首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
甘肃陇东南一次大暴雨的中尺度特征分析   总被引:1,自引:0,他引:1  
2013年6月19-20日在甘肃陇东南出现一次罕见的暖区降水和切变线降水共同造成的区域性大暴雨过程,暖区降水强度大、持续时间长、强降水范围集中、中尺度特征明显。利用常规和非常规观测资料、NCEP再分析资料等对此次大暴雨天气过程的成因和中尺度特征进行了分析。结果表明,暖区降水时段:对流层低层高湿有利于降低暖区降水对抬升条件的要求,并与中层温度冷槽配合形成不稳定层结,前期低层的逆温层也有利于不稳定能量的堆积;低层垂直风切变、低空急流和地形抬升在对流触发和维持中具有重要作用,徽成盆地是生成对流单体的主要源地;中尺度对流系统具有暖云降水特点,质心低,降水效率高,且具有明显的后向传播和"列车效应"特征。切变线降水时段:受对流层中层暖平流、正涡度平流和低层冷空气侵入影响,武都涡不断发展加强;对流层湿层厚度增加,热力不稳定条件明显减弱,在低空切变线、武都涡和地面辐合线附近形成大范围的稳定性降水。  相似文献   

2.
韩林君  白爱娟 《高原气象》2019,38(3):552-562
利用0.5°×0.5°分辨率的CFS再分析资料,对2004-2017年5-10月西南涡进行了普查,按TMPA V7资料显示的降水分布特征对西南涡进行分类。统计了不同类型西南涡出现的频数,并对西南涡降水特征进行分析,包括降水范围与强度等,最后分析了4类西南涡代表个例的环流和降水形成机制差异。结果表明,夏半年西南涡降水依次频繁出现在西南涡东北部、东部、东南部、中部;分析4类频数较多的西南涡降水特征,发现中部降水型暴雨范围最广,降水强度最强,其次为东南降水型、东部降水型与东北降水型。对代表个例的环流特征分析发现,中部降水型西南涡与东北型冷暖气流均在盆地北部相遇,不同的是,中部降水型冷空气范围更大,并与西南气流形成环型流场;东南降水型与东部型相似,二者均无冷空气入侵,差异表现在东部降水型西南气流偏东,并翻越大巴山,而东南降水型气流遇大巴山后向西绕流。对各类西南涡降水形成机制的分析,发现西南涡降水与其临近地区显著的垂直环流圈有密切关系,降水区通常与环流圈位置对应。  相似文献   

3.
为了研究青藏高原低涡降水长期特征,利用1979~2015年高原低涡数据集、依照高原低涡降水范围,匹配高原各站逐日降水信息,对高原低涡降水特征进行统计分析。结果表明,青藏高原低涡降水量呈上升趋势,大值中心位于西藏那曲地区,呈向东南凸出递减分布,并以夏季低涡降水为主,全年和夏季高原低涡降水量与总降水量均存在明显的正相关关系。安多站高原低涡降水呈下降趋势,但对年降水的平均贡献率高达三成;那曲站与托托河站高原低涡降水在总体上却呈上升趋势,递增率分别为0.2 mm/a和0.7 mm/a,其中那曲低涡频数与低涡降水强度的正相关系数达0.66,而托托河低涡降水占总降水的百分比却呈下降趋势。高原低涡日降水量等级主要以小雨为主,但中雨却是低涡降水量的主要贡献者。趋势分析发现高原低涡降水递增中心位于青海北部,递增率达到0.9 mm/a,次中心在西藏西南部雅鲁藏布江沿线地区;同时,高原低涡引发小雨降水基本呈全区一致增加趋势,中心位于西藏东北部和青海西南部地区;中雨降水上升趋势主要集中在西藏西南部、青海地区以及四川西部,其中青海南部存在较为明显上升中心区,下降趋势主要分布在西藏北部和东部。  相似文献   

4.
从大气加热角度分析了发生于2014年10月27~28日的一次非典型西南低涡生成、发展过程及其降水特征,揭示了西南低涡和降水系统之间的相互关系。得到以下结论:(1)西南低涡发生之前的降水使得降水区空气的非绝热加热率随高度不断增加从而促进了此次西南低涡的生成;(2)此次西南低涡的降水主要以对流性降水为主,降水大值中心位于涡心的偏东侧;(3)强盛期的西南低涡伴随有次级环流,次级环流既促进了低涡的进一步发展,又有利于触发涡心东侧的对流从而引发强降水。  相似文献   

