首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Processes resulting in the formation of hydrocarbons of carbonaceous chondrites and the identity of the interstellar molecular precursors involved are an objective of investigations into the origin of the solar system and perhaps even life on earth. We have combined the resources and experience of an astronomer and physicists doing laboratory simulations with those of a chemical expert in the analysis of meteoritic hydrocarbons, in a project that investigated the conversion of polycyclic aromatic hydrocarbons (PAHs) formed in stellar atmospheres into alkanes found in meteorites. Plasma hydrogenation has been found in the University of Alabama at Birmingham Astrophysics Laboratory to produce from the precursor PAH naphthalene, a new material having an IR absorption spectrum (Lee, W. and Wdowiak, T.J., Astrophys. J. 417, L49-L51, 1993) remarkably similar to that obtained at Arizona State University of the benzene-methanol extract of the Murchison meteorite (Cronin, J.R. and Pizzarello, S., Geochim. Cosmochim. Acta 54, 2859-2868, 1990). There are astrophysical and meteoritic arguments for PAH species from extra-solar sources being incorporated into the solar nebula, where plasma hydrogenation is highly plausible. Conversion of PAHs into alkanes could also have occurred in the interstellar medium. The synthesis of laboratory analogs of meteoritic hydrocarbons through plasma hydrogenation of PAH species is underway, as is chemical analysis of those analogs. The objective is to clarify this heretofore uninvestigated process and to understand its role during the origin of the solar system as a mechanism of production of hydrocarbon species now found in meteorites. Results have been obtained in the form of time-of-flight spectroscopy and chemical analysis of the lab analog prepared from naphthalene.  相似文献   

2.
Henry B. Throop 《Icarus》2011,212(2):885-895
The origin of complex organic molecules such as amino acids and their precursors found in meteorites and comets is unknown. Previous studies have accounted for the complex organic inventory of the Solar System by aqueous chemistry on warm meteoritic parent bodies, or by accretion of organics formed in the interstellar medium. This paper proposes a third possibility: that complex organics were created in situ by ultraviolet light from nearby O/B stars irradiating ices already in the Sun’s protoplanetary disk. If the Sun was born in a dense cluster near UV-bright stars, the flux hitting the disk from external stars could be many orders of magnitude higher than that from the Sun alone. Such photolysis of ices in the laboratory can rapidly produce amino acid precursors and other complex organic molecules. I present a simple model coupling grain growth and UV exposure in a young circumstellar disk. It is shown that the production may be sufficient to create the Solar System’s entire complex organic inventory within 106 yr. Subsequent aqueous alteration on meteoritic parent bodies is not ruled out.  相似文献   

3.
Impact events have played a central role in the life of meteorites. They compacted and lithified the dust from which meteorites are made; produced shock minerals, shock melting, and shock blackening of meteoritic minerals on their parent bodies; turned their parent bodies into rubble; and dispersed at least some pieces of this rubble, sending them to Earth as meteorites. Thus, as well as owing their very existence to the occurrence of catastrophic disruptions, meteorites contain physical ground truth concerning the impact and disruption environment of the solar system. Reviewing these aspects of the impact-meteorite connection, we conclude that impacts severe enough to disrupt asteroids were rare in the earliest stages of the solar nebula, when meteorite parent bodies accreted and were lithified. Likewise, though catastrophic disruptions clearly have occurred over the past several billion years, the small number of exposure events seen in the meteoritic cosmic ray age record indicates that such disruptions at these times also were rare. However, catastrophic disruptions must have been very prevalent during the first billion years of the solar system, resulting in the widespread asteroid macroporosity inferred from the comparison of asteroid bulk densities to meteorite grain densities.  相似文献   

4.
Abstract— In this paper, we explore the possibility that the moderately volatile element depletions observed in chondritic meteorites are the result of planetesimals accreting in a solar nebula that cooled from an initially hot state (temperatures > 1350 K out to ?2–4 AU). A model is developed to track the chemical inventory of planetesimals that accrete in a viscously evolving protoplanetary disk, accounting for the redistribution of solids and vapor by advection, diffusion, and gas drag. It is found that depletion trends similar to those observed in the chondritic meteorites can be reproduced for a small range of model parameters. However, the necessary range of parameters is inconsistent with observations of disks around young stars and other constraints on meteorite parent body formation. Thus, counter to previous work, it is concluded that the global scale evolution of the solar nebula is not the cause for the observed depletion trends. Instead, it appears that localized processing must be considered.  相似文献   

