首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Green Corridor in the lower reaches of Tarim River in northwestern China has an extreme hot and dry climate. Vegetation here, consisting of arbor, shrub and grass, relies on groundwater exceedingly. However, the increasing anthropogenic activities of large-scale agricultural reclamation and unreasonable water utilization in the upper and middle reaches caused the 321-km riverway in the lower reaches to dry up completely in 1972 and resulted in the sharp decline of groundwater, followed by the ruin of desert riparian vegetation on a large scale. The Green Corridor is on the verge of shrinking. Water has a key role in maintaining ecological balance and socioeconomic development. This paper, focused on the relationship between vegetation and groundwater, discusses (1) the change of groundwater table caused by the ecological water delivery carried out in the lower reaches of Tarim River; (2) the appropriate groundwater depth meeting the vegetation’s survival; (3) the minimum ecological flux and ecological water requirement for the growth of natural vegetation. It was shown that (1) based on the analysis of the monitoring data from the groundwater level of ten times water delivery, such an extensive artificial watering takes positive effect on raising the groundwater level along the two sides of the river; (2) a groundwater table depth of 2–4 m is probably the appropriate ecological water table level for the lower reaches of the Tarim River, and 6 m is the threshold for the local vegetation; (3) at the lower Tarim River, 1.157 × 10m3 of water flow is needed for itself. The longer the duration of water releases, the greater would be the groundwater rise and the larger the range of vegetation influenced. It was found that the duration and volume of water delivery was closely related to restoration of vegetation in the lower reaches of the Tarim River. The goal of this paper is to offer scientific evidences for water delivery in the rigorous areas to maintain an ecological balance.  相似文献   

2.
塔里木河下游应急输水的水生态环境响应   总被引:26,自引:2,他引:26       下载免费PDF全文
邓铭江 《水科学进展》2005,16(4):586-591
塔里木河下游357km河道断流近30年,向塔里木河下游实施应急输水抢救生态环境,是世界范围内流域退化生态系统恢复与重建的稀有案例。以此为背景,在生态环境本底状况调查的基础上,通过大量的监测资料,应用河道水力学、地下水动力学以及植被生态学,以河道水量沿程消耗-地下水位动态变化-植物恢复为主线,摸清了水流在河道纵向、河道横向两侧和垂向剖面中的运移、转化和消耗规律,研究分析了应急输水的水生态环境三维响应特征和植被恢复效应。为创建和完善干旱区受损生态系统输水、修复与重建的评价体系打下基础,也为塔里木河流域综合治理提供技术支撑。  相似文献   

3.
黑河下游荒漠河岸林典型样带植被空间异质性   总被引:11,自引:1,他引:10  
何志斌  赵文智 《冰川冻土》2003,25(5):591-596
应用地统计学的理论与方法,分析了黑河流域下游荒漠河岸林主要种群,即老林胡杨(Popu luseuphratica)、幼林胡杨、柽柳(Tamarix chinensis)和苦豆子(Sophora alopecuroides)的空间异质性程度、异质性组成及尺度依赖问题.结果表明:黑河下游荒漠河岸林种群斑块格局明显,斑块内部异质性较小,斑块之间异质性增强,出现空间异质性变化较大的尺度为430m.而斑块内部因不同种群而变化,苦豆子和柽柳具有较大的空间异质性尺度,分别为43m和55m.老林和幼林胡杨种群的空间异质性尺度(8m和13m)较小,但异质性存在多尺度变化.采用30m分辨率的遥感数据能够较好地分析种群斑块格局,但是对种群内的空间异质性分析需要更高的分辨率.  相似文献   

4.
Transport and transformation of nitrate was evaluated along a 1-km groundwater transect from an almond orchard to the Merced River, California, USA, within an irrigated agricultural setting. As indicated by measurements of pore-water nitrate and modeling using the root zone water quality model, about 63% of the applied nitrogen was transported through a 6.5-m unsaturated zone. Transport times from recharge locations to the edge of a riparian zone ranged from approximately 6 months to greater than 100 years. This allowed for partial denitrification in horizons having mildly reducing conditions, and essentially no denitrification in horizons with oxidizing conditions. Transport times across a 50–100-m-wide riparian zone of less than a year to over 6 years and more strongly reducing conditions resulted in greater rates of denitrification. Isotopic measurements and concentrations of excess N2 in water were indicative of denitrification with the highest rates below the Merced River. Discharge of water and nitrate into the river was dependent on gradients driven by irrigation or river stage. The results suggest that the assimilative capacity for nitrate of the groundwater system, and particularly the riverbed, is limiting the nitrate load to the Merced River in the study area.  相似文献   