5.
基于TRMM资料的高原涡与西南涡引发强降水的对比研究   总被引:4,自引:0,他引:4  
利用TRMM(Tropical Rainfall Measuring Mission)卫星探测结果结合NCEP(National Centers for Environmental Prediction)再分析资料, 对2007年7月17日四川、重庆地区的一次西南涡强降水系统和2008年7月21日四川东部的东移高原涡强降水系统的三维结构特征、雨顶高度以及降水廓线特征进行对比分析研究。结果表明:(1)两次降水过程均是发生在西南—东北向的水汽辐合带中, 且降水云群均位于低涡的东南方。(2)两次强降水在水平结构上均表现为由一个主降水雨带和多个零散降水云团组成, 高原涡强降水过程比西南涡强降水的降水强度和范围都要大。降水雷达探测到的两个中尺度降水系统均以降水范围大、强度弱的层云降水为主, 但对流性降水对总降水量的贡献较大, 其中西南涡降水中对流降水所占比例比高原涡的大, 对总降水率的贡献也大。(3)垂直结构上:两次强降水的雨顶高度均是随地表雨强的增加而增加, 且最大雨顶高度接近16 km, 但西南涡强降水中的雨顶高度比高原涡更高, 说明西南涡降水过程中对流旺盛程度强于高原涡。(4)两次强降水中雨滴碰并增长过程以及凝结潜热的释放主要集中在8 km以下, 但8 km以上西南涡降水变化大于高原涡, 且前者在8~12 km高度层的降水量对总降水量贡献百分比大于后者。  相似文献   

6.
1984年8月2日、3日,武都地区出现了一次罕见的连续性大、暴雨。过程降水量武都106毫米、成县145毫米、康县102毫米、文县53毫米、岷县47毫米、宕昌34毫米,其中武都3日76.5毫米和过程降水量都为历史最高值。由于降水时间集中,强度大,导致山洪、泥石流爆发,滑坡塌方,白龙江、北  相似文献   

7.
利用WRF中尺度数值模式,模拟2008年6月20-21日江淮一次β中尺度切变线、低涡降水过程。分析发现:低层大尺度的0.5×10-6m2·s-1·K·kg-1的大值位涡为切变线暴雨提供了背景场,在其南部边缘,低层的切变辐合及云水形成的非绝热加热,导致了正位涡的增长,使低层正涡度加大引起降水加强。低层的正位涡通过上升运动向上传递,导致了高层位涡正异常,高层位涡的正异常又可导致低层的气旋性涡度进一步加大并使降水加大;β中尺度低涡的生成与大别山地形关系不大,主要是由对流层高层正位涡异常引起,但是低涡的维持及降水与大别山的地形坡度密切相关,当地形平坦时,不利于低涡维持和降水加强,当具有大别山的地形坡度时,不论山脉的高低都有利于低涡维持和降水加强。  相似文献   

8.
利用WRF中尺度数值模式,模拟2008年6月20-21日江淮一次β中尺度切变线、低涡降水过程。分析发现:低层大尺度的0.5×10 -6m2·S-1·K·kg-1的大值位涡为切变线暴雨提供了背景场,在其南部边缘,低层的切变辐合及云水形成的非绝热加热,导致了正位涡的增长,使低层正涡度加大引起降水加强。低层的正位涡通过上升运动向上传递,导致了高层位涡正异常,高层位涡的正异常又可导致低层的气旋性涡度进一步加大并使降水加大;β中尺度低涡的生成与大别山地形关系不大,主要是由对流层高层正位涡异常引起,但是低涡的维持及降水与大别山的地形坡度密切相关,当地形平坦时,不利于低涡维持和降水加强,当具有大别山的地形坡度时,不论山脉的高低都有利于低涡维持和降水加强。  相似文献   

