首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt-rich soft soils have not only general characteristics of common soft soils, but also contain high contents of Mg2+, Cl?, and SO42?, which have negative effects on deep mixing method using cement to treat soft soils. Laboratory and field tests were conducted to investigate the effects of changing cement incorporating ratio, water content, cement mixing ratio, and contents of Mg2+, Cl?, and SO42? on the unconfined compressive strength of the salt-rich soil–cement. The microstructure of soil–cement and the mechanism for the strength change of salt-rich soil–cement were investigated using X-ray diffraction, scanning electronic microscopy (SEM), and backscattered diffraction technology. It was found that an increase of cement incorporating ratio enhanced the strength of soil–cement but reduced its strength when water is added. Different amounts of Mg2+, Cl?, and SO42? not only caused the difference in the microstructures of salt-rich soil–cement but also influenced the soil–cement strength.  相似文献   

2.
张亭亭  李江山  王平  黄茜  薛强 《岩土力学》2016,37(Z2):279-286
采用磷酸镁水泥(MPC)对铅污染土进行固化/稳定化处理。基于无侧限抗压强度试验和渗透试验,研究了MPC添加量、水土比对固化污染土强度及渗透特性的影响规律。结果表明,固化土的强度随MPC添加量增加而增大,渗透系数减小;水土比对固化土的强度及渗透特性的影响均存在临界值,为0.45。低于临界值时,固化土的强度随着水土比的增加而增加,渗透系数随着水土比的增加而减小。压汞试验(MTP)结果表明,随MPC添加量的增大,固化土孔隙体积减小,水土比不超过临界值时,固化土孔隙体积随着水土比的增大而减小。扫描电镜试验结果表明,随着MPC添加量的增加,土颗粒团聚化越明显,胶结程度加强;水土比不超过临界值时,土颗粒团聚体增多。镁钾磷酸盐晶体(MKP)主要通过减少孔径大于1 ?m的孔隙体积来影响固化土的强度和渗透特性。  相似文献   

3.
Chian  S. C.  Bi  J. 《Acta Geotechnica》2021,16(4):1127-1145

In nature, soils are often composed of varying amounts of clay, silt and sand. Variation of the percentage of these compositions can affect the final strength of the soils when stabilised with cement. In this study, focus was placed on clayey soils with different gradation of sand impurities up to 40% in mass. An extensive study of such clayey soils treated with cement was investigated. For the results, it is noted that water:cement ratio was a major influence of strength development of cement-treated clayey soils. In contrast, the soil:cement ratio was found to have minor effects on the strength development. The presence of sand impurities has a significant reduction on the strength development of the cement-treated clayey soil mixture due to more free water available for hydration. The use of free-water:cement ratio is adopted which was shown to be capable of adjusting for such change in amount of free water and water holding capacity of the clay which is determined with Atterberg’s liquid limit tests. The effects of gradation (fine, coarse and well-graded) of the sand impurities were found to affect strength development minimally, owing to similarities in their liquid limits when mixed with clay. Ordinary Portland cement (OPC)-treated clayey soils produced a more rapid gain in strength but lower final strength at 28 days of curing as compared with Portland blast furnace cement (PBFC). This is found to be persistent for different gradation of sand impurities. A linear correlation can be established based on the log of the unconfined compressive strengths developed at different curing age, with slopes of these linear trends found to be similar for PBFC and OPC-treated clayey soil specimens. Finally, a strength prediction model comprising of these findings is developed. The parameters adopted in this model coincide with values proposed by past studies, thereby validating the robustness of the model. The practical benefits from this study offer a quality control scheme to forecast long-term performance of cement-treated clayey soils as well as optimise cement dosage in cement stabilisation to produce a more cost-effective and less environmental-invasive usage of the technology in geotechnical applications.

  相似文献   

4.
水泥稳定粉砂土抗渗性能受粉砂土自身渗透性能、水泥用量、水灰比等因素影响显著,如何在提升其抗渗性能的同时降低水泥用量是提升工程经济效益的关键。通过开展不同水泥偏高岭土掺比、初始用水量、水泥偏高岭土总掺量以及养护龄期条件下的室内渗透试验,研究了上述因素对水泥偏高岭土复合稳定粉砂土抗渗性能的影响规律,探讨了上述因素及无侧限抗压强度与渗透系数之间的经验关系。结果表明:水泥与偏高岭土掺比为5:1时,水泥偏高岭土复合稳定粉砂土抗渗性能最佳,且该掺比不随水泥偏高岭土总掺量的改变而变化;水泥偏高岭土复合稳定粉砂土渗透系数随初始用水量增加呈非线性递增,随水泥偏高岭土总掺量增加和养护龄期发展呈先快后慢降低;基于试验结果归纳提出了4个关于初始用水量、水泥偏高岭土总掺量、养护龄期和无侧限抗压强度的水泥偏高岭土复合稳定粉砂土渗透系数经验模型。研究成果可为水泥稳定粉砂土抗渗性能提升提供理论参考与借鉴。  相似文献   

