首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 32 毫秒
1.
从低纬的海气耦合的浅水模式方程组出发 ,运用正交模和特殊函数的方法进一步讨论地球自转速率变化对海气耦合系统的影响 .研究表明 :地球自转速率的变化通过海气耦合一方面使大气和海洋的Kelvin波和Rossby波的移动及稳定性发生变化 ,另一方面使纬向风、洋流和海表温度发生变化 .特别是在地球自转减慢时 ,通过海气耦合 ,出现纬向风和洋流异常和大洋东部海表温度增加 ,从而导致引起全球气候异常的ElNi no现象  相似文献   

2.
从低纬的海气耦合的浅水模式方程组出发,运用正交模和特殊函数的方法进一步讨论地球自转速率变化对海气耦合系统的影响,研究表明:地球自转速率的变化通过海气耦合一方面使大气和海洋的Kelvin波和Rossby波的移动及稳定性发生变化,另一6方面使纬向风、洋流和海表温度发生变化,特别是在地球自转减慢时,通过海气耦合,出现纬向风和洋流异常和大洋东部海表温度增加,从而导致引起全球气候异常的ElNino现象。  相似文献   

3.
地球自转与El Nino--波动理论   总被引:3,自引:2,他引:1       下载免费PDF全文
考虑地球自转速率随时间的变化,应用描写低纬的地球流体(大气和海洋)的浅水模式方程组,分析了地球自转速率变化对低纬大气和海洋波动的影响.研究指出:地球自转速率的变化不但会直接影响纬向风和洋流的变化,而且通过Kelvin波的传播导致海平面和海温的变化,从而导致El Nino现象的产生.所以,地球自转速率的变化是影响全球气候变化的重要因素之一.  相似文献   

4.
考虑地球自转速率随时间的变化,应用描写低纬的地球流体(大气和海洋)的浅水模式方程组,分析了地球自转速率变化对低纬大气和海洋波动的影响.研究指出:地球自转速率的变化不但会直接影响纬向风和洋流的变化,而且通过Kelvin波的传播导致海平面和海温的变化,从而导致EI Nino现象的产生.所以,地球自转速率的变化是影响全球气候变化的重要因素之一.  相似文献   

5.
地球自转与E1 Nino波动理论   总被引:1,自引:1,他引:0  
考虑地球自转速率随时间的变化,应用描写低纬的地球流体(大气和海洋)的浅水模式方程组,分析了地球自转速率变化对低纬大气和活活波动的影响。研究指出:地球自转速率的变化不但会影响纬向风和洋流的变化,而且通过Kelvin波的传播导致海平面和海温的变化,从而导致E1 Nino现象的产生。所以,地球自转速率的变化是影响全球气候变化的重要因素之一。  相似文献   

6.
地球自转与气候动力学──振荡理论   总被引:5,自引:2,他引:3       下载免费PDF全文
考虑地球自转速率随时间的变化,并应用描写低纬地球流体(大气和海洋)的水平运动方程,分析了地球自转速率变化对低纬大气和海洋振荡的影响.研究指出:地球自转速率的变化不但会直接影响低纬大气和海洋的振荡周期和振幅,而且会影响纬向风和洋流的变化,从而导致海温和海平面的变化.所以,地球自转速率的变化是影响全球气候变化的重要因素之一.关键词##4地球自转速率;;气候变化;;大气和海洋的振荡  相似文献   

7.
地气角动量交换与ENSO循环   总被引:10,自引:0,他引:10  
用1976~1989年的地球自转速度、赤道东太平洋海温和气压及大气角动量资料,研究了地气之间角动量交换与ENSO循环的关系结果表明:固体地球自转速度、赤道东太平洋海温、不同纬带及全球大气角动量之间存在着协同的变化关系;低纬局地海气相互作用通过Hadley环流可形成类似ENSO事件的循环;固体地球和全球海气相互作用通过山脉力矩和地转变速摩擦力矩形成了固体地球-海洋-大气系统中各个方面出现的非周期行为和非同步振荡;实际出现的ENSO循环是固海气相互作用反映在太平洋洋盆上的一种现象.  相似文献   

8.
本文通过资料分析和模型计算,得到地球自转速率长期减慢趋势和周期波动规律的形成原因.潮汐摩擦是地球自转减慢的主要因素,重力分异和圈层角动量交换是地球自转周期变化的主要因素,重力分异造成的地球各圈层差异旋转是地壳自转变化先慢后快的特殊因素.重力分异将一个均匀的自转地球变为分层的差异旋转地球,在质量向地心集中的同时,自转动能也向地核集中,使地壳和地幔自转变慢,使地核自转变快.圈层角动量交换将地球自转动能变为热能,积累在核幔边界,使地壳和地幔自转变快,地核自转变慢.核幔边界积累的热能周期性使外核热膨胀,为热幔柱和火山活动提供了能源和动力,火山活动高峰对应地球自转加快是证据.计算模型表明,地球自转速度变化的规律和历史记录证明重力分异和圈层差异旋转是地壳运动的主要动力,受地球自转速度变化的约束,地球体积不会有较大的胀缩,国内外测量结果证实了这一结论.  相似文献   

9.
利用地球日长(LOD)资料和美国环境预报中心/国家大气研究中心(NCEP/NCAR)的气象要素资料,统计分析发现1962-2010年LOD的变化和北半球中纬度地面温度均存在明显的十年以上的波动周期.相关分析、合成分析等统计方法均检测到LOD与中纬度地面温度的显著负相关关系,当地球自转速率加快时,北半球中纬度地面增温;反之,中纬度地面降温.小波功率谱和交叉谱分析则确定二者的相互关系属于准20年周期尺度上的年代际变化联系,并且LOD的变化超前于地面温度的变化大概3~4年.平均而言,LOD的变化可带来中纬度地面温度0.2℃的降温(或增温).通过对大气相对角动量、纬向风场、海平面气压场的年代际合成分析,揭示了LOD与地面温度的年代际联系形成的具体物理过程.当地球自转加速时,北半球高低纬度经向温差梯度减弱,热带地区向极地扩展,造成北半球中纬度地区地面增温;地球自转减速时段相反,经向温差梯度增强,热带地区向赤道收缩,中纬度地区地面降温.  相似文献   

10.
对比分析了25 a (1973~1998年)的日长(Length of day, 以下简称LOD)、大气环流及月球相位随时间的变化. 发现伴随着月球相位的交替变化, 地球大气的纬向风速场、地球位势高度场及LOD作27.3及13.6 d的周期振荡. 每5~9 d (平均6.8 d), 随着月球视赤纬角从0°变为最大值(绝对值)或从最大值变为0°, 全球纬向风速场、地球位势高度场及LOD经历一次突然变化. 这种周期性的大气振荡, 被视为一种大气潮. 对比月球视赤纬角变化及与其对应的LOD、大气纬向风速场及地球位势高度场变化, 分析了10个大气潮个例. 月球对地球大气引潮力作用的周期变化, 是引发27.3及13.6 d周期大气潮的主要原因. 月球对地球大气的作用是巨大的, 它引起大气纬向风速场及地球位势高度场的变化. 当月球围绕地球运转至天赤道上空时, 月球视赤纬角等于0°, 这时月球对大气的引潮力最大, 大气的纬向风速增加, 地球的自转角速度减小, 日长(LOD)增加. 反之, 当月球视赤纬角最大(绝对值), 月球对大气的引潮力减小, 大气纬向风速减小, 地球的自转角速度增加, LOD减小. 27.3及13.6 d周期的大气潮值得更深入地研究. 月球对地球大气的引潮力作用, 应该在大气环流及中短期天气预报模式中予以考虑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号