首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The Patras, Corinth, and northern Saronic gulfs occupy a 200-km-long, N120° trending Pleistocene rift zone, where Peloponnese drifts away from mainland Greece. The axes of Patras and Corinth basins are 25 km apart and linked by two transfer-fault zones trending N040°. The older one defines the western slope of Panachaïkon mountain, and the younger one limits the narrow Rion–Patras littoral plain. Between these two faults, the ca. 4-km-thick Rion–Patras series dips 20–30° SSW. It is part of the Patras gulf synrift deposits, which pile in an asymmetric basin governed by a fault dipping ca. 25–35° NNE, located in the southern Gulf of Patras. Mapping of this fault to the east in northern Peloponnese shows that it is an inactive north-dipping low-angle normal fault (0° to 30°N), called the northern Peloponnese major fault (NPMF). The structural evolution of the NPMF was different in the gulfs of Patras and Corinth. In the Gulf of Patras, it is still active. In northern Peloponnese, footwall uplift and coeval southward tilting flattened the fault and locked its southern part. Steeper normal faults formed north of the locked area, connecting the still active northern part of the NPMF to the surface. After several locks, the presently active normal faults (Psathopyrgos, Aigion, Helike) trend along the southern shore of the Gulf of Corinth. This migration of faults caused the relative 25 km northward shift of the Corinth basin, and the formation of NE–SW trending transfer-faults between the Corinth and Patras gulfs.  相似文献   

2.
The Gulf of Corinth, Greece, is a 110-km-long by 30-km-wide active graben displaying strong seismicity hosted both on north and south dipping normal faults. This complex fault pattern consists of two fault populations, offshore and onshore. The offshore fault population is investigated by densely arranged seismic reflection profiles during the last 20 years, whereas the onshore fault population displays spectacular and well exposed faults, delineated by high accuracy mapping. We analyzed fault length and throw, in order to study the scaling properties of 136 well-determined offshore and onshore faults and the comparison between the two datasets. We examined the statistical properties on both fault populations, in order to describe the role of segmentation in the growth of faults and the different stages of the evolution of the fault networks.Our results on power law relationships associated with the scaling properties of the fault zones in the Gulf of Corinth, suggest that both fault populations are bi-fractal, providing the initiation of a sature state in deformation. In addition, the vertical throw of faults shows that both fault populations have similar properties but different distributions below and above 5 km, respectively. Displacement–length ratios, show that faults larger than 9 km appear to accumulate throw without any dramatic change to their length. These observations combined with other geophysical studies within the Gulf, suggest that the characteristic fault lengths of 5 km and 9 km can be correlated to the crustal mechanical structure and the seismicity of the Gulf.  相似文献   

3.
The Gulf of Corinth is a natural laboratory for the study of seismicity and crustal deformation during continental extension. Seismic profiling along its axis provides a 24-fold normal-incidence seismic reflection profile and wide-angle reflection–refraction profiles recorded by sea-bottom seismometers (OBS) and land seismometers. At wide-angle incidence, the land receivers document the Moho at 40-km depth under the western end of the Gulf north of Aigion, rising to 32-km depth under the northern coast in the east of the Gulf. Both refraction and normal-incidence reflection sections image the basement under the deep marine basin that has formed by recent extension. The depth to the base of the sedimentary basin beneath the Gulf, constrained by both methods, is no more than 2.7 km, with 1 km of water underlain by no more than 1.7 km of sediment, less than what was expected from past modeling of uplift of the south coast in the East of the Gulf. Unlike the flat sea-bottom, the basement and sedimentary interfaces show topography along this axial line. Several deeps are identified as depocenters, which suggest that this axial line is not a strike line to the basin. It appears instead to be controlled by several faults, oblique to the S60°E overall trend of the south coast of the Gulf, their more easterly strikes being consistent with the instantaneous direction of extension measured by earthquake slip vectors and by GPS.  相似文献   