5.
A mixture of the polycyclic aromatic hydrocarbons (PAHs), acenaphthylene and acenaphthene, when subjected to the energetic environment of a hydrogen plasma, is transformed into a material that exhibits an infrared absorption profile in the 3 micron region that is an excellent match of the protoplanetary nebula IRAS 05341+0852 emission profile in the same wavelength region. Acenaphthylene and acenaphthene were chosen as precursors in the experiment because these molecules have a structure that can be described as a keystone in a process in which carbon atoms in a stellar wind condense into PAH species. The spectral match between experiment and observations appears to validate that scenario.  相似文献   

6.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   

7.
Abstract— There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 107 yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as ≤ 106 yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modelling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molecular clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 105 yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronologically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially 26Al) and by evolution of 87Sr/86Sr. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differentiated meteorites (eucrites and angrites)—appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate nebular events spanning several Ma. We also consider alternative interpretations, particularly the hypothesis of radically heterogeneous distribution of 26Al, which would avoid these chronological interpretations. The principal impetus for such alternative interpretations seems to be precisely the obviation of the chronological interpretation (i.e., the presumption rather than the inference of a short (≤1 Ma) lifetime of the nebula). Astronomical observations of T Tauri stars indicate that the presence of dusty disks is a common if not universal feature, that the disks are massive enough to accomodate a planetary system such as ours, and that at least some persist for 107 yr or more. The results are consistent with the time scales inferred from the meteorite isotopic data. They cannot be considered conclusive with regard to solar nebula time scales, however, in part because it is difficult to relate disk observations to processes that affect meteorites, and in part because the ages assigned for these stars could be wrong by a factor of several in either direction. We conclude that the balance of available evidence favors the view that the nebula existed and was active for at least several Ma. However, because the evidence is not definitive, it is important that the issue be perceived to be an open question, whose answer should be sought rather than presumed.  相似文献   

8.
Abstract— Fischer‐Tropsch catalysis, the iron/nickel catalyzed conversion of CO and H2 to hydrocarbons, would have been the only thermally‐driven pathway available in the solar nebula to convert CO into other forms of carbon. A major issue in meteoritics is to determine the origin of meteoritic organics: are they mainly formed from CO in the solar nebula via a process such as Fischer‐Tropsch, or are they derived from interstellar organics? In order to determine the role that Fischer‐Tropsch catalysis may have played in the organic chemical evolution of the solar nebula, we have developed a kinetic model for this process. Our model results agree well with experimental data from several existing laboratory studies. In contrast, empirical rate equations, which have been derived from experimental rate data for a limited temperature (T) and pressure (P) range, are inconsistent with experimental rate data for higher T and lower P. We have applied our model to pressure and temperature profiles for the solar nebula, during the epoch in which meteorite parent bodies condensed and agglomerated. We find that, under nebular conditions, the conversion rate of CO to CH4 does not simply increase with temperature as the empirically‐derived equations suggest. Instead, our model results show that this process would have been most efficient in a fairly narrow region that coincides with the present position of the asteroid belt. Our results support the hypothesis that Fischer‐Tropsch catalysis may have played a role in solar nebula chemistry by converting CO into less volatile materials that can be much more readily processed in the nebula and in parent bodies.  相似文献   