5.
水泥改良土具有强度高、变形小、施工操作简单、质量控制容易和经济效益显著等优点,被广泛应用于路基填筑、基坑回填、边坡防护和地基换填。水泥土裂缝影响路基工程的正常运行,甚至可能危及铁路路基安全。因此,铁路路基设计需要对路基填土的抗拉强度有一定程度的了解,水泥改良土抗拉强度的确定具有重要意义。水泥改良土的抗裂性能是影响工程应用的重要因素,拉伸强度是衡量水泥土抗裂性能的关键指标。本文基于常规无侧限压缩仪自行设计了直接测量水泥改良土拉伸强度的单轴拉伸试验方法,系统地研究了水泥掺量(A)、龄期(t)、含水率(w)和干密度(ρd)对水泥改良土单轴拉伸强度(σt)的影响,水泥改良土的单轴拉伸强度随水泥掺量、龄期和干密度增加而增加,随含水率增加而减小,建立了水泥改良土的单轴拉伸强度与et/A(et是水泥改良土的孔隙比)之间的指数函数关系。结合水泥改良土的无侧限抗压强度和基质吸力的测试结果,建立了单轴拉伸强度与无侧限抗压强度和基质吸力之间的相关关系。  相似文献   

6.
寒区水泥固化土力学性能影响因素分析   总被引:4,自引:1,他引:3  
为了在北方寒区推广和应用水泥固化土建造保暖性房屋和设施农业,采用内蒙古黄河灌区周边典型的粉质土,利用普通硅酸盐水泥固化土体,配制水泥固化土,采用静力机械压实法和人工分层击实法分别制作了Φ50mm×H50mm和Φ39.1mm×H80mm两种不同规格的试件,并进行了无侧限抗压强度室内试验,研究了不同水泥掺入比、不同养护龄期、不同规格及成型方法对水泥固化土无侧限抗压强度的影响,得出了不同试验条件下水泥固化土的强度变化规律.试验结果表明:强度均随水泥掺入比及龄期的增大而增大,三者之间较好地满足空间平面模型,偏回归分析表明,水泥掺入比较龄期对强度的影响贡献更大,两种规格试件的强度之间较好地满足对数关系;不同规格及成型方法的试件对水泥固化土强度的影响规律不同,Φ39.1mm×H80mm试件存在一个临界水泥掺入比与临界养护龄期,当超过这个值时,其强度增长率减小.  相似文献   

7.
用似水灰比对水泥土无侧限抗压强度的预测   总被引:12,自引:1,他引:11  
对以连云港地区的海相软土为原料的水泥土进行了一系列物理、强度试验,分析了含水量、水泥用量和龄期对水泥土强度的影响,提出了似水灰比的概念用于水泥土强度的预测。采用提出的水泥土强度预测公式,根据某一似水灰比、龄期28 d某种的水泥土室内试验强度,可以预测不同含水量、不同水泥用量和不同龄期的水泥土室内试验强度。通过比较分析发现,得出水泥土强度预测公式可以很好地应用于其他研究者已经发表的水泥土试验数据,进一步验证了所提出的强度预测公式的有效性。  相似文献   

8.
张亭亭  王平  李江山  万勇  薛强  王士权 《岩土力学》2018,39(6):2115-2123
采用磷酸镁水泥(MPC)对铅污染土进行固化/稳定化处理。基于无侧限抗压强度试验、渗透试验和浸出试验,研究了养护龄期和铅含量对污染土固稳性能的影响规律。试验结果表明:固化土的强度随养护龄期增加而增大,渗透系数和浸出浓度减小,7 d龄期的固化土强度和浸出浓度分别为0.36 MPa、1.75 mg/L,均满足环境安全标准;铅含量对固化土的强度及渗透特性的影响均存在临界值,为500 mg/kg。铅含量低于临界值时,固化土的强度随着铅含量的增加而增加,渗透系数随着铅含量的增加而减小。浸出浓度随铅含量的增加而增加,但浸出浓度均低于浸出安全标准。压汞试验结果表明,随养护龄期的增大,固化土孔隙体积减小,铅含量不超过临界值时,固化土孔隙体积随着铅含量的增大而减小。扫描电镜试验结果表明:随着养护龄期的增加,土颗粒团聚化越明显,胶结程度加强;铅含量不超过临界值时,土颗粒团聚体增多。镁钾磷酸盐晶体(MKP)主要通过减少孔径大于0.1 ?m的孔隙体积来影响固化土的渗透特性。  相似文献   