4.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

5.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

6.
Christoffer Nielsen  H. Thybo   《Tectonophysics》2009,470(3-4):298-318
The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic velocities around the rift structure, except for beneath the rift axis where a distinct 50–80-km wide high-velocity anomaly (7.4–7.6 ± 0.2 km/s) is observed. Reverberant or “ringing” reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non-reflective outside the rift zone. Synthetic full-waveform reflectivity modelling of the high-velocity anomaly suggests the presence of a layered sequence with a typical layer thickness of 300–500 m coinciding with the velocity anomaly. The P-wave velocity of the individual layers is modelled to range between 7.4 km/s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine-rich high-velocity layers. The mafic intrusions were probably intruded into the ductile lower crust during the main rift phase in the Late Pliocene. As such, the intrusive material has thickened the lower crust during rifting, which may explain the lack of Moho uplift across southern BRZ.  相似文献   

7.
It is well established that the Argentine passive margin is of the rifted volcanic margin type. This classification is based primarily on the presence of a buried volcanic wedge beneath the continental slope, manifested by seismic data as a seaward dipping reflector sequence (SDRS). Here, we investigate the deep structure of the Argentine volcanic margin at 44°S over 200 km from the shelf to the deep oceanic Argentine Basin. We use wide-angle reflection/refraction seismic data to perform a joint travel time inversion for refracted and reflected travel times. The resulting P-wave velocity-depth model confirms the typical volcanic margin structure. An underplated body is resolved as distinctive high seismic velocity (vp up to 7.5 km/s) feature in the lower crust in the prolongation of a seaward dipping reflector sequence. A remarkable result is that a second, isolated body of high seismic velocity (vp up to 7.3 km/s) exists landward of the first high-velocity feature. The centres of both bodies are 60 km apart. The high-velocity lower-crustal bodies likely were emplaced during transient magmatic–volcanic events accompanying the late rifting and initial drifting stages. The lateral variability of the lower crust may be an expression of a multiple rifting process in the sense that the South Atlantic rift evolved by instantaneous breakup of longer continental margin segments. These segments are confined by transfer zones that acted as rift propagation barriers. A lower-crustal reflector was detected at 3 to 5 km above the modern Moho and probably represents the lower boundary of stretched continental crust. With this finding we suggest that the continent–ocean boundary is situated 70 km more seaward than in previous interpretations.  相似文献   

8.
In the Western Alps, some recent scarps were previously interpreted as surface ruptures of tectonic reverse and normal faults that agree with microseismicity and GPS measurements. Our analysis shows that in fact there are hundreds of recent scarps, up to 30 m high and 2.1 km long, with only pure normal motions. They share the same characteristics as typical sackung scarps. The scarps are mainly uphill facing, parallel to the ridge crests and the contour lines. They are relatively short (less than 2.1 km) with respect to tectonic fault ruptures, and organized in swarms. They cut screes and relict rock glaciers with a slow (commonly 1 mm/year) average slip rate. In the Aiguilles Grives massif these sackung scarps clearly express the gravitational toppling of sub-vertical bedding planes in hard rocks. In contrast, the Belledonne Outer Crystalline Massif exhibits scarps that stem from the gravitational reactivation of conjugate tectonic faults. The recent faults extend to about 1600 m beneath the Rognier ridge crest, but are always above the valley floor. The main scarp swarm is 9.2 km long and constitutes the largest sackung ever described in the Western Alps. 10Be dating of a scarp and offset surfaces shows that > 4 m slip may have occurred rapidly (in less than 3800 years) sometimes between the end of the glaciation and 8800 ± 1900 years ago. This dating, together with the location of some faults far from the deep glacial valleys, suggests that sagging might have been triggered by strong earthquakes during a post-glacial period of probably enhanced seismicity. The Belledonne and Synclinal Median faults (just beneath the Rognier sackung) could have been the sources of this seismicity.  相似文献   