9.
Abstract– The composition of the most primitive solar system condensates, such as calcium‐aluminum‐rich inclusions (CAIs) and micron‐sized corundum grains, show that short‐lived radionuclides (SLR), e.g., 26Al, were present in the early solar system. Their abundances require a local or stellar origin, which, however, is far from being understood. We present for the first time the abundances of several SLR up to 60Fe predicted from stars with initial mass in the range approximately 7–11 M. These stars evolve through core H, He, and C burning. After core C burning they go through a “Super”‐asymptotic giant branch (Super‐AGB) phase, with the H and He shells activated alternately, episodic thermal pulses in the He shell, a very hot temperature at the base of the convective envelope (approximately 108 K), and strong stellar winds driving the H‐rich envelope into the surrounding interstellar medium. The final remnants of the evolution of Super‐AGB stars are mostly O–Ne white dwarfs. Our Super‐AGB models produce 26Al/27Al yield ratios approximately 0.02–0.26. These models can account for the canonical value of the 26Al/27Al ratio using dilutions with the solar nebula of the order of 1 part of Super‐AGB mass per several 102 to several 103 of solar nebula mass, resulting in associated changes in the O‐isotope composition in the range Δ17O from 3 to 20‰. This is in agreement with observations of the O isotopic ratios in primitive solar system condensates, which do not carry the signature of a stellar polluter. The radionuclides 41Ca and 60Fe are produced by neutron captures in Super‐AGB stars and their meteoritic abundances are also matched by some of our models, depending on the nuclear and stellar physics uncertainties as well as the meteoritic experimental data. We also expect and are currently investigating Super‐AGB production of SLR heavier than iron, such as 107Pd.  相似文献   

10.
We have obtained wide-field thermal infrared (IR) images of the Carina nebula, using the SPIREX/Abu telescope at the South Pole. Emission from polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm, a tracer of photodissociation regions (PDRs), reveals many interesting well-defined clumps and diffuse regions throughout the complex. Near-IR images  (1–2 μm)  , along with images from the Midcourse Space Experiment ( MSX ) satellite  (8–21 μm)  have been incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole nebula, and have been mapped in  12CO(2–1)  and  (1–0)  using the Swedish–ESO Submillimetre Telescope (SEST). Analysis of their physical properties reveals that they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430−5931 in the southern molecular cloud shows strong 3.29-, 8- and 21-μm emission, the spectral energy distribution (SED) revealing the location of an ultracompact (UC) H  ii region. The northern part of the nebula is complicated, with PAH emission intermixed with mid-IR dust continuum emission. Several point sources are located here, and through a two-component blackbody fit to their SEDs we have identified three possible UC H  ii regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is ongoing and not halted by the intense radiation from the surrounding young massive stars.  相似文献   

11.
Alan Paul Boss 《Icarus》1982,51(3):623-632
Theories of solar system formation often presuppose the existence of the protosun and an accompanying preplanetary nebula. Numerical three-dimensional calculations are presented which demonstrate the possibility of formation of a co-orbital, triple protostellar system, which is unstable to decay to a binary and an ejected single star. The calculations are used to construct a plausible scenario for presolar nebula formation based on a hierarchy of collapse and fragmentation. While this sequence is unlikely to produce many single stars, it remains a possible sequence for the formation of the presolar nebula.  相似文献   

12.
Abstract— Motivated by recent observations of T-Tauri stars and the interpretation of these observations in terms of the properties of circumstellar disks, we derive internal (midplane) temperatures for disks around mature (age ~1 Ma) T-Tauri stars. The estimates are obtained by combining published results for disk masses, sizes, accretion rates, and surface temperatures. For 26 stars (for which adequate data are available), we derive midplane temperatures at 1 AU primarily in the range 200–800 K, and 100–400 K at 2.5 AU. It is likely that the solar nebula, at the same stage of evolution, contained planetesimals and objects destined to become meteorite parent bodies. Observations of young stellar objects at earlier stages of evolution (age ~0.1 Ma) imply that accretion rates were, on the average, at least two orders of magnitude greater than the 10?8 M/year rates typical for mature T-Tauri stars. Such high values would result in midplane temperatures at or near the silicate vaporization temperature in the terrestrial planet region. If cooling of the solar nebula from such a hot epoch was responsible for establishing the pervasive elemental fractionation patterns found in chondritic meteorites, then objects in the asteroid belt must have grown rapidly (within 0.1 Ma) to sizes of ~1 km, a conclusion consistent with current theories of planetesimal formation. However, the fact that primitive meteorite parent bodies escaped being melted by the decay of 26Al then implies that further growth of at least some objects was essentially delayed for 2 Ma or more. Such a diminished growth rate appears to be consistent with simulations of the dynamics of solid bodies in the asteroid belt. Other hypotheses seem less attractive. One might assume that the final cooling occurred only after the decay of 26Al (i.e., more than a million years after calcium-aluminum rich inclusion formation), or that 26Al was not ubiquitous in the early solar system. But the first of these conjectures is incompatible with astronomical observations of T-Tauri systems, and the second appears to be contradicted by the evidence for 26Al in diverse meteoritic components. The remaining alternative would then appear to be that, despite a lack of supporting evidence, chondritic fractionation patterns reflect the net effect of many local heating and cooling events and have nothing to do with global nebular cooling. We conclude that the most plausible hypothesis is that both nebular cooling and coagulation of solids to kilometer-sized objects occurred rapidly and that a substantial number of planetesimals in the asteroid belt remained smaller than a few kilometers in radius for at least 2 Ma.  相似文献   