9.
ABSTRACT

Ground improvement techniques are inevitable for weak soils that cannot endure the design load imposed by superstructures. Deep mixing technique (DMT) as one of these methods is promising and effective when a deep soil layer with low bearing capacity is encountered. Such deposits are quite common in the South-west of Iran where the studied site is located. In order to validate the influence of DMT on the enhancement of strength, both in-situ and laboratory tests were conducted. Afterwards, a parametric study was carried out to investigate the influence of key factors including cement content, water–cement ratio, curing time and plasticity index (PI) on the performance of DMT. In summary, a total of 192 different conditions were examined in this study by using two methods of 3D plotting and artificial neural networks (ANNs) as the optimisation tool. Results proved the importance of water–cement ratio as a key parameter in DMT. Based on the trained networks, ANN was revealed to give satisfactory predictions on the strength of an improved soil with different admixture conditions. More important, the optimisation made by ANN could determine the specific values for selected key admixture factors to reach a desired strength level with the coefficient of determination higher than 0.85.  相似文献   

10.
谷雷雷 《地质与勘探》2024,60(1):148-155
使用低成本高硅铝矿物掺合料可在提升水泥土工程性能的同时降低水泥用量。通过开展系列抗压强度试验研究了水泥偏高岭土掺比、水/水泥偏高岭土比、凝胶总掺量和养护龄期对水泥复合偏高岭土稳定粉砂土抗压强度的影响规律,归纳了水泥复合偏高岭土稳定粉砂土的强度经验公式。结果表明:将水泥和偏高岭土按质量比5:1混合用于粉砂土稳定时可获得最佳强度提升,节约1/6水泥消耗,且该掺比关系不因凝胶总掺量变化而改变;水泥复合偏高岭土稳定粉砂土抗压强度随水/水泥偏高岭土比增加近似线性降低,随凝胶总掺量增加线性提升,随龄期发展而提高,其28天强度增加趋势仍未趋缓;总结归纳了四个关于强度影响因素的经验预测公式。该研究成果可为水泥偏高岭土用于复合稳定工程软弱土提供理论参考。  相似文献   

11.
砾状煤系土改良性能的试验研究   总被引:2,自引:0,他引:2  
针对广梧高速公路沿线的砾状煤系土不能满足路基填料要求的问题,采用室内试验的方法,对其提出了分别掺加生石灰和水泥两种改良方案并进行改良试验对比研究。研究结果表明:经水泥改良后的砾状煤系土的压实性能、承载比和水稳性等方面效果明显优于经石灰改良的;经水泥改良后的抗剪性能、无侧限抗压强度和抗变形能力均有较大程度的提高;在影响砾状煤系土强度的因素中,水泥掺入比的影响最显著,其次是龄期和含水率,并根据无侧限抗压强度试验结果提出了多因素影响拟合公式。砾状煤系土掺加约3%水泥改良后直接作为路基填料可满足要求,为煤系土地区路基处理提供借鉴依据。  相似文献   

12.
多年冻土区水泥稳定砂砾基层抗冻性能研究   总被引:2,自引:1,他引:1  
徐安花 《冰川冻土》2014,36(1):152-157
多年冻土地区路面使用过程中的许多病害与基层状况直接相关.水泥稳定砂砾作为我国传统的半刚性基层材料,在多年冻土地区公路路面结构中得到了普遍运用.为研究水泥稳定砂砾不同水泥掺量、不同养生龄期下的抗冻性能,通过提出合理的抗冻试验方法分别进行了水泥稳定砂砾冻融温度、冻融时间、冻融次数、试件的养生龄期及抗冻指标方面的试验研究. 结果表明:水泥剂量越高,水泥稳定砂砾冻前、冻后的抗压强度值越高,说明其抗冻性能越好;水泥稳定砂砾从28 d开始抗压强度、冻融后抗压强度及冻融后劈裂强度都明显增加,证明水泥稳定砂砾从28 d开始已具有一定的抗冻性. 提出的抗冻试验方法和指标要求适合多年冻土地区半刚性基层材料,有一定的实用价值.  相似文献   