9.
基于新一代天气雷达三维组网等多源气象数据分析了2009年7月30~31日的一次西南低涡触发的强降水天气过程以及主要降水时段雷达回波三维结构及演变特征,研究发现:(1)西南低涡降水与低涡强度发展存在不一致性,强降水出现在低涡强度达到最强之前;(2)中尺度对流系统的发生、发展是此次低涡降水的重要影响因素,西南低涡与中尺度对流系统既相互独立又相互影响,降水是两者共同作用的结果;(3)最强组合反射率因子同样出现在西南低涡发展到最强盛之前,西南低涡能显著影响盆地内降水雷达回波的强度与类型。   相似文献   

10.
利用欧洲中期天气预报中心提供的ERA-Interim再分析资料、热带降雨测量(tropical rainfall measuring mission,TRMM)卫星提供的降水反演产品3B42RT、全球降雨观测(global precipitation measurement,GPM)卫星搭载的双频降雨雷达(dual-frequency precipitation radar,DPR)观测数据、FY-2F云类型和云顶亮温等资料,对2010—2020年4—10月(暖季)影响中国中东部降水的西南涡进行分析。结果表明,2010—2020年暖季移出型西南涡共计108例,东移型、东北移型和东南移型占比分别为58.3%、27.8%、12.0%。其中东移型西南涡主要影响长江中下游,雨带呈东西向分布;东北移型西南涡雨带主要位于黄淮到华北一带;东南移型西南涡降水则主要集中在华南及沿海海域。另外,3类暖季移出型西南涡降水云系特征有明显差异,东移型西南涡30°N以北为层状云降水,以南为对流云降水,东北移型为对流云和层状云降水共同影响(即混合性降水),而东南移型则以对流云降水为主;暖季移出型西南涡降水云分类均以积雨云和密卷云为主,且伸展高度高、云顶亮温低,其中东移型和东北移型西南涡云系影响范围更广,而东南移型西南涡云系则呈块状、更密实。  相似文献   

11.
利用奇异值分解方法(SVD)分析了夏季降水对极涡面积和极涡强度指数的响应,研究发现,冬季北半球极涡指数场与高原夏季降水场,在青海省大部分是明显的负相关区域,西藏大部分以正相关为主;春季北半球极涡指数场与西藏和青海夏季降水场为正相关。冬季12月极涡指数与高原夏季6月降水的相关,自高原东南部到西北部呈“+-+”分布;冬季1月极涡指数与高原夏季7月降水相关,南北呈“+-”分布,西藏为正相关,青海为负相关;冬季2月极涡指数与高原夏季8月降水,除柴达木盆地北侧、西藏西部为弱的负相关外,其余地区均为正相关。   相似文献   

12.
夏季长江流域两类中尺度涡旋的统计与合成研究   总被引:4,自引:0,他引:4  
利用2000~2013年夏季6 h一次、水平分辨率为0.5°(纬度)×0.5°(经度)的CFSR(Climate Forecast System Reanalysis)再分析资料,对产生于四川盆地的西南涡和产生于大别山地区的大别山低涡进行了识别,统计出西南涡和大别山低涡的发生频数、初生时段、移动路径、三维结构等气候特征;在此基础上根据涡旋生成前的地面气压场和降水特征,对西南涡和大别山低涡分别进行了分类与合成研究,并细致对比了两类涡旋的异同点,主要结论如下:(1)西南涡在7月上旬最活跃,而大别山低涡则在6月上旬发生频数最高。凌晨时段是两类涡旋的高发期;西南涡日间的生成数目多于夜间,而大别山低涡则与之相反。(2)绝大多数西南涡和大别山低涡维持时间少于12 h;绝大多数西南涡维持准静止,而大别山低涡则主要向东北方向和偏东方向移动。(3)两类涡旋均为对流层中低层的低压系统,其中大别山低涡的垂直伸展层次较西南涡更低。相比于西南涡,由于水汽条件更优,大别山低涡所引发的降水更强,强降水的凝结潜热释放使得大别山低涡的平均生命史比西南涡更长。(4)产生前有降水的西南涡/大别山低涡相比于产生前无降水的西南涡/大别山低涡而言,对流层高层南亚高压的强度更强、辐散更显著;对流层中层与500 h Pa西风带短波槽的配置条件更好;对流层低层涡旋中心附近的辐合更显著、切变更强;并且对流层中低层的上升运动更强。这些都是有利于降水发生与维持的有利条件,而与降水凝结潜热密切相关的热力强迫使得产生前有降水的西南涡/大别山低涡相比于产生前无降水的西南涡/大别山低涡拥有更长的生命史长度,更大的水平半径和更大的涡旋生命史内降水量。  相似文献   

