首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract– Ejecta from the large subsurface Tookoonooka impact structure have been found in the Lower Cretaceous strata of the extensive Eromanga Basin of central Australia. Observations from 31 wells spanning 400,000 km2 of the basin provide compelling evidence for the presence of a marine impact horizon of regional extent. Drill core was examined to determine the sedimentary context of the Tookoonooka impact event, the presence of ejecta, and the nature of the impact horizon. The base of the Wyandra Sandstone Member of the Cadna‐owie Formation is an unconformity commonly overlain by very poorly sorted sediment with imbricated pebbles, exotic clasts, and occasional boulders. The basal Wyandra Sandstone Member is bimodal: a fine sand mode reflects an ambient sediment contribution and a coarse mode is interpreted to be impact‐derived. Wells Thargomindah‐1 and Eromanga‐1, within four crater radii of Tookoonooka, contain distinctive clast‐supported breccia‐conglomerate beds at the base of the Wyandra Sandstone Member. Clasts in these beds include altered accretionary and melt impactoclasts, as well as lithic and mineral grains corresponding to the Tookoonooka target rock sequence, including basement. Petrographic evidence includes shock metamorphosed quartz and lithic grains with planar deformation features. These breccia‐conglomerates are in stark contrast to the underlying, laterally persistent, unimodal Cadna‐owie sediments and overlying shales deposited in an epeiric sea. The base of the Wyandra Sandstone Member is therefore interpreted to be the Tookoonooka impact horizon. The timing of the impact event is confirmed to be the Barremian‐Aptian boundary, at 125 ± 1 Ma. The Wyandra Sandstone Member preserves both impact ejecta and postimpact marine sediments.  相似文献   

2.
Abstract– The microstructures of lunar zircon grains from breccia samples 72215, 73215, 73235, and 76295 collected during the Apollo 17 mission have been characterized via optical microscopy, cathodoluminescence imaging, and electron backscatter diffraction mapping. These zircon grains preserve deformation microstructures that show a wide range in style and complexity. Planar deformation features (PDFs) are documented in lunar zircon for the first time, and occur along {001}, {110}, and {112}, typically with 0.1–25 μm spacing. The widest PDFs associated with {112} contain microtwin lamellae with 65°/<110> misorientation relationships. Deformation bands parallel to {100} planes and irregular low‐angle (<10°) boundaries most commonly have <001> misorientation axes. This geometry is consistent with a dislocation glide system with <100>{010} during dislocation creep. Nonplanar fractures, recrystallized domains with sharp, irregular interfaces, and localized annealing textures along fractures are also observed. No occurrences of reidite were detected. Shock‐deformation microstructures in zircon are explained in terms of elastic anisotropy of zircon. PDFs form along a limited number of specific {hkl} planes that are perpendicular to directions of high Young’s modulus, suggesting that PDFs are likely to be planes of longitudinal lattice damage. Twinned {112} PDFs also contain directions of high shear modulus. A conceptual model is proposed for the development of different deformation microstructures during an impact event. This “shock‐deformation mechanism map” is used to explain the relative timing, conditions, and complexity relationships between impact‐related deformation microstructures in zircon.  相似文献   

