首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
井孔水温对远场巨震同震响应及其机制的数模研究   总被引:1,自引:0,他引:1  
热量的流动必然伴随着温度的改变,地震活动期间的井孔水温同震响应也服从热力学的基本规律。本文以汶川8.0级地震和日本福岛9.0级地震为例,以海口ZK26井水温同震响应的观测数据为基础,运用热力学传导方程的数值模拟方法,研究了同震响应过程中井孔水温度变化与热量传导之间的关系及相关的热力学机制问题。通过正演的方法,得出沿井深方向不同时刻水温同震响应变化的数值模拟曲线,水温数值模拟曲线与实际测量数据一致。研究结果表明,井孔中水温同震响应方式(上升、下降或不变),与水温传感器的位置、热源的位置和分布、传感器与热源之间的相对空间等因素有关。  相似文献   

2.
通过巢湖皖14井高精度水温观测环境及数字化改造以来的观测资料,分析不同深度(-160m、-195m)处水温变化特征。以2012年4月11日印尼8.6级地震为例,巢湖皖14井水温同震响应所获得的数据为分析基础,利用Ansys中的热分析模型进行数值模拟,研究了同震响应过程中井孔系统水温度变化与热量传递间的关系及机理。模拟结果显示:水温数值模拟曲线与实际测量数据曲线一致,该井水温同震响应表现为下降特征,主要是热对流所致。  相似文献   

3.
选取2008—2022年全球MS8.0以上、全国MS7.0以上22个地震事件,分析江西省流体井网水位、水温测项对远大地震的同震响应特征。结果发现:不同流体井的同震响应特征不同,不同测项的同震响应特征也不一致,且井水位对地震的响应频率较高;井水位对远大震的同震响应以阶跃、震荡及持续变化为主,而水温同震响应以阶跃为主,且具有瞬时变化和持续变化2种特征;同一口井对不同地震的响应形态基本相同,而不同井对同一地震的响应形态有所区别。通过对观测井水位和水温同震响应机理的分析,认为江西流体观测井不同测项变化与井孔水文地质条件及观测系统有关。  相似文献   

4.
介绍了腾冲台水温、水位观测井的地理位置、地质构造条件和水温、水位仪器布设、运行情况。对腾冲台水温、水位以及尼泊尔8.1级地震的同震响应特征分析,结果显示:尼泊尔8.1级地震引起的腾冲台水温、水位同震响应表现形态为水位下降-水温上升型,同震效应表现非常显著。水温同震响应滞后于水位同震响应。当水位产生同震响应时,水震波引起井孔内不同温度层位的井水多次对流和掺混,致使水温产生同震响应变化。水位同震响应持续时间比水温持续时间短,但水位的响应程度相比水温要剧烈。  相似文献   

5.
基于全国地震地下流体台网数据,分析了芦山MS 6.1、马尔康MS 6.0地震引起的地下流体井水位、水温同震响应特征。结果表明,对于芦山MS 6.1地震水位同震响应观测井数量较多,以上升变化为主,同震变化幅度较大;而对于马尔康MS 6.0地震水位同震响应观测井数量较少,以振荡为主,变化幅度较小;2次地震引起的水位同震响应能力均强于水温测项,水温记录同震响应的前提是同井能记录到水位同震变化;2组地震引起的同震响应特征差异主要与震源机制解、台站分布密度、同震响应机理不同等有关。  相似文献   

6.
周洋  王俊  林俊 《地震工程学报》2022,44(3):611-620
不同水温观测点由于观测环境、井孔条件、观测部位构造条件、介质条件、地下水动力条件的差异,使得水温动态呈现出不同的形态。而同一观测井内不同层位的水温由于水温传感器安置深度和井孔热源分布状态的不同,会出现不同的同震响应形态。利用小波变换算法,分析了房县三海村井不同深度的水温在3次地震中的同震响应变化,并结合该井的温度梯度、围岩特性以及含水层分布,提出一个简单的井-含水层模型。进而探讨了同井不同层位水温出现不同变化的动力学机制,初步认为其动力学机制源于水的流动产生的热对流引起的变化。  相似文献   