13.
The discrete infrared features known as the unidentified infrared (UIR) bands originating in starburst regions of other galaxies, and in H II regions and planetary nebulae within the Milky Way, are widely thought to be the result of ultraviolet pumped infrared fluorescence of polycyclic aromatic hydrocarbon (PAH) molecules and ions. These UIR emissions are estimated to account for 10%-30% of the total energy emitted by galaxies. Laboratory absorption spectra including the vacuum ultraviolet region, as described in this paper, show a weakening of the intensity of absorption features as the population of cations increases, suggesting that strong pi* <-- pi transitions are absent in the spectra of PAH cations. This implies a lower energy bound for ultraviolet photons that pump infrared emissions from such ions at 7.75 eV, an amount greater than previously thought. The implications include size and structure limitations on the PAH molecules and ions which are apparent constituents of the interstellar medium. Also, this might affect estimations of the population of early-type stars in regions of rapid star formation.  相似文献   

14.
M. Podolak  A.G.W. Cameron 《Icarus》1974,23(3):326-333
Most meteoritic chondrules and inclusions appear to have been liquid droplets at one time, or at least to have been close to the melting point so that they are easily deformed. The simplest mode of formation of such objects would be to have the liquid phases of the chondrules in thermodynamic equilibrium with gas in the primitive solar nebula, as suggested some years ago by Wood, but unfortunately pressures in the primitive solar nebula are orders of magnitude too small at temperatures in the range of the liquid mineral phases. This difficulty has led to an abandonment of this basic idea, but we suggest that the idea should be reexamined in view of the presence of higher pressures at moderate temperatures, together with water vapor enrichments, in the protoplanetary atmosphere of Jupiter prior to the collapse stage, which was recently studied by Perri and Cameron. A number of advantages arise from the complexities of such a model, and we discuss these together with a number of constraints.  相似文献   

15.
Circumstellar shells provide a unique environment for the study of dust formation and the relation of dust composition to specific atomic and molecular components. As a specific example, the formation of carbonaceous dust is discussed in relation to the presence of polycyclic aromatic hydrocarbon molecules and their survival in the interstellar medium. Some conclusions will be drawn concerning the composition of carbonaceous dust in circumstellar sources and that in the diffuse interstellar medium.  相似文献   

16.
Protostars in a group exert gravitational tidal torques on an aspherical nebula located in the group. The net torque transfers angular momentum from the orbital motions of the stars to rotation of the nebula. A relation can be derived between the parameters describing the protostars and the final angular momentum of the nebula. While the parameters concerned are uncertain, a conservative choice results in a value for the angular momentum equal to about 1/3 of that of the present solar system. This suggests that if the Sun formed in a group, tidal interactions with other protostars may account for a significant part of the angular momentum of the solar system.  相似文献   

17.
F.J. Ciesla 《Icarus》2010,208(1):455-467
Refractory objects such as Calcium, Aluminum-rich Inclusions, Amoeboid Olivine Aggregates, and crystalline silicates, are found in primitive bodies throughout our Solar System. It is believed that these objects formed in the hot, inner solar nebula and were redistributed during the mass and angular momentum transport that took place during its early evolution. The ages of these objects thus offer possible clues about the timing and duration of this transport. Here we study how the dynamics of these refractory objects in the evolving solar nebula affected the age distribution of the grains that were available to be incorporated into planetesimals throughout the Solar System. It is found that while the high temperatures and conditions needed to form these refractory objects may have persisted for millions of years, it is those objects that formed in the first 105 years that dominate (make up over 90%) those that survive throughout most of the nebula. This is due to two effects: (1) the largest numbers of refractory grains are formed at this time period, as the disk is rapidly drained of mass during subsequent evolution and (2) the initially rapid spreading of the disk due to angular momentum transport helps preserve this early generation of grains as opposed to later generations. This implies that most refractory objects found in meteorites and comets formed in the first 105 years after the nebula formed. As these objects contained live 26Al, this constrains the time when short-lived radionuclides were introduced to the Solar System to no later than 105 years after the nebula formed. Further, this implies that the t=0 as defined by meteoritic materials represents at most, the instant when the solar nebula finished accreting significant amounts of materials from its parent molecular cloud.  相似文献   