3.
Cerro do Jarau is a conspicuous, circular morpho‐structural feature in Rio Grande do Sul State (Brazil), with a central elevated core in the otherwise flat “Pampas” terrain typical for the border regions between Brazil and Uruguay. The structure has a diameter of approximately 13.5 km. It is centered at 30o12′S and 56o32′W and was formed on basaltic flows of the Cretaceous Serra Geral Formation, which is part of the Paraná‐Etendeka Large Igneous Province (LIP), and in sandstones of the Botucatu and Guará formations. The structure was first spotted on aerial photographs in the 1960s. Ever since, its origin has been debated, sometimes in terms of an endogenous (igneous) origin, sometimes as the result of an exogenous (meteorite impact) event. In recent years, a number of studies have been conducted in order to investigate its nature and origin. Although the results have indicated a possible impact origin, no conclusive evidence could be produced. The interpretation of an impact origin was mostly based on the morphological characteristics of the structure; geophysical data; as well as the occurrence of different breccia types; extensive deformation/silicification of the rocks within the structure, in particular the sandstones; and also on the widespread occurrence of low‐pressure deformation features, including some planar fractures (PFs). A detailed optical microscopic analysis of samples collected during a number of field campaigns since 2007 resulted in the disclosure of a large number of quartz grains from sandstone and monomict arenite breccia from the central part of the structure with PFs and feather features (FFs), as well as a number of quartz grains exhibiting planar deformation features (PDFs). While most of these latter grains only carry a single set of PDFs, we have observed several with two sets, and one grain with three sets of PDFs. Consequently, we here propose Cerro do Jarau as the seventh confirmed impact structure in Brazil. Cerro do Jarau, together with Vargeão Dome (Santa Catalina state) and Vista Alegre (Paraná State), is one of very few impact structures on Earth formed in basaltic rocks.  相似文献   

4.
Abstract— The Middle Ordovician Granby structure in Sweden is generally considered the result of an asteroidal or cometary collision with Earth, although no hard evidence, i.e., shock metamorphic features or traces of the impactor, have been presented to date. In this study, drill core samples of a sedimentary breccia from the Granby structure have been investigated for microscopic shock metamorphic evidence in an attempt to verify the impact genesis of the structure. The finding of multiple sets of decorated planar deformation features (PDFs) in quartz grains in these samples provides unambiguous evidence that the structure is impact derived. Furthermore, the orientation of the PDFs, e.g., ω {101 }, π {101 } and r, z {101 }, is characteristic for impact deformation. The fact that a majority of the PDFs are decorated implies a water‐bearing target. The shocked quartz grains can be divided into two groups; rounded grains found in the breccia matrix likely originated from mature sandstone, and angular grains in fragments from crystalline target rocks. The absence of melt particles provides an estimated maximum shock pressure for the sedimentary derived quartz of 15–20 GPa and the frequency distribution of PDF orientations in the bedrock quartz implies pressures of the order of 10 GPa.  相似文献   

5.
Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia.  相似文献   

6.
Abstract— The Foelsche structure is situated in the McArthur Basin of northern Australia (16°40′ S, 136°47′ E). It comprises a roughly circular outcrop of flat‐lying Neoproterozoic Bukalara Sandstone, overlying and partly rimmed by tangentially striking, discontinuous outcrops of dipping, fractured and brecciated Mesoproterozoic Limmen Sandstone. The outcrop expression coincides with a prominent circular aeromagnetic anomaly, which can be explained in terms of the local disruption and removal or displacement of a regional mafic igneous layer within a circular area at depth. Samples of red, lithic, pebbly sandstone from the stratigraphically lowest exposed levels of the Bukalara Sandstone within the Foelsche structure contain detrital quartz grains displaying mosaicism, planar fractures (PFs) and planar deformation features (PDFs). PFs and PDFs occur in multiple intersecting sets with orientations consistent with a shock metamorphic origin. The abundance and angular nature of the shocked grains indicates a nearby provenance. Surface expression and geophysical data are consistent with a partly buried complex impact crater of ?6 km in diameter with an obscured central uplift ?2 km in diameter. The deformed outcrops of Limmen Sandstone are interpreted as relics of the original crater rim, but the central region of the crater, from which the shocked grains were likely derived, remains buried. From the best available age constraints the Foelsche structure is most likely of Neoproterozoic age.  相似文献   