9.
W.P. Schellart   《Tectonophysics》2007,445(3-4):363-372
A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for westward-dipping subduction zones (e.g. Mariana) and predicts overriding plate shortening, oceanward trench retreat and a gentle slab dip for east to northeastward-dipping subduction zones (e.g. Chile). This paper investigates these predictions quantitatively with a global subduction zone analysis. The results show overriding plate extension for all dip directions (azimuth α = − 180° to 180°) and overriding plate shortening for dip directions with α = − 90° to 110°. The wide scatter in data negate any obvious trend and only local mean values in overriding plate deformation rate indicate that overriding plate extension is somewhat more prevalent for west-dipping slabs. West-dipping subduction zones are never fixed, irrespective of the choice of reference frame, while east to northeast-dipping subduction zones are both retreating and advancing in five out of seven global reference frames. In addition, westward-dipping subduction zones have a range in trench-migration velocities that is twice the magnitude of that for east to northeastward-dipping slabs. Finally, there is no recognizable correlation between slab dip direction and slab dip angle. East to northeast-dipping slabs (α = 30° to 120°) have shallow (0–125 km) slab dip angles in the range 10–60° and deep (125–670 km) slab dip angles in the range 40–82°, while west-dipping slabs (α = − 60° to − 120°) have shallow slab dip angles in the range 19–50° and deep slab dip angles in the range 25–86°. Local mean deep slab dip angles are nearly identical for east and west-dipping slabs, while local mean shallow slab dip angles are lower by only 4.7–8.1° for east to northeast-dipping slabs. It is thus concluded that overall, there is no observational basis to support the three predictions made by the westward drift model, and for some sub-predictions the observational basis is very weak at most. Alternative models, which incorporate and underline the importance of slab buoyancy-driven trench migration, slab width and overriding plate motion, are better candidates to explain the complexity of subduction zones, including the variety in trench-migration velocities, overriding plate deformation and slab dip angles.  相似文献   

10.
Rapid extension and active normal faulting in the western extremity of the Corinth Gulf are accompanied by fast coastal uplift. We investigate Pleistocene uplift west of Aigion, by attempting to date remains of marine terraces and sedimentary sequences by calcareous nannoplankton and U‐series analyses. Net uplift initiated recently, due to abandonment of an older rift‐bounding fault zone and increase in activity on the presently active, coastal fault zone. This change apparently coincides with an abrupt slow down (or, termination) of secondary fault block tilting within the broader hangingwall block of the older zone, indicated by an angular unconformity that dates in the early part of MIS10 (∼390–350 ka BP, preferably, in the earlier part of this period). Net uplift driven by the coastal zone resulted in the formation of MIS9c (330 ka) and younger terraces. The formation of the unconformity and the initiation of net uplift coincide temporally with a ∼300–400 ka unconformity recognized by recent studies in a wide area offshore Aigion i.e. they could be part of an evolutionary event that affected the entire western part of the Corinth Rift or, a large area therein. Uplift rate estimates at four locations are discussed with reference to the morphotectonic context of differential uplift of secondary fault blocks, and the context of possible increase in uplift rate with time. The most reliable and most useful estimate for uplift rate at the longitude of the studied transect is 1.74–1.85 mm/year (time‐averaged estimate for the last ∼240 ka, based on calcareous nannoplankton and sequence‐stratigraphic interpretation). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Burial depth, cumulative displacement, and peak temperature of frictional heat of a fault system are estimated by thermal analysis in the fold–thrust belt of the Western Foothills complex, western Taiwan based on the vitrinite reflectance technique. The regional thermal structure across the complex reveals that the rocks were exposed to maximum temperatures ranging from 100 °C to 180 °C, which corresponds to a burial depth of 3.7–6.7 km. A large thermal difference of 90 °C were observed at the Shuilikeng fault which make the eastern boundary of the fold–thrust belt where it is in contact with metamorphic rock of Hsuehshan Range. The large thermal difference corresponds to cumulative displacements on the Shuilikeng fault estimated to be in the range of 5.2–6.9 km. However, thermal differences in across the Shuangtung and Chelungpu faults cannot be determined apparently due to small vertical offsets. The large displacement observed across the Shuilikeng fault is absent at the other faults which are interpreted to be younger faults within the piggyback thrust system. Localized high temperatures adjacent to fault zones were observed in core samples penetrating the Chelungpu fault. Three major fracture zones were observed at core lengths of 225 m, 330 m, and 405 m and the two lower zones which comprise dark gray narrow shear zones. A value of vitrinite reflectance of 1.8%, higher than the background value of 0.8%, is limited at a narrow shear zone of 1 cm thickness at the fracture zone at 330 m. The estimated peak temperature in the range of 550–680 °C in the shear zone is far higher than the background temperature of 130 °C, and it is interpreted as due to frictional heating during seismic faulting.  相似文献   