7.
统计云南地下流体对尼泊尔8.1级地震的同震响应情况,分析和总结了水位和水温数字化资料的同震响应特征。结果表明:尼泊尔8.1级地震对云南地区的影响较大,其流体宏观与微观动态有较显著的同震响应。水位与水温对该大地震的记震能力明显高于水氡和水质;不同井水位、水温同震响应最大振幅、持续时间相差很大,其变化形态水位以波动及阶升为主,水温表现为上升或下降—恢复;从主震与最大强余震的记录来看,震级越大,同震响应出现比例越高,且在同井中响应幅度越大,持续时间越长;同井不同仪器记录的同震幅度和持续时间不同;水温同震响应均出现在有水位同震响应井中,表明井水位与水温同震响应是密切相关的,且井水温同震响应多由井水位同震响应引起。  相似文献   

8.
收集了2007年以来新30井数字化水位、水温远场大震同震响应观测数据,总结了其同震响应特征.新30井数字化水位和水温对不同震中距强震的同震响应在一定程度上存在着一致性,水位通常为先振荡(以振荡居多)后下降,而水温则通常表现为下降.统计结果显示,新30井水位对地震的同震响应灵敏性优于同井水温观测.  相似文献   

9.
薛红盼  张乐  陆丽娜  李静  卫清  刘青 《地震》2020,40(1):184-202
地震地下流体已成为一种重要的地震监测手段。 本文分析夏垫断裂带上观测井的同震响应特征, 探讨观测井水位、 水温同震变化对夏垫断裂带的影响机理, 收集和整理布设在夏垫断裂带上的赵各庄井和西集井两口观测井水位和水温同震响应资料, 从响应的地震次数及发震位置、 异常幅度、 时间和形态类型等方面对其响应特征进行分析, 从震中距、 震级和井-含水层岩性等方面探讨了地下流体地震前兆异常的成因。 结果显示, 赵各庄井和西集井水位地震响应能力强于水温, 响应形态以振荡型为主, 对于MS7.0以上地震具有显著的映震能力。 在水温资料中, 仅有赵各庄井对2008年汶川MS8.0地震有响应, 响应幅度为0.0129℃。 综合分析认为, 井-含水层岩性影响了两井同震响应形态特征, 远场大地震产生的动态应变导致了较大的水位变幅。  相似文献   

10.
应用新04井自2001年进行数字化改造以后的观测资料,对该井记录到的6次8.0级以上强震引起的同震变化特征进行了分析,得到以下认识:1)新04井对地震的同震响应在形态上,水位均表现为阶变上升,水温则表现为快速上升、快速恢复的突跳型变化。水温表现出的突跳型同震效应是新04井具有冷热两层地下水这种特殊水文地质条件所决定的;2)水位、水温对地震的响应存在明显的差异。无论是出现同震效应的次数还是效应的明显程度上水温都优于水位。表现出新04井水温反应地下应力应变较水位灵敏;3)新04井地下流体同震响应的明显程度与地震震级有明显的相关性。  相似文献   

11.
采用多井对多震的方式,选取山东省地下流体观测井网中同震响应较好的6口观测井作为研究对象,分别从水位变化形态和幅度对比分析2011年日本MW9.0地震、2012年苏门答腊MW8.6地震和2015年尼泊尔MW7.8地震引起的井水位变化特征,探讨引起该变化的可能机理。研究结果显示:水位同震变化形态以振荡为主;通过定量分析认为聊古一井井水位的阶升是由含水层渗透系数增大所致;位于同一断裂带上的聊古一井和鲁27井井水位在同一地震中所表现的变化形态不同,可能与两个观测井所处的地质构造条件和地震活动背景不同有关;区域应力场的变化会影响栖霞鲁07井的水位同震变化形态;水位同震变化幅度与震级、井震距存在一定关系,同时也取决于含水层水文地质条件的变化量。   相似文献   

12.
金沙江水网对日本9.0级地震的同震响应及其特征与机理   总被引:1,自引:0,他引:1  
本文系统介绍了金沙江水网6口观测井水位与水温动态对日本9.0级地震的同震响应, 分析了同震响应的特征与同震响应的机理。 结果表明, 4口井水位有同震响应, 同震响应形态全是振荡, 对地震波响应的时间、 振荡的幅度、 振荡的持续时间等的差异主要取决于井-含水层系统的导水系数。 结果还表明, 3口井水温有同震响应, 响应形态是不对称的V字或U字形; 水温的先期下降是井筒内上(冷)下(热)水混合作用引起的, 后期上升是井水与围岩之间的热传导引起吸热作用的结果, 各井水温升降的幅度、 持续时间等不同, 主要是井水温度梯度与水岩热传导系数不同引起的; 后期升幅总是大于先期降幅, 这可能与地震波作用使井区大地热流增强有关。  相似文献   