7.
Abstract— The 3.4 km wide, so‐called Kgagodi Basin structure, which is centered at longitude 27°34.4′ E and latitude 22°28.6′ S in eastern Botswana, has been confirmed as a meteorite impact structure. This crater structure was first recognized through geophysical analysis; now, we confirm its impact origin by the recognition of shock metamorphosed material in samples from a drill core obtained close to the crater rim. The structure formed in Archean granitoid basement overlain and intruded by Karoo dolerite. The crater yielded a gravity model consistent with a simple bowl‐shape crater form. The drill core extends to a depth of 274 m and comprises crater fill sediments to a depth of 158 m. Impact breccia was recovered only between 158 and 165 m depth, below which locally brecciated basement granitoids grade into fractured and eventually undeformed crystalline basement, from ~250 m depth. Shock metamorphic effects were only found in granitoid clasts in the narrow breccia zone. This breccia is classified as suevitic impact breccia due to the presence of melt and glass fragments, at a very small abundance. The shocked grains are exclusively derived from granitoid target material. Shock effects include multiple sets of planar deformation features in quartz and feldspar; diaplectic quartz, and partially and completely isotropized felsic minerals, and rare melt fragments were encountered. Abundances of some siderophile elements and especially, Ir, in suevitic breccia samples are significantly elevated compared to the contents in the target rocks, which provides evidence for the presence of a small meteoritic component. Kgagodi is the first impact structure recognized in the region of the Kalahari Desert in southern Africa. Based on lithological and first palynological evidence, the age of the Kgagodi structure is tentatively assigned to the upper Cretaceous to early Tertiary interval. Thus, the crater fill has the potential to provide a long record of paleoclimatic conditions.  相似文献   

8.
Abstract— We measured 852 sets of planar deformation features (PDFs) in shocked quartz grains in impactite samples of the Yaxcopoil (YAX‐1) core and from 4 Cretaceous/Tertiary (K/T) boundary deposits: the Monaca, the Cacarajícara, and the Peñalver formations in Cuba, and DSDP site 536, within 800 km of the Chicxulub crater, in order to investigate variations of PDF orientations in the proximity of the crater. Orientations of PDFs show a broad distribution with peaks at ω {101¯3}, π {101¯2}, and ω {111¯2}, plus r, z {1011¯} orientations with minor c(0001), s{112¯1}, t{224¯1} plus x{516¯1}, and m{101¯0} plus a{112¯0} orientations. Planar deformation features with c(0001) orientation are relatively more abundant in the proximity of the Chicxulub crater than in distal sites such as North America, the Pacific Ocean, and Europe. This feature indicates that in the proximity of the crater, part of the shocked quartz grains in the K/T boundary deposits were derived from the low shock pressure zones. Moreover, the orientations of PDFs with ω {112¯2} plus r, z {101¯1} are high in our studied sites, and frequencies of these orientations decrease with increasing distance from the crater. On the other hand, absence of c(0001) and the rare occurrence of PDFs with ?ω {112¯2} plus r, z {101¯1} orientations in the sample from the YAX‐1 core that was taken at the top of the impactite layer of the Chicxulub crater suggests that the sampling horizon that reflects a certain cratering stage is also an important factor for variations in shocked quartz.  相似文献   

9.
Here we present a study of the abundance and orientation of planar deformation features (PDFs) in the Vakkejokk Breccia, a proposed lower Cambrian impact ejecta layer in the North‐Swedish Caledonides. The presence of PDFs is widely accepted as evidence for shock metamorphism associated with cosmic impact events and their presence confirms that the Vakkejokk Breccia is indeed the result of an impact. The breccia has previously been divided into four lithological subunits (from bottom to top), viz. lower polymict breccia (LPB), graded polymict breccia (GPB), top sandstone (TS), and top conglomerate (TC). Here we show that the LPB contains no shock metamorphic features, indicating that the material derives from just outside of the crater and represents low‐shock semi‐autochthonous bombarded strata. In the overlying, more fine‐grained GPB and TS, quartz grains with PDFs are relatively abundant (2–5% of the grain population), and with higher shock levels in the upper parts, suggesting that they have formed by reworking of more distal ejecta by resurge of water toward the crater in a marine setting. The absence of shocked quartz grains in the TC indicates that this unit represents later slumps associated with weathering and erosion of the protruding crater rim. Sparse shocked quartz grains (<0.2%) were also found in sandstone beds occurring at the same stratigraphic level as the Vakkejokk Breccia 15–20 km from the inferred crater site. It is currently unresolved whether the sandstone at these distal sites is related to the impact or just contains rare reworked quartz grains with PDFs.  相似文献   

