a ⇆ A2/a transition, in good agreement with previous studies. A value of 0.196 ± 0.007 kJ mol−1 for the enthalpy of the P21/a ⇆ A2/a transition was determined by integration of the area under the curve for a temperature interval of 438–528 K, bracketing the anomaly. The heat capacity data for end-member titanite and (CaTiSiO5) glass can be reproduced within <1% using the derived empirical equations (temperature in K, pressure in bars):
The available enthalpy of vitrification (80.78 ± 3.59 kJ mol−1), and the new heat capacity equations for solid and glass can be used to estimate (1) the enthalpy of fusion of end-member titanite (122.24 ± 0.2 kJ mol−1), (2) the entropy of fusion of end-member titanite (73.85 ± 0.1 J/mol K−1), and (3) a theoretical glass transition temperature of 1130 ± 55 K. The latter is in considerable disagreement with the experimentally determined glass transition temperature of 1013 ± 3 K. This discrepancy vanishes when either the adopted enthalpy of vitrification or the liquid heat content, or both, are adjusted. Calculations using Eq. (2), new P−V−T data for titanite, different but also internally consistent thermodynamic data for anorthite, rutile, and kyanite, and experimental data for the reaction: anorthite + rutile = titanite + kyanite strongly suggest: (1) the practice to adjust the enthalpy of formation of titanite to fit phase equilibrium data may be erroneous, and (2) it is probably the currently accepted entropy of 129.2 ± 0.8 J/mol K−1 that may need revision to a smaller value. Received: 30 December 1999 / Accepted: 23 June 2000  相似文献   

19.
A suite of more than 200 garnet single crystals, extracted from 150 xenoliths, covering the whole range of types of garnet parageneses in mantle xenoliths so far known from kimberlites of the Siberian platform and collected from nearly all the kimberlite pipes known in that tectonic unit, as well as some garnets found as inclusions in diamonds and olivine megacrysts from such kimberlites, were studied by means of electron microprobe analysis and single-crystal IR absorption spectroscopy in the v OH vibrational range in search of the occurrence, energy and intensity of the v OH bands of hydroxyl defects in such garnets and its potential use in an elucidation of the nature of the fluid phase in the mantle beneath the Siberian platform. The v OH single-crystal spectra show either one or a combination of two or more of the following major v OH bands, I 3645–3662 cm−1, II 3561–3583 cm−1, III 3515–3527 cm−1, and minor bands, Ia 3623–3631 cm−1, IIa 3593–3607 cm−1. The type of combination of such bands in the spectrum of a specific garnet depends on the type of the rock series of the host xenolith, Mg, Mg-Ca, Ca, Mg-Fe, or alkremite, on the xenolith type as well as on the chemical composition of the respective garnet. Nearly all garnets contain band systems I and II. Band system III occurs in Ti-rich garnets, with wt% TiO2 > ca. 0.4, from xenoliths of the Mg-Ca and Mg-Fe series, only. The v OH spectra do not correspond to those of OH defects in synthetic pyropes or natural ultra-high pressure garnets from diamondiferous metamorphics. There were no indications of v OH from inclusions of other minerals within the selected 60 × 60 μm measuring areas in the garnets. The v OH spectra of pyrope-knorringite- and pyrope-knorringite-uvarovite-rich garnets included in diamonds do not show band systems I to III. Instead, they exhibit one weak, broad band (Δv OH 200–460 cm−1) near 3570 cm−1, a result that was also obtained on pyrope-knorringite-rich garnets extracted from two olivine megacrysts. The quantitative evaluation, on the basis of relevant existing calibrational data (Bell et al. 1995), of the sum of integral intensities of all v OH bonds of the garnets studied yielded a wide range of “water” concentrations within the set of the different garnets, between values below the detection limit of our single-crystal IR method, near 2 × 10−4 wt%, up to 163 × 10−4 wt%. The “water” contents vary in a complex manner in garnets from different xenolith types, obviously depending on a large number of constraints, inherent in the crystal chemistry as well as the formation conditions of the garnets during the crystallization of their mantle host rocks. Secondary alteration effects during uplift of the kimberlite, play, if any, only a minor role. Despite the very complex pattern of the “water” contents of the garnets, preventing an evaluation of a straightforward correlation between “water” contents of the garnets and the composition of the mantle's fluid phase during garnet formation, at least two general conclusions could be drawn: (1) the wide variation of “water” contents in garnets is not indicative of regional or local differences in the composition of the mantle's fluid phase; (2) garnets formed in the high-pressure/high-temperature diamond-pyrope facies invariably contain significantly lower amounts of “water” than garnets formed under the conditions of the graphite-pyrope facies. This latter result (2) may point to significantly lower f H2O and f O2 in the former as compared to the latter facies. Received: 25 November 1997 / Accepted: 9 March 1998  相似文献   

20.
A selected set of five different kyanite samples was analysed by electron microprobe and found to contain chromium between <0.001 and 0.055 per formula unit (pfu). Polarized electronic absorption spectroscopy on oriented single crystals, R1, R2-sharp line luminescence and spectra of excitation of λ3- and λ4-components of R1-line of Cr3+-emission had the following results: (1) The Fe2+–Ti4+ charge transfer in c-parallel chains of edge connected M(1) and M(2) octahedra shows up in the electronic absorption spectra as an almost exclusively c(||Z′)-polarized, very strong and broad band at 16000 cm−1 if <, in this case the only band in the spectrum, and at an invariably lower energy of 15400 cm−1 in crystals with  ≥ . The energy difference is explained by an expansion of the Of–Ok, and Ob–Om edges, by which the M(1) and M(2) octahedra are interconnected (Burnham 1963), when Cr3+ substitutes for Al compared to the chromium-free case. (2) The Cr3+ is proven in two greatly differing crystal fields a and b, giving rise to two sets of bands, derived from the well known dd transitions of Cr3+ 4A2g4T2g(F)(I), →4T1g(F)(II), and →4T1g(P)(III). Band energies in the two sets a and b, as obtained by absorption, A, and excitation, E, agree well: I: 17300(a, A), 17200(a, E), 16000(b, A), 16200(b, E); II: 24800(a, A), 24400(a, E); 22300(b, A), 22200(b, E); III: 28800(b,A) cm−1. Evaluation of crystal field parameters from the bands in the electronic spectra yield Dq(a)=1730 cm−1, Dq(b)=1600 cm−1, B(a)=790 cm−1, B(b)=620 cm−1 (errors ca. ±10 cm−1), again in agreement with values extracted from the λ3, λ4 excitation spectra. The CF-values of set a are close to those typical of Cr3+ substituting for Al in octahedra of other silicate minerals without constitutional OH as for sapphirine, mantle garnets or beryl, and are, therefore, interpreted as caused by Cr3+ substituting for Al in some or all of the M(1) to M(4) octaheda of the kyanite structure, which are crystallographically different but close in their mean Al–O distances, ranging from 1.896 to 1.919 A (Burnham 1963), and slight degrees of distortion. Hence, band set a originates from substitutive Cr3+ in the kyanite structural matrix. The CF-data of Cr3+ type b, expecially B, resemble those of Cr3+ in oxides, especially of corundum type solid solutions or eskolaite. This may be interpreted by the assumption that a fraction of the total chromium contents might be allocated in a precursor of a corundum type exsolution. Received: 3 January 1997 / Revised, accepted: 2 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号