12.
The understanding of the intraplate tectonics of Central Europe requires a detailed picture of how stress is transferred from the interaction of the Eurasian, Nubian and Anatolian plates to the Alpine, Carpathian, Pannonian and Dinaric regions. Recent strain distribution is controlled by the Adria horizontal push, by the Vrancea vertical slab pull and associated horizontal displacements, and by the Aegean/Anatolia extension and slab-roll back. We present a horizontal velocity field for the Alpine-Carpathian-Pannonic-Dinaric and Balkan regions resulting from a new combination of seven different GPS networks formed from permanent and campaign stations. Dedicated velocity profiles in two specific regions are studied in detail. One is the Alpine Pannonian region, with a detailed picture of the NS indentation of the Adria microplate into the Southern Alps, in NE Italy, the deformation in the Tauern Window and the eastwards kinematics of a Pannonian plate fragment. The second study region includes Transylvania, the Southern Carpathians up to the Aegean sea and Albania, where a major right lateral shear deformation exists as a consequence of the NE convergence of the Apulia platform towards the Dinarids, and the SSW motion of Macedonia, Western Bulgaria and Rumania, related to the Hellenic arc dynamics in the Eastern Mediterranean. The profiles in the Alpine–Pannonian area indicate that a velocity drop of 2.5 +/− 0.4 mm/yr associated with the Adria indentation concentrates on a segment of some 50 km south of the Periadriatic fault. The deformation becomes extensional by a similar amount just north of the Periadriatic fault, in the Tauern Window, where the updoming of the Tauern Window implies vertical motion which could well be associated with surface extension. In the EW profile, we observe a sudden velocity change of 1.5 +/− 0.2 mm/yr in 20 km, corresponding to the right lateral Lavant fault, which seems to mark the border between dominant indentation kinematics to the West and dominant extrusion kinematics to the East.Three profiles are considered in Southern and Eastern Europe: one across the lower Adriatic sea from Apulia in Italy to the southern Dinarides, which enables it to constrain the velocity drop associated with the subduction of the Adria microplate into the Dinarides to 3.2 +/− 0.5 mm/yr in 140 km. The second profile is longitudinal and constrains the velocity inversion of 7.4 +/− 1.0 mm/yr in 350 km associated with right lateral shear faults in Albania. The third profile crosses the Transylvania region with a shortening of 2.3 +/− 1.0 mm/yr in 220 km, and the Wallachian–Moesian region up to the Chalcidic peninsula in N Greece. This lower part of the profile implies an extensional stretch of the upper crust of 3.2 +/− 0.9 mm/yr in 440 km, culminating in the Hellenic arc. Strain rate maps are presented in this regional scale, showing the excellent agreement between fault plane solutions of crustal earthquakes and the eigenvectors of the GPS derived two dimensional strain rate tensor.Three profiles are considered in the Balkan and SE Carpathians: one across the lower Adriatic sea from Apulia in Italy to the southern Dinarides, which enables to constrain the velocity drop associated to the subduction of the Adria microplate into the Dinarides to 3.2 +/− 0.5 mm/yr in 140 km. The second profile is longitudinal and constrains the velocity inversion of 7.4 +/− 1.0 mm/yr in 350 km associated to right lateral shear faults in Macedonia, a highly seismic region. The third profile crosses the Transylvania with a shortening2.3 +/− 1.0 mm/yr in 220 km, and the Wallachian–Moesian region up to the Chalcidic peninsula in N Greece. This lower part of the profile implies an extensional stretch of the upper crust of 3.2 +/− 0.9 mm/yr in 440 km, culminating in the Hellenic arc.  相似文献   