13.
2014年7月14日高原低涡降水过程观测分析   总被引:3,自引:0,他引:3       下载免费PDF全文
赵平  袁溢 《应用气象学报》2017,28(5):532-543
利用第三次青藏高原大气科学试验的多种雷达、雨滴谱仪以及MODIS卫星观测资料、常规气象站地面和高空观测资料,针对2014年7月14日发生在青藏高原中部那曲地区的一次降水过程,研究了降水的时空变化特征,触发不同阶段降水的天气尺度和中尺度环流系统以及相关的云降水物理特征。从降水演变特征看,这次降水过程包括3个阶段,即发生在下午的强降水阶段和夜间的两个弱降水阶段。从影响系统看,下午的降水主要由天气尺度的高原低涡发展引起,此时那曲位于低涡中心前部的中尺度辐合线上;发生在晚上的降水主要与高原低涡前部的暖湿东南气流爬越地形有关,东南气流为产生降水提供了有利的水汽、大气不稳定和浅薄的动力抬升条件。从云降水微物理特征看,高原低涡降水初期,低涡前部的上升运动深厚,对流发展明显,而后期的对流性减弱。东南气流爬坡引起的地形降水表现出层状云降水的特征,高原低涡降水的雨滴谱分布较宽(0.3~4.9 mm),而夜间降水过程的雨滴谱分布较窄(0.3~2.1 mm)。  相似文献   

14.
利用WRF模式及WRFDA同化系统,引入业务探空资料和西南涡加密探空资料,对一次四川盆地奇异路径低涡耦合大暴雨过程进行了数值试验,对比检验不同同化试验对本次过程降水和低涡移动路径的模拟能力,分析了加密探空资料同化对西南涡结构及其降水演变的影响。结果表明:在同化业务探空资料的基础上,引入西南涡加密探空资料能改善模式对本次降水和低涡移动路径的模拟,而仅同化业务探空资料对模拟结果的改善作用有限;引入西南涡加密探空资料,一方面能在初始风场上产生气旋式扰动,增加初始高原涡和西南涡的强度,另一方面通过调整初始四川盆地上空大气温、湿度结构,使模式在积分初期就能产生出实况量级的降水;西南涡加密探空资料的同化试验揭示了仅靠高层的高位涡不足以激发和维持700 hPa的西南涡,需要通过低层水平辐合引起正涡度增加并向上输送来增强700 hPa的气旋式环流,进而促进西南涡的移动和发展,而模拟初期降水的潜热释放也起重要作用,加深了对西南涡及其降水成因的认识。   相似文献   

15.
青藏高原低涡活动对降水影响的统计分析   总被引:6,自引:0,他引:6  
郁淑华  高文良  彭骏 《高原气象》2012,31(3):592-604
利用1998—2004年逐日08:00(北京时,下同)和20:00 500hPa高空图、日雨量和青藏高原低涡(下称高原低涡)切变线年鉴资料,统计分析了冬、夏半年不同生命史的高原低涡对我国和四川盆地东、西部降水的影响。结果表明,冬、夏半年高原低涡以东部涡占多数,6-10月有三分之一的东部涡能移出高原。冬半年高原低涡出现次数少,约占全年的五分之一,但也可造成高原及其周边地区的雨雪天气,特别是生命史超过36h以上的高原低涡有近半数可移出高原,造成高原区域暴雨雪,四川盆地中雨,半数可造成云南大雨雪或暴雨雪。夏半年,随着低涡生命史的增长,高原低涡影响高原及其周边地区和我国其他地区的降水范围和强度在增大,生命史超过60h以上的高原低涡可造成高原暴雨、甘肃中雨以上、四川盆地暴雨或大暴雨及云南大部分地区大雨以上的降水,每年都有1~5次可影响到华中、华东地区产生大雨以上的降水。100°E以东的高原低涡,不论是否移出,均可造成四川盆地中雨以上的降水。影响四川盆地降水的高原低涡以偏东路径为主,但东南路径影响更强。  相似文献   