10.
Abstract– The 1.8 km‐diameter Xiuyan crater is an impact structure in northeastern China, exposed in a Proterozoic metamorphic rock complex. The major rocks of the crater are composed of granulite, hornblendite, gneiss, tremolite marble, and marble. The bottom at the center of the crater covers about 100 m thick lacustrine sediments underlain by 188 m thick crater‐fill breccia. A layer of polymict breccia composed of clasts of granulite, gneiss, hornblendite, and fragments of glass as well as clastic matrix, occurs near the base, in the depth interval from 260 to 295 m. An investigation in quartz from the polymict breccia in the crater‐fill units reveals abundant planar deformation features (PDFs). Quartz with multiple sets of PDFs is found in clasts of granulite that consist of mainly quartz and feldspar, and in fine‐grained matrix of the impact‐produced polymict breccia. A universal stage was used to measure the orientation of PDFs in 70 grains of quartz from five thin sections made from the clasts of granulite of polymict breccia recovered at the depth of 290 m. Forty‐four percent of the quartz grains contain three sets of PDFs, and another 40% contain two sets of PDFs. The most abundant PDFs are rhombohedron forms of , , and with frequency of 33.5, 22.3, and 9.6%, respectively. A predominant PDF form of in quartz suggests a shock pressure >20 GPa. The occurrence of PDFs in quartz from the polymict breccia provides crucial evidence for shock metamorphism of target rocks and confirms the impact origin of this crater, which thus appears to be the first confirmed impact crater in China.  相似文献   

11.
The Tenoumer impact structure is a small, well‐preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north‐central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact‐melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass‐rich breccia. Impact‐related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt‐breccia deposits, where they co‐occur with quartz PDFs, and also within melt‐free crystalline ejecta, in the absence of co‐occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.  相似文献   

12.
Abstract— The large, complex Woodleigh structure in the Carnarvon basin of Western Australia has recently been added to the terrestrial impact crater record. Many aspects of this structure are, however, still uncertain. This work provides a detailed petrographic assessment of a suite of representative drill core samples from the borehole Woodleigh 1 that penetrated uplifted basement rocks of the central part of this structure. Fundamental rock and mineral deformation data and high‐precision chemical data, including results of PGE and oxygen isotopic analysis, are presented. The sampled interval displays likely impact‐produced macrodeformation in the form of fracturing and breccia veining at the microscopic scale. Contrary to earlier reports that these breccias represent pseudotachylite (friction melt) or even shock/shear‐produced pseudotachylitic melt breccia cannot be confirmed due to pervasive post‐impact alteration. Abundant planar deformation features (PDFs) in quartz, in addition to diaplectic glass and partial isotropization, are the main shock deformation effects observed, confirming that Woodleigh is of impact origin. Over the investigated depth interval, the statistics of quartz grains with a variable number of sets of PDFs does not change significantly, and the patterns of crystallographic orientations of PDFs in randomly selected quartz grains does not indicate a change in absolute shock pressure with depth either. The value of oxygen isotopes for the recognition of meteoritic contamination, as proposed by earlier Woodleigh workers, is critically assessed. Neither INA nor PGE analyses of our samples support the presence of a meteoritic component within this basement section, as had been claimed in earlier work.  相似文献   