13.
通过分析江苏句容16井2001~2007年间几次远大震的同震效应现象,发现苏16井动水位和水温资料对震级大于Ms7.5,震中距800~5000km不等的远大震,有较明显的同震效应反映,且动水位和水温的同震阶变总是上升,幅值随震级的增大而增大,随震中距的增大而减小。本文对苏16井动水位和水温同震效应的同步变化机理进行了初步探讨。  相似文献   

14.
重庆井网水位水温同震响应特征分析   总被引:1,自引:1,他引:0  
本文以2008年以来全球范围内发生的5次大地震为例,对重庆井网水位和水温同震响应特征进行了分析,结合井孔水文地质条件和自身观测条件,探讨了不同同震响应现象的可能成因并对其机理进行了探讨。结果表明,水位的记震能力优于水温,水位同震响应形态主要包括上升、下降和振荡三种类型,且同一口井水位对不同地震的响应形态不同;水温的同震响应形态主要包括上升和下降两种类型,其中只有荣昌华江和北碚柳荫井水温对5次地震均有同震响应,且同一口井水温对不同地震的响应形态相同。进一步分析表明,北碚柳荫井水位的同震响应能力优于荣昌华江井水位,北碚柳荫井水位的同震振幅与地震能密度成正比,并给出了其同震变化幅度与地震能量密度的对应关系。最后分别对水位和水温同震响应机理进行了探讨。  相似文献   

15.
向阳  孙小龙  杨朋涛  张磊  巩浩波 《地震》2020,40(2):155-165
2019年长宁M6.0地震和2018年兴文M5.7地震引起了华蓥山断裂及其附近区域8口观测井水位不同程度的响应变化。 本文对比分析各观测井水位的同震响应特征, 从地震波能量密度、 同震破裂体应变、 含水层渗透性参数变化以及断裂带控制作用几个方面探讨了其同震响应机理。 结果显示, 井水位同震响应的幅度与地震波能量密度有一定关系; 2019年长宁M6.0地震引起的井水位同震响应形态符合同震破裂体应变四象限空间分布特征, 但2018年兴文M5.7地震则不符合; 两次地震引起的含水层渗透性参数变化存在空间上的不一致性和单点各向异性, 并且断裂带自身的水文条件对井水位同震响应形态和幅度有一定的控制作用。 综合分析认为, 目前已有的几种机理无法完全解释两次地震引起的井水位同震响应现象。  相似文献   

16.
基于全国地震地下流体台网数据库,分析了2022年1月8日青海海北藏族自治州门源县 MS6.9地震引起的地下流体井水位、水温同震响应特征。结果表明:本次地震引起的水位同震响应观测井数量远大于水温;水位同震响应开始时间、结束时间均优先于水温,水温同震响应是水位同震响应的次生变化。对比门源2022年1月8日 MS6.9和2016年1月21日 MS6.4地震,发现地震能量不同是造成两次地震同震响应差异的主要原因。  相似文献   

17.
以宁夏流体台网井水位、水温为例,分析了汶川8.0级地震引起的水位、水温同震变化特征,对比了同震响应波形特征。  相似文献   

18.
以2008—2017年腾冲地震台井水位记录的同震响应事件为研究对象,系统分析该井水位的同震响应特征,结合井孔地质背景条件,对同震响应机理进行初步探讨。结果表明:腾冲地震台井水位同震响应能力随着震级增大而逐渐增强;因井震距不同,同震响应主要表现为近震阶降—复原型和远震振荡型变化;同震响应幅度随震级增大而增大,随井震距增大而减小,且水位同震变化受震级与井震距的影响力基本相当;震级越大,同震响应持续时间越长;发生井水位同震响应的地震分布具有明显区位型特点。分析认为,振荡型同震响应机理与面波作用有关,阶降—复原型同震响应机理可能与腾冲地震台观测井所处地质构造有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号