13.
Seismotectonics of the Nepal Himalaya from a local seismic network   总被引:3,自引:0,他引:3  
The National Seismological Network of Nepal consists of 17 short period seismic stations operated since 1994. It provides an exceptional view of the microseismic activity over nearly one third of the Himalayan arc, including the only segment, between longitudes 78°E and 85°E, that has not produced any M>8 earthquakes over the last century. It shows a belt of seismicity that follows approximately the front of the Higher Himalaya with most of the seismic moment being released at depths between 10 and 20 km. This belt of seismicity is interpreted to reflect interseismic stress accumulation in the upper crust associated with creep in the lower crust beneath the Higher Himalaya. The seismic activity is more intense around 82°E in Far-Western Nepal and around 87°E in Eastern Nepal. Western Nepal, between 82.5 and 85°E, is characterized by a particularly low level of seismic activity. We propose that these lateral variations are related to segmentation of the Main Himalayan Thrust Fault. The major junctions between the different segments would thus lie at about 87°E and 82°E with possibly an intermediate one at about 85°E. These junctions seem to coincide with some of the active normal faults in Southern Tibet. Lateral variation of seismic activity is also found to correlate with lateral variations of geological structures suggesting that segmentation is a long-lived feature. We infer four 250–400 km long segments that could produce earthquakes comparable to the M=8.4 Bihar–Nepal earthquake that struck eastern Nepal in 1934. Assuming the model of the characteristic earthquake, the recurrence interval between two such earthquakes on a given segment is between 130 and 260 years.  相似文献   

14.
Qiongdongnan Basin is a Cenozoic rift basin located on the northern passive continental margin of the South China Sea. Due to a lack of geologic observations, its evolution was not clear in the past. However, recently acquired 2-D seismic reflection data provide an opportunity to investigate its tectonic evolution. It shows that the Qiongdongnan Basin comprises a main rift zone which is 50–100 km wide and more than 400 km long. The main rift zone is arcuate in map view and its orientation changes from ENE–WSW in the west to nearly E–W in the east. It can be divided into three major segments. The generally linear fault trace shown by many border faults in map view implies that the eastern and middle segments were controlled by faults reactivated from NE to ENE trending and nearly E–W trending pre-existing fabrics, respectively. The western segment was controlled by a left-lateral strike-slip fault. The fault patterns shown by the central and eastern segments indicate that the extension direction for the opening of the rift basin was dominantly NW–SE. A semi-quantitative analysis of the fault cut-offs identifies three stages of rifting evolution: (1) 40.4–33.9 Ma, sparsely distributed NE-trending faults formed mainly in the western and the central part of the study area; (2) 33.9–28.4 Ma, the main rift zone formed and the area influenced by faulting was extended into the eastern part of the study area and (3) 28.4–20.4 Ma, the subsidence area was further enlarged but mainly extended into the flanking area of the main rift zone. In addition, Estimates of extensional strain along NW–SE-trending seismic profiles, which cross the main rift zone, vary between 15 and 39 km, which are generally comparable to the sinistral displacement on the Red River Fault Zone offshore, implying that this fault zone, in terms of sinistral motion, terminated at a location near the southern end of the Yinggehai Basin. Finally, these observations let us to favour a hybrid model for the opening of the South China Sea and probably the Qiongdongnan Basin.  相似文献   

15.
Heat flow and lithospheric thermal regime in the Northeast German Basin   总被引:3,自引:0,他引:3  
New values of surface heat flow are reported for 13 deep borehole locations in the Northeast German Basin (NEGB) ranging from 68 to 91 mW m− 2 with a mean of 77 ± 3 mW m− 2. The values are derived from continuous temperature logs, measured thermal conductivity, and log-derived radiogenic heat production. The heat-flow values are supposed free of effects from surface palaeoclimatic temperature variations, from regional as well as local fluid flow and from thermal refraction in the vicinity of salt structures and thus represent unperturbed crustal heat flow. Two-D numerical lithospheric thermal models are developed for a 500 km section along the DEKORP-BASIN 9601 deep seismic line across the basin with a north-eastward extension across the Tornquist Zone. A detailed conceptual model of crustal structure and composition, thermal conductivity, and heat production distribution is developed. Different boundary conditions for the thickness of thermal lithosphere were used to fit surface heat flow. The best fit is achieved with a thickness of thermal lithosphere of about 75 km beneath the NEGB. This estimate is corroborated by seismological studies and somewhat less than typical for stabilized Phanerozoic lithosphere. Modelled Moho temperatures in the basin are about 800 °C; heat flow from the mantle is about 35 to 40 mW m− 2. In the southernmost part of the section, beneath the Harz Mountains, higher Moho temperatures up to 900 to 1000 °C are shown. While the relatively high level of surface heat flow in the NEGB obviously is of longer wave length and related to lithosphere thickness, changes in crustal structure and composition are responsible for short-wave-length anomalies.  相似文献   