5.
The spatial distribution of vegetation pattern and vegetation cover fraction (VCF) was quantified with remote sensing data in the Hailiutu River basin, a semiarid area in North China. The moderate resolution imaging spectroradiometer normalized different vegetation index (NDVI) values for 4 years from 2008 to 2011 and field observation data were used to assess the impact of climate factors, landform and depth to water table on vegetation distribution at large scale. In the VCF map, 74 % of the study area is covered with low and low–medium density vegetation, 24 % of the catchment is occupied by medium–high and high-density vegetation, and 2 % of area is bare soil. The relationship between NDVI and climate factors indicated that NDVI is correlated with relative humidity and precipitation. In the river catchment, NDVI increases gradually from landform of sand dune, eolian sand soil to river valley; 92.4 % of low NDVI from 0.15 to 0.3 is mostly distributed in sand dunes and the vegetation type is shrubs. Crops, shrubs and some dry willows dominate in eolian sand soil and 82.5 % of the NDVI varies between 0.2 and 0.35. In the river valley, 70.4 % of NDVI ranges between 0.25 and 0.4, and grass, dry willow and some crops are the main plants. Shrubs development of Korshinsk peashrub and Salix psammophila are dependent on groundwater by analyzing NDVI response to groundwater depth. However, NDVI of Artemisia desertorum had little sensitivity to groundwater.  相似文献   

6.
The ecological water conveyance project that pipes water from Daxihaizi reservoir to lower reaches of Tarim River has been implemented ten times since 2000. After ecological water conveyance, restoration has taken place for vegetation along the dried-up lower reaches of the Tarim River. The changes of vegetation fluctuated yearly due to ecological water conveyance. In order to reveal the detailed process of vegetation changes, remote sensing images from 1999 to 2010 were all classified individually into vegetated and non-vegetated areas using the soil-adjusted vegetation index threshold method. Then inter-annual changes of vegetation over a period of 12 years were obtained using a post-classification change detection technique. Finally, spatial–temporal changes distribution of vegetation cover and its response to ecological water conveyance were analyzed. The results indicate: (1) vegetation area increased by 8.52 % overall after ecological water conveyance. Vegetation between 2003 and 2004 increased dramatically with 45.87 % while vegetation between 2002 and 2003 decreased dramatically with 17.83 %. (2) Vegetation area gain is greater than vegetation loss during 1999–2000, 2001–2002, 2003–2004 and 2009–2010 periods. Although vegetation restoration is obvious from 1999 to 2010, vegetation loss also existed except for the periods above. It indicates that vegetation restoration fluctuated due to ecological water conveyance. (3) Spatial distribution of vegetation restoration presented “strip” distribution along the river and group shaper in the lower terrain area, while spatial distribution of vegetation loss mainly located in the upper reaches of river and area far away from the river. (4) Vegetation restoration area had a positive relative with total ecological water conveyance volume. The scheme and season of ecological water conveyance had also influenced the vegetation restoration. The vegetation change process monitoring, based on continuous remote sensing data, can provide the spatial–temporal distribution of vegetation cover in a large-scale area and scientific evidences for implementing ecological water conveyance in the lower Tarim River.  相似文献   

7.
黑河流域典型景观植被带陆面过程同步观测研究   总被引:10,自引:4,他引:6  
为了解内陆河流域不同尺度内与水循环及生态过程有关的水分、热量分布规律,在黑河流域上中下游选取3个典型植被景观带建立观测场,并布设环境观测系统(ENVIS)进行环境要素的同步观测.结果表明,山区森林草地灌丛复合生态区陆面是冷性湿润的下垫面,中游绿洲荒漠接触带是干性、较湿润的下垫面,下游荒漠河岸林景观带是干热性的下垫面.  相似文献   