16.
李立 《高原气象》1995,14(1):96-101
本文对天山山区及其邻近地区夏季降水过程的环境场特征、水热收支和涡度平衡做了诊断分析。结果表明,降水发生前的环境场有利于降水系统的发展。Q1,Q2和涡度平衡在降水发生前与降水期有一定的差异,降水期水热收支中起主作用的是水平平流项潜热和热基本上被冷平流所平衡;水汽的水平输送为降水的主要水汽来源,垂直输送也起一定的作用,涡度平衡中主要是水平平流累积的正涡度与散度项制造的负涡度相平衡,与副热带锋区上急流相  相似文献   

17.
利用2000—2014年6—8月常规资料、FNL资料和辽宁省逐时降水资料,将东北冷涡分为北涡、中间涡和南涡,统计每类冷涡短时强降水特征,并进行动态合成分析。结果表明:短时强降水共755次,冷涡下227次,冷涡强降水多发生在1~3 h内。6月短时强降水主要由中间涡引起,7、8月中间涡与北涡共同影响,有一定周期变化;而南涡没有在辽宁产生强降水。北涡水汽输送充沛,中间涡水汽条件较差,切变辐合场与水汽输送的结合是有利于强降水的重要因子。降水基本处于斜压区内,冷涡中心降水处在斜压区北侧和高空急流左前方,高空槽前或槽后的降水处在斜压区南侧和急流中心右后方,降水区附近多有高空急流形成的次级环流配合。槽后降水区干侵入活动明显,冷涡中心降水主要通过高位涡诱发气旋性环流而触发上升运动。  相似文献   

18.
利用WRF模式对2011年6月16—17日由西南低涡触发的一次四川盆地强降雨过程进行模拟分析,从边界层内的热力学特征角度分析西南涡发生、发展成因。结果表明:如不考虑地面热通量,虽然能模拟出西南涡,但西南涡的强度和位置与实际情况相差较大,且模拟结果基本没有再现降水;地面加热在西南涡的发展过程中起维持作用,西南涡的发展主要受降水凝结潜热的加热作用,降水凝结潜热的释放在很大程度上决定西南涡能否形成。  相似文献   

19.
采用FY-2E和Cloud Sat卫星资料、雷达资料、NCEP再分析资料和常规观测资料,分析2013年春季2次西南涡云型、云系结构和雷达回波演变、环境场特征。结果表明:(1)2次西南涡形成都伴随有高原槽东移和高原东侧偏南低空急流增强,偏南低空急流增强对低涡形成和东移起重要作用;(2)西南涡云系结构与低涡环流密切相关,西南涡形成和东移初期,低涡环流结构呈椭圆形,西南涡云系表现为叶状云系或逗点云系,随着低涡后部冷空气入侵加剧,低涡云系形成典型的"S"型后边界。低涡云系的结构形式和边界形状,对低涡形成和东移、急流发展有指示作用;(3)低涡降水分布与低涡云系结构有一定关系,低涡水平云系分布为叶状云系时,降水中心位于其东南部,低涡云系水平分布为逗点云系时,降水中心位于其逗点云内;(4)受低涡云系结构影响,低涡云系降水可分为2个阶段,第1阶段为低涡暖区降水,回波带呈反气旋弯曲,向东移动并向东北方向旋转;第2阶段中层干冷空气下沉加剧,干冷和暖湿气团交汇形成西南—东北向带状回波,雷达回波上"人"字形回波形成。  相似文献   

20.
基于AREM模式分别对2010年夏季发生在重庆的两次西南涡暴雨过程进行数值模拟,并利用模拟结果对暴雨过程的动力和热力场演变以及涡度收支变化进行分析。结果表明:1)西南涡造成的降水落区位于低涡中心附近,整个降水过程雨带分布与低涡移动路径相一致;2)整层水汽通量辐合极值出现时间超前于最大降水出现时间,降水增强阶段,整层水汽呈增长趋势,说明存在稳定的水汽输送;3)最强辐合出现时间略早于最大正涡度出现的时间,说明大气辐合能够促进涡度的发展,辐合中心比正涡度中心位置低;4)涡度辐合辐散项对低涡的发展加强起最主要的作用;涡度平流项和涡度辐合辐散项的作用集中体现在中低层大气中,而垂直对流项和扭转项的作用则在中高层更为明显;降水的强弱与涡度变率的大小及伸展高度相对应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号