16.
Facies, depositional model and stratigraphic architecture of Pleistocene giant Gilbert-type fan deltas are presented, based on outcrop data from the Derveni–Akrata region along the southern coast of the Gulf of Corinth, Greece. The common tripartite consisting of topset, foreset and bottomset [Gilbert, G.K., 1885. The topographic features of lake shores: Washington, D.C., United States Geol. Survey, 5th Annual Report, 69–123.] has been identified, as well as the most distal environment consisting of turbidites, and is organised in a repetitive pattern of four main systems tracts showing a clear facies and volumetric partitioning.The first systems tract (ST1) is characterised by the lack of topset beds and the development of a by-pass surface instead, thick foresets and bottomset beds, and thick well-developed turbiditic systems. This systems tract (ST1) is organised in an overall progradational pattern. The second systems tract (ST2) is characterised by a thin topset and almost no foreset equivalent. This systems tract is not always well-preserved and is organised in an overall retrograding trend with a landward shift in the position of the offlap break. The offshore is characterised by massive sandy turbidites. The third systems tract (ST3) is characterised by small-scale deltas prograding above the staked topsets of the giant Gilbert-type fan delta. Those small Gilbert-type fan deltas are generally organised in a pure progradation evolving to an aggradational–progradational pattern. In the distal setting of those small Gilbert-type fan deltas, almost no deposits are preserved on the remaining topography of the previous Gilbert-type fan delta. The fourth systems tract (ST4) is characterised by continuous vertically aggrading topsets that laterally pass into aggrading and prograding foresets. Bottomsets and distal turbiditic systems are starved. This fourth systems tract (ST4) is organised in an overall aggrading trend.These giant Gilbert-type fan deltas correspond to the Middle Group of the Corinth Rift infill and their stratigraphic development was strongly influenced by evolving rift structure. They record the migration of the depocenter from the rift shoulder to the rift axis in four main sequences from ca. 1.5 to 0.7 Ma, related to the migration of fault activity. It is worth noting that the maximum paleobathymetry was recorded during the final stage of the progradation of the Middle Group, suggesting that the rift climax was diachronous at the scale of the entire basin. The rapid (< 1 Ma) structural and sedimentological evolution, the migration of fault activity as well as the youth of the Corinth Rift, are probably exceptional factors allowing the characterisation of such diachronism.  相似文献   

17.
Continental ‘overfilled’ conditions during rift initiation are conventionally explained as due to low creation of accommodation compared with sediment supply. Alternatively, sediment supply can be relatively high from the onset of rifting due to an antecedent drainage system. The alluvial Lower Group of the western Plio–Pleistocene Corinth rift is used to investigate the interaction of fluvial sedimentation with early rifting. This rift was obliquely superimposed on the Hellenide mountain belt from which it inherited a significant palaeorelief. Detailed sedimentary logging and mapping of the well‐exposed syn‐rift succession document the facies distributions, palaeocurrents and stratigraphic architecture. Magnetostratigraphy and biostratigraphy are used to date and correlate the alluvial succession across and between fault blocks. From 3·2 to 1·8 Ma, a transverse low sinuosity braided river system flowed north/north‐east to east across east–west‐striking active fault blocks (4 to 7 km in width). Deposits evolved downstream from coarse alluvial conglomerates to fine‐grained lacustrine deposits over 15 to 30 km. The length scale of facies belts is much greater than, and thus not directly controlled by, the width of the fault blocks. At its termination, the distributive river system built small, stacked deltas into a shallow lake margin. The presence of a major antecedent drainage system is supported by: (i) a single major sediment entry point; (ii) persistence of a main channel belt axis; (iii) downstream fining at the scale of the rift basin. The zones of maximum subsidence on individual faults are aligned with the persistent fluvial axis, suggesting that sediment supply influenced normal fault growth. Instead of low accommodation rate during the early rift phase, this study proposes that facies progradation can be controlled by continuous and high sediment supply from antecedent rivers.  相似文献   