8.
Intensive agricultural development in the Murray-Darling Basin, Australia, has been achieved at a high cost to the natural environment. This paper assess the hydrological, water quality and ecological changes which have occurred as a result of agricultural land use and particularly, cotton production, in major tributaries of the upper Darling River, using the Namoi Valley, the cradle of the Australian cotton industry, as a case study. Three aspects of cotton production have had detrimental effects in these catchments — extensive vegetation clearing on floodplains and in the riparian zone, water abstraction from regulated and unregulated river flows and intensive chemical use for pest control. The paper outlines the new initiatives in progress to improve the condition of these rivers, including management of pesticide runoff from cotton farms, nutrient reductions in surface waters and restoration of natural patterns of river flow. Constraints on water use off-stream and restrained regional development appear to be inevitable if river health is to be improved.  相似文献   

9.
In this paper, we analysed the monitored data from nine groundwater-monitoring transects in the lower reaches of Tarim River during the five times of stream water deliveries to the river transect where the stream flow ceased. The results showed that the groundwater depth in the lower reaches of Tarim River rose from −9.30 m before the conveyances to −8.17 and −6.50 m after the first and second conveyances, −5.81 and −6.00 m after the third and fourth the conveyance, and −4.73 m after the fifth. The horizontal extent of groundwater recharge was gradually enlarged along both sides of the channel of conveyance, i.e., from 250 m in width after the first conveyance to 1,050 m away from the channel after the fourth delivery. With the rising groundwater level, the concentrations of major anions Cl, SO42− and cations Ca2+, Mg2+, Na+, as well as total dissolved solids (TDS) in groundwater underwent a significant change. The spatial variations in groundwater chemistry indicated that the groundwater chemistry at the transect near Daxihaizi Reservoir changed earlier than that farther from it. In the same transect, the chemical variations were earlier in the monitoring well close to watercourse than that farther away from the stream. In general, the concentration of the major ions and TDS at each monitoring well increased remarkably when the water delivery started, and decreased with the continued water delivery, and then increased once again at the end of the study period. Hence, the whole study period may be divided into three stages: the initial stage, the intermediate stage and the later stage. According to the three stages of groundwater chemistry reaction to water delivery and the relationships between groundwater chemical properties and groundwater depths, we educe that under the situation of water delivery, the optimum groundwater depth in the lower reaches of the Tarim River should be −5 m.  相似文献   

10.
Rubber dams have been widely built for their advantages in increase of flooding resources utilization in the north arid and semiarid plain regions of China. Rise in river water stage by the dams, particularly during the drought periods, increases lateral seepage of river water into groundwater, and thus groundwater table and phreatic evaporation loss in the riparian zones. In this study, a riparian area of the Baihe River in Nanyang of Henan Province, China was selected for investigation of influences of the river dams on the groundwater recharge and evaporation loss. A hydraulic model, HEC-RAS, was used for simulation of the river stage variations along the Baihe River, and a numerical groundwater model, MODFLOW, was applied for simulation of groundwater dynamics and estimation of river flow seepage into aquifer and evaporation loss. The results show that the dams increase river stages of 2–3 m during January 2000–December 2002. The increase in the captured groundwater recharge was 7.15–34.06 million m3/a and the increased phreatic evaporation loss occupies 10% of the increased recharge when four rubber dams were built.  相似文献   