13.
Engineering practice has usually dealt with the treated soil bodies using simplistic constitutive models (e.g. elastic perfectly-plastic Mohr–Coulomb). In this paper, a more refined bonded elasto-plastic model is here applied, with emphasis on the ease of calibration. Empirical studies have identified the ratio of cement content to the cured mixture void ratio as a controlling variable for mechanical response. This observation is elaborated upon to show that measuring porosity and unconfined compressive strength is enough to initialize the state variables of a bonded elasto-plastic model. Data from cement-improved Bangkok clay is employed to illustrate and validate the calibration procedure proposed. The structure-scale consequences of the constitutive model choice for the soil–cement are explored through the parametric analysis of an idealized excavation problem. A treated soil–cement slab is characterized by increasing cement contents in the clay–cement mixture. Two sets of parametric analysis are run characterizing the clay–cement either with a linear elastic-perfectly plastic model or with the bonded elasto-plastic model. The same values of unconfined compressions strength (UCS) are specified for the two models to make comparisons meaningful. Results from both series of analysis are compared highlighting the differences in predicted behaviour of the retaining wall and the excavation stability.  相似文献   

14.
Nowadays, improving the strength and deformation properties of soft soils by deep soil mixing is a commonly used technique. There is also an increasing interest in the use of this technique for foundation/structural elements and excavation retaining walls applications. The compressive strength and elastic modulus of the soil mix material are key parameters in the design of these structures. However, there is very limited information available on the impact of exposure to air drying (in the case of retaining wall) on the strength and stiffness of cement stabilized soils. The aim of this study is to investigate the effects of different curing conditions (immersion in water, cycles of wetting and drying, continuous air drying) on the mechanical properties of soils treated with cement in the laboratory. Free–free resonance tests and unconfined compression tests were performed on specimens of silt and sand treated with blastfurnace slag cement. Strength increases more rapidly than stiffness between 7 and 30 days. The strength of stabilized soils submitted to cyclic wetting and drying before the cement hydration process is complete continues to increase. As long as the periods of drying do not induce microcracks, the stiffness of the treated soil specimens also increases with time. However, the stiffness is lower than for the specimens cured in water indicating a disruptive effect of the imposed wetting–drying cycles on stiffness. Continuous exposure to air drying inhibits strength development due to insufficient water for hydration. Significant stiffness decreases were observed on specimens of stabilized silt and are attributed to microcracking.  相似文献   

15.
刘鑫  范晓秋  洪宝宁 《岩土力学》2011,32(6):1676-1682
为研究水泥砂浆固化土剪切强度特性和合理确定水泥砂浆固化土工程应用的配比,从掺砂量、水泥掺入比、原料土含水率及砂料粒径入手,对水泥砂浆固化土进行了室内固结不排水三轴(CU)试验研究。结果表明,掺砂可以改善固化土强度;随掺砂量的增加,黏聚力和有效黏聚力先增加后减小,转折点的掺砂量为最佳掺砂量(10%左右),内摩擦角和有效内摩擦角不断增加,一定掺砂量下增加水泥掺入比可有效地提高固化土的强度;随着含水率的增加,固化土的黏聚力呈近似线性减小的关系,而内摩擦角几乎保持不变,采用水泥砂浆处理高含水率软弱地基时适当提高掺砂量,可以较大幅度改善固化土的力学性质;在掺料配比一定的情况下砂料粒径对固化土的抗剪强度指标存在一定的影响。采用单一粒径砂料的固化土抗剪强度更高,该单一粒径在固化土级配良好的前提下,不均匀系数Cu趋于最大、曲率系数Cc趋于最小  相似文献   

16.
洪振舜  刘志方  郭海轮  刘松玉 《岩土力学》2004,25(11):1698-1701
如何评价土结构性对天然沉积饱和土的力学性状的影响是一个非常重要的研究课题。Burland在第30届郎肯讲座论文中导入孔隙指数对各种重塑土的压缩曲线进行归一化,提出固有压缩曲线用于评价天然沉积土的压缩性状。通过对广泛沉积在日本九洲岛的有明粘性土进行试验研究,探讨了灵敏有明粘性土的特征,提出一个比Burland孔隙指数更为简单实用的评价天然沉积土力学性状的指标——归一化含水量,定义为含水量与液限之比。根据大量的试验结果,得出了天然沉积有明粘性土的Burland孔隙指数与归一化含水量的相关关系,提出了对应于归一化含水量的固有压缩曲线。  相似文献   