13.
Abstract— The newly discovered Dhala structure, Madhya Pradesh State, India, is the eroded remnant of an impact structure with an estimated present‐day apparent diameter of about 11 km. It is located in the northwestern part of the Archean Bundelkhand craton. The pre‐impact country rocks are predominantly granitoids of ?2.5 Ga age, with minor 2.0–2.15 Ga mafic intrusive rocks, and they are overlain by post‐impact sediments of the presumably >1.7 Ga Vindhyan Supergroup. Thus, the age for this impact event is currently bracketed by these two sequences. The Dhala structure is asymmetrically disposed with respect to a central elevated area (CEA) of Vindhyan sediments. The CEA is surrounded by two prominent morphological rings comprising pre‐Vindhyan arenaceous‐argillaceous and partially rudaceous metasediments and monomict granitoid breccia, respectively. There are also scattered outcrops of impact melt breccia exposed towards the inner edge of the monomict breccia zone, occurring over a nearly 6 km long trend and with a maximum outcrop width of ?170 m. Many lithic and mineral clasts within the melt breccia exhibit diagnostic shock metamorphic features, including multiple sets of planar deformation features (PDFs) in quartz and feldspar, ballen‐textured quartz, occurrences of coesite, and feldspar with checkerboard texture. In addition, various thermal alteration textures have been found in clasts of initially superheated impact melt. The impact melt breccia also contains numerous fragments composed of partially devitrified impact melt that is mixed with unshocked as well as shock deformed quartz and feldspar clasts. The chemical compositions of the impact melt rock and the regionally occurring granitoids are similar. The Ir contents of various impact melt breccia samples are close to the detection limit (1–1.5 ppb) and do not provide evidence for the presence of a meteoritic component in the melt breccia. The presence of diagnostic shock features in mineral and lithic clasts in impact melt breccia confirm Dhala as an impact structure. At 11 km, Dhala is the largest impact structure currently known in the region between the Mediterranean and southeast Asia.  相似文献   

14.
Abstract— The circular Cloud Creek structure in central Wyoming, USA is buried beneath ?1200 m of Mesozoic sedimentary rocks and has a current diameter of ?7 km. The morphology/morphometry of the structure, as defined by borehole, seismic, and gravity data, is similar to that of other buried terrestrial complex impact structures in sedimentary target rocks, e.g., Red Wing Creek in North Dakota, USA. The structure has a fault‐bordered central peak with minimum diameter of ?1.4 km, composed predominantly of Paleozoic carbonates thickened by thrust faulting and brecciation, and is elevated some 520 m above equivalent strata beyond the outer rim of the structure. There is a ?1.6 km wide annular trough sloping away from the central peak (maximum structural relief, 300 m) and terminated by a detached, fault‐bounded, rim anticline. The youngest rocks within the structure are Late Triassic (Norian?) clastics and these are overlain unconformably by post‐impact Middle Jurassic (Bathonian?) sandstones and shales. Thus, the formation of the Cloud Creek structure is dated chronostratigraphicly as ?190 ± 20 Ma. Reported here for the first time are measurements of planar deformation features (PDFs) in shocked quartz grains in thin sections made from drill cuttings recovered in a borehole drilled at the southern perimeter of the central peak. Other, less definitive microstructures consistent with impact occur in samples collected from boreholes drilled into the central peak and rim anticline. The shock‐metamorphic evidence confirms an impact origin for the Cloud Creek structure.  相似文献   

15.
Abstract— Field studies and analytical scanning electron microscopy indicate that a hydrothermal system was created by the interaction of water with hot, impact‐generated rocks following formation of the 24 km diameter, 23 Ma Haughton impact structure. Hydrothermal alteration is recognized in two settings: within polymict impact breccias overlying the central portion of the structure, and within localized pipes in impact‐generated concentric fault systems. The intra‐breccia alteration comprises three varieties of cavity and fracture filling: (a) sulfide with carbonate, (b) sulfate, and (c) carbonate. These are accompanied by subordinate celestite, barite, fluorite, quartz and marcasite. Selenite is also developed, particularly in the lower levels of the impact breccia sheet. The fault‐related hydrothermal alteration occurs in 1–7 m diameter subvertical pipes that are exposed for lengths of up 20 m. The pipes are defined by a monomict quartz‐carbonate breccia showing pronounced Fe‐hydroxide alteration. Associated sulfides include marcasite, pyrite and chalcopyrite. We propose three distinct stages in the evolution of the hydrothermal system: (1) Early Stage (>200 °C), with the precipitation of quartz (vapor phase dominated); (2) Main Stage (200‐100 °C), with the development of a two‐phase (vapor plus liquid) zone, leading to calcite, celestite, barite, marcasite and fluorite precipitation; and (3) Late Stage (<100 °C), with selenite and fibroferrite development through liquid phase‐dominated precipitation. We estimate that it took several tens of thousands of years to cool below 50 °C following impact. During this time, Haughton supported a 14 km diameter crater lake and subsurface water system, providing a warmer, wetter niche relative to the surrounding terrain. The results reveal how understanding the internal structure of impact craters is necessary in order to determine their plumbing and cooling systems.  相似文献   