11.
The River Gash Basin is filled by the Quaternary alluvial deposits, unconformably overlying the basement rocks. The alluvial deposits are composed mainly of unconsolidated layers of gravel, sand, silt, and clays. The aquifer is unconfined and is laterally bounded by the impermeable Neogene clays. The methods used in this study include the carry out of pumping tests and the analysis of well inventory data in addition to the river discharge rates and other meteorological data. The average annual discharge of the River Gash is estimated to be 1,056?×?106 m3 at El Gera gage station (upstream) and 587?×?106 m3 at Salam-Alikum gage station (downstream). The annual loss mounts up to 40% of the total discharge. The water loss is attributed to infiltration and evapotranspiration. The present study proofs that the hydraulic conductivity ranges from 36 to 105 m/day, whereas the transmissivity ranges from 328 to 1,677 m2/day. The monitoring of groundwater level measurements indicates that the water table rises during the rainy season by 9 m in the upstream and 6 m in the midstream areas. The storage capacity of the upper and middle parts of the River Gash Basin is calculated as 502?×?106 m3. The groundwater input reach 386.11?×?106 m3/year, while the groundwater output is calculated as 365.98?×?106 m3/year. The estimated difference between the input and output water quantities in the upper and middle parts of the River Gash Basin demonstrates a positive groundwater budget by about 20?×?106 m3/year  相似文献   

12.
Papaioannou  G.  Loukas  A.  Vasiliades  L.  Aronica  G. T. 《Natural Hazards》2016,81(1):117-144
An innovative approach in the investigation of complex landscapes for hydraulic modelling applications is the use of terrestrial laser scanner (TLS) that can lead to a high-resolution digital elevation model (DEM). Another notable factor in flood modelling is the selection of the hydrodynamic model (1D, 2D and 1D/2D), especially in complex riverine topographies, that can influence the accuracy of flood inundation area and mapping. This paper uses different types of hydraulic–hydrodynamic modelling approaches and several types of river and riparian area spatial resolution for the implementation of a sensitivity analysis for floodplain mapping and flood inundation modelling process at ungauged watersheds. Four data sets have been used for the construction of the river and riparian areas: processed and unprocessed TLS data, topographic land survey data and typical digitized contours from 1:5000-scale topographic maps. Modelling approaches combinations consist of: one-dimensional hydraulic models (HEC-RAS, MIKE 11), two-dimensional hydraulic models (MIKE 21, MIKE 21 FM) and combinations of coupled hydraulic models (MIKE 11/MIKE 21) within the MIKE FLOOD platform. Historical flood records and estimated flooded area derived from an observed extreme flash-flood event have been used in the validation process using 2 × 2 contingency tables. Flood inundation maps have been generated for each modelling approach and landscape configuration at the lower part of Xerias River reach at Volos, Greece, and compared for assessing the sensitivity of input data and model structure uncertainty. Results provided from contingency table analysis indicate the sensitivity of floodplain modelling on the DEM spatial resolution and the hydraulic modelling approach.  相似文献   

13.
The occurrence and development of riparian forests, which were mainly dominated by mesophytes species related closely with surface water. Since there was no water discharged to the lower reaches of Tarim River in the past three decade years, the riparian forests degrade severely. The groundwater table, the saline content of the groundwater, as well as the content of free proline, soluble sugars, plant endogenous hormones (abscisic acid (ABA), and cytokinins (CTK)) of the leaves and relative rates of sap flow of the Populus euphratica Oliv. (arbor species), Tamarix ramosissima Ldb. (bush species), and Apocynum venetum L. (herb species) were monitored and analyzed at the lower reaches of the Tarim River in the study area where five positions on a transect were fixed at 100 m intervals along a sampling direction from riverbank to the sand dunes before and after water release. The physiological responses and acclimation strategies of three species to variations in water and salinity stress were discussed. It was found that A. venetum population recovered to groundwater table ranging from −1.73 to −3.56 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L; P. euphratica appeared to be more sensitive to the elevation of groundwater table than the A. venetum and T. ramosissima at groundwater table ranging from −5.08 to −5.80 m, and when exposed to saline content of the groundwater ranging from 42.17 to 49.55 m mol/L. T. ramosissima tended to be the best candidate species for reclamation in this hyper-arid area because it responded to groundwater table ranging from −1.73 to −7.05 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L. These results explained the distribution patterns of desert vegetation in the lower reaches of the Tarim River. Understanding the relationships among ecological factors variables, physiological response and acclimation strategies of plant individuals could provide guidance to sustainable management, reclamation and development of this and similar regions.  相似文献   