17.
Phosphogypsum and cement have been reported to improve the physicochemical properties of clayey soils. The present study aimed to investigate the behavior of various soils with different particle sizes and chemical and mineralogical compositions in the presence of phosphogypsum and cement mixed at various proportions. These hydraulic binders were assayed on three different soil samples, and their effects were examined using a battery of standardized tests, including the Atterberg limit, uniaxial compressive strength, Californian Bearing Rate (CBR) test, thermogravimetric analysis (TGA), microstructure observation (SEM), and X-ray diffraction tests. The results revealed a significant effect associated with the variation of phosphogypsum content in the soils. Keeping the cement content constant in the mixture, the continuous addition of phosphogypsum was noted to allow shifting the domain of plasticity to the highest water contents, which reduces the sensitivity of the soil to water and to increase the strength of soil. An increase of CBR index with the addition of phosphogypsum and cement is obtained. This treatment could have positively influenced the optimum moisture content and the maximal dry density. The mixture of soil-phosphogypsum and cement could give new forms such as ettringite and hydrate indicators of the improvement of the mechanical properties of the soil. This improvement varies from one soil to another, depending on its granularity and its mineralogy. The mineralogical composition of the soil, particularly kaolinite, amount, and size grading, have direct effects on the physical and mechanical properties of the soils under investigation.  相似文献   

18.
During the last mid-century, the Chlef area was strongly affected by two earthquakes. From the geological context, there were numerous ejections onto the ground level of great masses of sandy soils and large displacements of various forms of some building foundations. These damages are due to soil liquefaction problem. This loss of shear strength can be attributed to many factors. History of recent cases indicates that sand deposited with silt content is much more liquefiable than clean sand. Therefore, a deep understanding of silty sand behavior is needed for the liquefaction assessment of silty sandy soils. Moreover, during seismic shaking, the post-liquefaction behavior of silty sand and, consequently, the stability of structures founded on liquefied soil depend on the steady-state shear strength of soil. The objective of this laboratory investigation is to show the effect of silt contents and the relative density on the mechanical behavior of such soils in monotonic loading. In this context, a series of undrained triaxial tests were performed on reconstituted saturated silty sand samples with different fines content ranging from 0% to 40%. In all tests, the confining pressure was held constant to 100 kPa. The fines content and the global void ratio are expressed by means of the equivalent void ratio. Linear correlations relating the undrained residual shear strength of loose, medium dense, and dense (D r?=?12%, 50%, and 90% before consolidation) sand–silt mixtures to the equivalent void ratio are obtained. The concept of the equivalent void ratio will then be used as a key parameter to express the dilatancy behavior of both clean and silty sand soils. Moreover, from the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not represent the actual behavior of the soil as well.  相似文献   

19.
为研究EPS颗粒混合轻量土的密度、强度和变形特性,对不同水泥掺量、EPS颗粒掺量、含水率和龄期的轻量土进行密度无侧限抗压强度试验。试验配置轻量土无侧限抗压强度范围为103.2~1359.0 kPa,且随水泥掺量的增大呈指数关系增大的趋势,随EPS颗粒体积比的增大而呈线性关系减小的趋势。在大于最优含水率情况下,含水率越高,无侧限抗压强度越低,两者为指数关系,而龄期的增长能够使得轻量土的无侧限抗压强度呈双曲线增大的趋势。EPS颗粒混合轻量土的应力-应变关系曲线主要表现为应变软化型,含水率和EPS颗粒体积比的增大会使得轻量土的应力-应变关系曲线逐渐向硬化型转化。水泥掺量和龄期的增大能够增强轻量土的脆性特征,增大刚度。而含水率和EPS颗粒体积比的增大则使得轻量土的延性特征增强,刚度减小。研究成果对实际工程应用具有参考价值。  相似文献   

20.
Ground improvement with soil solidification has been widely applied and has proven to be an effective pre-treatment of soft soil deposits. The solidification procedure usually involves addition and thorough mixing of hydraulic binders with in situ soils, consequently transforming the soft materials into a stronger and stiffer stratum for load bearing. Much has been done on the binder’s effectiveness and resulting enhanced properties of the soils, but not as much has been reported of the factors governing in situ mixing efficiency in producing uniform mixtures. While advancement in machinery and computerization of operations have significantly improved soil mixing, individual factors contributing to the process can be further examined to refine the effectiveness. This paper describes a series of laboratory tests, mainly unconfined compressive strength tests complemented with X-ray computer tomography, conducted on cement-stabilized dredged Kawasaki clay of different uniformities. A number of factors affecting uniformity were examined, namely the water/cement (WC) ratios, number of cement layers in the initial state as well as the number of mixing cycles adopted. Test specimens were prepared based on a systematic combination of these factors to enable a comprehensive cross-analysis of the results. It was found that the clay’s initial consistency was markedly altered by cement addition, which resulted in either enhanced or reduced workability of the mixture. While increased mixing vigor could apparently overcome poor distribution of binder in the mixture, the resulting strength remained very much affected by the WC ratio, suggesting dependency of the mixture’s overall uniformity on a combination of the factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号