16.
Abstract The 9 km diameter Red Wing Creek structure, North Dakota, is located within the oil-rich Williston Basin at 47°36′N and 103°33′W. Earlier geophysical studies indicated that this subsurface structure has a central uplift, surrounded by an annular crater moat, and a raised rim. Breccias were encountered during drilling between ~2000 and 2800 m depth in the central uplift area, and the presence of shatter cone fragments in drill core samples was suggested to indicate an impact origin of the Red Wing Creek structure. We studied the petrographic and geochemical characteristics of samples of well cuttings from two boreholes at the center of the structure: the True Oil 22–27 Burlington Northern and True Oil 11–27 Burlington Northern wells. We found planar deformation features (PDFs) in quartz with up to three sets of different crystallographic orientations in sandstone- and siltstone-dominated samples from the True Oil 11–27 borehole. U-stage measurements of the crystallographic orientations of the PDFs showed the occurrence of the shock-characteristic (0001), and orientations, with a dominance of (0001) and orientations. The relative frequencies of the orientations indicate a shock pressure of at least 12–20 GPa. These results provide unambiguous evidence for shock metamorphism at Red Wing Creek and confirm that the structure was formed by impact.  相似文献   

17.
From orbital, aviation and geologic documents, four circular depressions on the Sahara sedimentary platform were selected for field investigation because of their possible impact origin. Our results can be summarized as follows: Amguid Crater (26° 05′N; 004° 23.5′E; 450 m diameter, 30 m deep) is perfectly circular, with a steep wall, a raised rim and an ejecta blanket. The strata are uplifted, outward dipping, dislocated and locally overturned at the rim crest. Large blocks are scattered around the rim. There is petrological evidence of shock by planar elements in quartz. Amguid is a well preserved impact crater probably no older than 100,000 years. Talemzane (33° 19′N; 004° 02′E; 1.7 km diameter, 70 m deep) is also perfectly circular and displays a raised rim. The strata are uplifted, outward dipping, and locally highly fractured. Numerous breccia veins are clearly exposed in the crater wall. Consolidated ejected debris form a continuous blanket more than 500 m outward from the rim. Reworked mixed breccias are exposed at the base of the crater wall. Planar elements are observed in quartz clasts in the mixed breccia. Talemzane is an impact crater on the order of 0.5 to 3 million years old. El Mouilah (33° 51′N; 002° 03′E; 4.5 km diameter, 130 m deep) is almost perfectly circular, the walls are steep and there is a central dome. In spite of a promising morphology, there is no field evidence of impact. El Mouilah is possibly a recent collapse structure due to dissolution in the thick underlying limestone and gypsum formations or purely erosional in origin. Aflou (34° 00′N; 002° 03′E) is not circular (3 × 5 km) but was selected because it appears in the literature as a probable impact crater, the main argument being the existence of fused materials in the center (Marks et al., 1972). We found no evidence of impact, but several occurrences of igneous rocks along an E-W direction suggest a structurally controlled volcanic activity. A volcanic activity is also supported by the existence of a local magnetic anomaly centered on the depression. Aflou is neither an impact structure nor a crater. Located on a probable structural dome, at the intersection of several structural trends, the formation of the depression can be due to erosion and/or dissolution in the thick underlying limestone and gypsum formations.  相似文献   