14.
三峡库区消落带土壤磁性变化规律及成因探讨   总被引:2,自引:0,他引:2  
为动态跟踪三峡库区消落带土壤物性在水位上涨后所受影响,选择重庆市忠县石宝寨镇长江左岸一带作为研究区,以消落带外同类型土壤作对照,从分析不同水位土壤的磁学性质入手,探究三峡库区蓄水前后土壤性质对环境变化的响应。库区蓄水后,不仅导致了消落带内土壤理化性质变化,还使土壤磁性空间分布在不同水位这一维度上发生显著改变。消落带监测断面数据显示,土壤磁性由蓄水前垂直方向上较稳定的分布,变为目前整体上随淹没水深增加而增高的特征;169~175 m高程附近,土壤磁性接近当地同类土壤背景值,而低于此高度尤其是低于157 m后,磁化率值迅速增高。磁性的变化是库区蓄水后土壤磁性矿物组成发生改变造成的,由热磁曲线可知,次生磁铁矿的加入是首要原因。扫描电镜下观测出的浑圆状磁铁矿的最可能来源是上游燃烧化石燃料排放的磁性外来污染物,其随江水输运至此并沉积吸附在土壤颗粒上。研究结果为间接监测污染物的迁移提供了依据。  相似文献   

15.
Surat city of India, situated 100 km downstream of Ukai Dam and 19.4 km upstream from the mouth of River Tapi, has experienced the largest flood in 2006. The peak discharge of about 25,770 m3 s?1 released from the Ukai Dam was responsible for a disaster. To assess the flood and find inundation in low-lying areas, simulation work is carried out under the 1D/2D couple hydrodynamic modeling. Two hundred ninety-nine cross sections, two hydraulic structures and five major bridges across the river are considered for 1D modeling, whereas a topographic map at 0.5 m contour interval was used to produce a 5 m grid, and SRTM (30 and 90 m) grid has been considered for Surat and the Lower Tapi Basin. The tidal level at the river mouth and the release from the Ukai Dam during 2006 flood are considered as the downstream and upstream boundaries, respectively. The model is simulated under the unsteady flow condition and validated for the year 2006. The simulated result shows that 9th August was the worst day in terms of flooding for Surat city and a maximum 75–77% area was under inundation. Out of seven zones, the west zone had the deepest flood and inundated under 4–5 m. Furthermore, inundation is simulated under the bank protection work (i.e., levees, retaining wall) constructed after the 2006 flood. The simulated results show that the major zones are safe against the inundation under 14,430 m3 s?1 water releases from Ukai Dam except for the west zone. The study shows the 2D capability of new HEC-RAS 5 for flood inundation mapping and management studies.  相似文献   

16.
River sinuosity in a humid tropical river basin,south west coast of India   总被引:2,自引:0,他引:2  
The variability in ground water potential at different regions of the Meenachil River basin and the remarkable distribution of palaeodeposit of sand at its middle to lower reaches have led to interpret the sinuosity indexes of the main channel as well as the tributaries of the River for elucidating the relationship between mathematical expressions and filed observations. The measurement of digital elevation model-derived river sinuosity was carried out for 846 km2 of the basin area of Meenachil River. The drainage networks of 10 major sub-watersheds and four mini-watersheds were delineated using remote sensing data—geocoded false colour composite of Indian Remote Sensing satellite (IRS)-1D (LISS III) data with a spatial resolution of 23.5 m—coupled with the Survey of India toposheets (1:50,000). The calculation of the sinuosity indexes were carried out using Arc GIS (8.3 version) software. Hydraulic sinuosity indexes, topographic sinuosity index and standard sinuosity index were calculated. The study depicts the remarkable correlation between theoretical data sets with field observations and the influence of tectonic control on river planforms. Three structurally controlled regions of Meenachil River basin were established using Remote Sensing and Geographical Information System.  相似文献   

17.
In this study, the hydrodynamics of lower Ganges basin in India has been monitored using radar altimetry data from environmental satellite (ENVISAT) mission and microgravity data from the Gravity Recovery and Climate Experiment (GRACE) mission. River stage time series have been constructed for different virtual stations on the lower Ganges. Time series for the integrated water volume changes from microgravity measurements have also been constructed to characterize the seasonal and interannual fluctuation patterns in water storage and flux. The ENVISAT dataset indicates an average seasonal river stage fluctuation of 8 m in the lower Ganges River. The GRACE dataset reveals a seasonal fluctuation ranging from 0.18 to 0.40 m in the vertically integrated total water storage in the lower Ganges basin. The two independent datasets show broad similarity in the lower Ganges basin and outline the importance of space-based techniques for monitoring continental water resources.  相似文献   