18.
It is now admitted that the high strength of the subcontinental uppermost mantle controls the first order strength of the lithosphere. An incipient narrow continental rift therefore requires an important weakening in the subcontinental mantle to promote lithosphere-scale strain localisation and subsequent continental break-up. Based on the classical rheological layering of the continental lithosphere, the origin of a lithospheric mantle shear/fault zone has been attributed to the existence of a brittle uppermost mantle. However, the lack of mantle earthquakes and the absence of field occurrences in the mantle fault zone led to the idea of a ductile-related weakening mechanism, instead of brittle-related, for the incipient mantle strain localisation. In order to provide evidence for this mechanism, we investigated the microstructures and lattice preferred orientations of mantle rocks in a kilometre-scale ductile strain gradient in the Ronda Peridotites (Betics cordillera, Spain). Two main features were shown: 1) grain size reduction by dynamic recrystallisation is found to be the only relevant weakening mechanism responsible for strain localisation and 2), with increasing strain, grain size reduction is coeval with both the scattering of orthopyroxene neoblasts and the decrease of the olivine fabric strength (LPO). These features allow us to propose that grain boundary sliding (GBS) partly accommodates dynamic recrystallisation and subsequent grain size reduction.A new GBS-related experimental deformation mechanism, called dry-GBS creep, has been shown to accommodate grain size reduction during dynamic recrystallisation and to induce significant weakening at low temperatures (T < 800 °C). The present microstructural study demonstrates the occurrence of the grain size sensitive dry-GBS creep in natural continental peridotites and allows us to propose a new rheological model for the subcontinental mantle. During dynamic recrystallisation, the accommodation of grain size reduction by three competing deformation mechanisms, i.e., dislocation, diffusion and dry-GBS creeps, involves a grain size reduction controlled by the sole dislocation creep at high temperatures (> 800 °C), whereas dislocation creep and dry-GBS creep, are the accommodating mechanisms at low temperatures (< 800 °C). Consequently, weakening is very limited if the grain size reduction occurs at temperatures higher than 800 °C, whereas a large weakening is expected in lower temperatures. This large weakening related to GBS creep would occur at depths lower than 60 km and therefore provides an explanation for ductile strain localisation in the uppermost continental mantle, thus providing an alternative to the brittle mantle.  相似文献   

19.
1800 m of drill core through the Nojima fault zone, Japan, reveals subsidiary fault and fracture networks that developed in the fault zone that triggered the 1995 Ms 7.2 Kobe earthquake. The subsidiary fault zones contain a fault gouge of < 1 cm bounded by thin zones of foliated cataclasite or breccia. Fractures are filled with calcite veins, calcite-cemented breccias, clay, and iron-oxide and carbonate alternation of the granitic host rock. These features are typical of extensional fractures that form the conduit network for fluid flux close to a major fault zone. The zone of distributed deformation surrounding the main fault is 50 m in width, and the dip of the Nojima fault at > 1 km depth is 75°. The fault-fracture networks associated with the Nojima fault zone are coseismic and were filled with carbonate and fine-grained material during repeated seismic-related infiltration of the fault zone by carbonate-bearing subsurface water. This study shows that fault-related fracture networks plays an important role as fluid flow conduits within seismically active faults, and can change in character from zones of high permeability to low permeability due to cementation and/or pore collapse.  相似文献   

20.
A multidisciplinary study investigates the influence of different parameters on fault rock architecture development along normal faults affecting non-porous carbonates of the Corinth rift southern margin. Here, some fault systems cut the same carbonate unit (Pindus), and the gradual and fast uplift since the initiation of the rift led to the exhumation of deep parts of the older faults. This exceptional context allows superficial active fault zones and old exhumed fault zones to be compared.Our approach includes field studies, micro-structural (optical microscope and cathodoluminescence), geochemical analyses (δ13C, δ18O, trace elements) and fluid inclusions microthermometry of calcite sin-kinematic cements.Our main results, in a depth-window ranging from 0 m to about 2500 m, are: i) all cements precipitated from meteoric fluids in a close or open circulation system depending on depth; ii) depth (in terms of P/T condition) determines the development of some structures and their sealing; iii) lithology (marly levels) influences the type of structures and its cohesive/non-cohesive nature; iv) early distributed rather than final total displacement along the main fault plane is the responsible for the fault zone architecture; v) petrophysical properties of each fault zone depend on the variable combination of these factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号