18.
Abstract— –The Monturaqui impact crater (350–370 m in diameter and 0.1 Ma old), located in a remote area in northern Chile, was surveyed in December 2003 with detailed geophysics (gravity and magnetics), topography, petrophysics, and geology. The geology of the Monturaqui area is characterized by a basement of Paleozoic granites overlain by Pliocene ignimbrite units. No impact breccia was found in the area. The granites are the main lithology affected by the impact. Although the granite samples analyzed did not show evidence of shock metamorphism, quartz, and to a lesser extent feldspar and biotite grains from impactite samples exhibit different degrees of shock, ranging from planar microdeformation and cleavage to the development of intense planar deformation features (PDFs) and diaplectic glasses in some grains. The differential GPS survey allowed the creation of a detailed digital elevation model of the crater. Its dimensions are 370 m along the east‐west direction, 350 m along the north‐south direction, and ~~34 m deep. The crater exhibits a circular morphology with a preferred northwest‐southeast elongation that coincides with the steepest slopes (~~35°) on the southeast edge. The newly acquired gravity data shows a negative anomaly of ~~1 mGal at the center and allowed the creation of a 3‐D model with a RMS error of <0.1 mGal, which supports the predictions of a fracturing‐induced low‐density granitic layer on top of the unfractured basement.  相似文献   

19.
A total of 184 confirmed impact structures are known on Earth to date, as registered by the Earth Impact Database . The discovery of new impact structures has progressed in recent years at a rather low rate of about two structures per year. Here, we introduce the discovery of the approximately 10 km diameter Santa Marta impact structure in Piauí State in northeastern Brazil. Santa Marta is a moderately sized complex crater structure, with a raised rim and an off‐center, approximately 3.2 km wide central elevated area interpreted to coincide with the central uplift of the impact structure. The Santa Marta structure was first recognized in remote sensing imagery and, later, by distinct gravity and magnetic anomalies. Here, we provide results obtained during the first detailed ground survey. The Bouguer anomaly map shows a transition from a positive to a negative anomaly within the structure along a NE–SW trend, which may be associated with the basement signature and in parts with the signature developed after the crater was formed. Macroscopic evidence for impact in the form of shatter cones has been found in situ at the base around the central elevated plateau, and also in the interior of fractured conglomerate boulders occurring on the floor of the surrounding annular basin. Planar deformation features (PDFs) are abundant in sandstones of the central elevated plateau and at scattered locations in the inner part of the ring syncline. Together, shatter cones and PDFs provide definitive shock evidence that confirms the impact origin of Santa Marta. Crystallographic orientations of PDFs occurring in multiple sets in quartz grains are indicative of peak shock pressures of 20–25 GPa in the rocks exposed at present in the interior of the crater. In contrast to recent studies that have used additional, and sometimes highly controversial, alleged shock recognition features, Santa Marta was identified based on well‐understood, traditional shock evidence.  相似文献   

20.
We have investigated the Ash Shutbah circular structure in central Saudi Arabia (21°37′N 45°39′E) using satellite imagery, field mapping, thin‐section petrography, and X‐ray diffraction of collected samples. The approximately 2.1 km sized structure located in flat‐lying Jurassic Tuwaiq Mountain Limestone has been nearly peneplained by erosional processes. Satellite and structural data show a central area consisting of Dhruma Formation sandstones with steep bedding and tight folds plunging radially outward. Open folding occurs in displaced, younger Tuwaiq Mountain Limestone Formation blocks surrounding the central area, but is absent outside the circular structure. An approximately 60 cm thick, unique folded and disrupted orthoquartzitic sandstone marker bed occurring in the central area of the structure is found 140 m deeper in undisturbed escarpment outcrops located a few hundred meters west of the structure. With exception of a possible concave shatter cone found in the orthoquartzite of the central area, other diagnostic shock features are lacking. Some quartz‐rich sandstones from the central area show pervasive fracturing of quartz grains with common concussion fractures. This deformation was followed by an event of quartz dissolution and calcite precipitation consistent with local sea‐ or groundwater heating. The combination of central stratigraphic uplift of 140 m, concussion features in discolored sandstone, outward‐dipping concentric folds in the central area, deformation restricted to the rocks of the ring structure, a complex circular structure of 2.1 km diameter that appears broadly consistent with what one would expect from an impact structure in sedimentary targets, and a possible shatter cone all point to an impact origin of the Ash Shutbah structure. In fact, the Ash Shutbah structure appears to be a textbook example of an eroded, complex impact crater located in flat‐lying sedimentary rocks, where the undisturbed stratigraphic section can be studied in escarpment outcrops in the vicinity of the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号