18.
Abstract– The solid 2–10 μm samples of comet Wild 2 provide a limited but direct view of the solar nebula solids that accreted to form Jupiter family comets. The samples collected by the Stardust mission are dominated by high‐temperature materials that are closely analogous to meteoritic components. These materials include chondrule and CAI‐like fragments. Five presolar grains have been discovered, but it is clear that isotopically anomalous presolar grains are only a minor fraction of the comet. Although uncertain, the presolar grain content is perhaps higher than found in chondrites and most interplanetary dust particles. It appears that the majority of the analyzed Wild 2 solids were produced in high‐temperature “rock forming” environments, and they were then transported past the orbit of Neptune, where they accreted along with ice and organic components to form comet Wild 2. We hypothesize that Wild 2 rocky components are a sample of a ubiquitously distributed flow of nebular solids that was accreted by all bodies including planets and meteorite parent bodies. A primary difference between asteroids and the rocky content of comets is that comets are dominated by this widely distributed component. Asteroids contain this component, but are dominated by locally made materials that give chondrite groups their distinctive properties. Because of the large radial mixing in this scenario, it seems likely that most comets contain a similar mix of rocky materials. If this hypothesis is correct, then properties such as oxygen isotopes and minor element abundances in olivine, should have a wider dispersion than in any chondrite group, and this may be a characteristic property of primitive outer solar system bodies made from widely transported components.  相似文献   

19.
Chondrules represent one of the best probes of the physical conditions and processes acting in the early solar nebula. Proposed chondrule formation models are assessed based on their ability to match the meteoritic evidence, especially experimental constraints on their thermal histories. The model most consistent with chondrule thermal histories is passage through shock waves in the solar nebula. Existing models of heating by shocks generally yield a good first‐order approximation to inferred chondrule cooling rates. However, they predict prolonged heating in the preshock region, which would cause volatile loss and isotopic fractionation, which are not observed. These models have typically included particles of a single (large) size, i.e., chondrule precursors, or at most, large particles accompanied by micron‐sized grains. The size distribution of solids present during chondrule formation controls the opacity of the affected region, and significantly affects the thermal histories of chondrules. Micron‐sized grains evaporate too quickly to prevent excessive heating of chondrule precursors. However, isolated grains in chondrule‐forming regions would rapidly coagulate into fractal aggregates. Preshock heating by infrared radiation from the shock front would cause these aggregates to melt and collapse into intermediate‐sized (tens of microns) particles. We show that inclusion of such particles yields chondrule cooling rates consistent with petrologic and isotopic constraints.  相似文献   

20.
Gas giant planets have been detected in orbit around an increasing number of nearby stars. Two theories have been advanced for the formation of such planets: core accretion and disk instability. Core accretion, the generally accepted mechanism, requires several million years or more to form a gas giant planet in a protoplanetary disk like the solar nebula. Disk instability, on the other hand, can form a gas giant protoplanet in a few hundred years. However, disk instability has previously been thought to be important only in relatively massive disks. New three-dimensional, "locally isothermal," hydrodynamical models without velocity damping show that a disk instability can form Jupiter-mass clumps, even in a disk with a mass (0.091 M middle dot in circle within 20 AU) low enough to be in the range inferred for the solar nebula. The clumps form with initially eccentric orbits, and their survival will depend on their ability to contract to higher densities before they can be tidally disrupted at successive periastrons. Because the disk mass in these models is comparable to that apparently required for the core accretion mechanism to operate, the models imply that disk instability could obviate the core accretion mechanism in the solar nebula and elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号