18.
Streambed vertical hydraulic conductivity (K) plays an important role in river water and groundwater interaction. The K at the ten transects (Ts1–Ts10) at the Donghe River (an intermittent river) in the Ejina Basin, northwestern China, was measured to investigate its spatial variation. Based on the sediment characteristics and vertical hydraulic conductivity of the riverbed, the entire riverbed of the Donghe River could be divided arbitrarily into two parts: an upper part (starting at Ts1 and ending at Ts9, without an obvious and continuous clogging layer) and a lower part (the remaining riverbed, with an obvious and continuous clogging layer). In the upper part, although the K varied with depth within the 0–30 cm layer, the variability with depth could be ignored in practice. The arithmetic mean K of the upper part ranged from 12 to 27.6 m/day, three orders of magnitude larger than that of the lower part (0.06 m/day). The change of K along the river cross section was significant, and larger values of K often occurred in the parts of the channels with greater water depth. However, there were no consistent patterns of the variability of K at transects across the river, which was influenced by the variation in streambed characteristics. The results could be useful for the estimation of groundwater recharge from river and groundwater resources evaluation in the Ejina Basin.  相似文献   

19.
The Asna river basin is located in Hingoli and Nanded districts of Marathwada region of Maharashtra. A geomorphometric analysis is an important method for the investigation and management of natural resources of watershed. The geomorphometric analysis of Asna river basin classifies three sub-basins that have been delineated using GIS and remote sensing through measurements of linear, aerial, and relief aspects. The Asna river basin comprises an area of 1187 km2 with seventh-order drainage pattern. As per Strahler classification, the upper part of the basin shows dendritic to sub-dendritic and the lower part exhibits parallel to sub-parallel drainage pattern. The total numbers of stream segments are 2422 and length of streams is 2187.92 km. The bifurcation value ranges from 1.26 to 5.58 indicating that there are no structural disturbances. The form factor value (0.49) indicates that the shape of the basin is moderately circular. The high values of drainage density, stream frequency, and low infiltration number indicate the high runoff due to impermeable lithology. The slope of the basin varies from 1 to 32.2%, terrain elevation ranges from 333 to 551 m, and overall relief of the basin is 218 m amsl. River sub-basin prioritization has an immense importance in natural resource management, especially in semi-arid regions. The present study is an attempt to prioritize the sub-basins of Asna river based on geomorphometric parameters. The weightage is assigned to different morphometric parameters of sub-basins based on erosion potential. The Asna river sub-basins have been classified into three categories as high, medium, and low on the basis of priorities for soil and water conservation. It is confirmed that sub-basin I is characterized as highly vulnerable to erosion and has high sedimentation load; sub-basin II has low priority, i.e., very low erodibility; and sub-basin III is of moderate type. The morphometric analysis and prioritization methods can be applied to hydrological studies in surface as well as subsurface water, climatic studies, rainwater harvesting, groundwater recharging sites, and watershed management.  相似文献   

20.
额济纳蒙古族民间景观格局反映的区域环境状况   总被引:1,自引:1,他引:0  
以内蒙古额济纳旗为例,对当地土尔扈特蒙古族自18世纪初定牧于此开始,至20世纪之前形成的水域、植被和沙丘3大类蒙古族民间自然景观类型进行了研究.水域景观格局特征表明,相对于现代生态环境状况,在20世纪之前,额济纳冲积平原水环境较为优越,整个地区水域景观广布,地下水埋藏较浅.在植被景观格局方面,两河地区主要以胡杨-沙枣河岸林和河岸湿地为主;两湖地区主要以芦苇沼泽-芨芨草草甸和湖岸梭梭林为主;整个地区植被景观处于早期演替阶段.绿洲内部荒漠沙丘景观分布格局体现了干旱荒漠地区的景观基质特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号