首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental contamination with As and Sb caused by past mining activities at Sb mines is a significant problem in Slovakia. This study is focused on the environmental effects of the 5 abandoned Sb mines on water, stream sediment and soil since the mines are situated in the close vicinity of residential areas. Samples of mine wastes, various types of waters, stream sediments, soils, and leachates of the mine wastes, stream sediments and selected soils were analyzed for As and Sb to evaluate their geochemical dispersion from the mines. Mine wastes collected at the mine sites contained up to 5166 mg/kg As and 9861 mg/kg Sb. Arsenic in mine wastes was associated mostly with Fe oxides, whereas Sb was present frequently in the form of individual Sb, Sb(Fe) and Fe(Sb) oxides. Waters of different types such as groundwater, surface waters and mine waters, all contained elevated concentrations of As and Sb, reaching up to 2150 μg/L As and 9300 μg/L Sb, and had circum-neutral pH values because of the buffering capacity of abundant Ca- and Mg-carbonates. The concentrations of Sb in several household wells are a cause for concern, exceeding the Sb drinking water limit of 5 μg/L by as much as 25 times. Some attenuation of the As and Sb concentrations in mine and impoundment waters was expected because of the deposition of metalloids onto hydrous ferric oxides built up below adit entrances and impoundment discharges. These HFOs contained >20 wt.% As and 1.5 wt.% Sb. Stream sediments and soils have also been contaminated by As and Sb with the peak concentrations generally found near open adits and mine wastes. In addition to the discharged waters from open adits, the significant source of As and Sb contamination are waste-rock dumps and tailings impoundments. Leachates from mine wastes contained as much as 8400 μg/L As and 4060 μg/L Sb, suggesting that the mine wastes would have a great potential to contaminate the downstream environment. Moreover, the results of water leaching tests showed that Sb was released from the solids more efficiently than As under oxidizing conditions. This might partly explain the predominance of Sb over As in most water samples.  相似文献   

2.
Geochemical variations in stream sediments (n = 54) from the Mahaweli River of Sri Lanka have been evaluated from the viewpoints of lithological control, sorting, heavy mineral concentration, influence of climatic zonation (wet, intermediate, and dry zones), weathering, and downstream transport. Compositions of soils (n = 22) and basement rocks (n = 38) of the catchment and those of <180 μm and 180–2000 μm fractions of the stream sediments were also examined. The sediments, fractions, soils and basement rocks were analyzed by X-ray fluorescence to determine their As, Pb, Zn, Cu, Ni, Cr, V, Sr, Y, Nb, Zr, Th, Sc, Fe2O3, TiO2, MnO, CaO, P2O5 and total sulfur contents. Abundances of high field strength and ferromagnesian elements in the sediments indicate concentration of durable heavy minerals including zircon, tourmaline, rutile, monazite, garnet, pyriboles, and titanite, especially in <180 μm fractions. The sediments show strong correlation between Ti and Fe, further suggesting presence of heavy mineral phases containing both elements, such as ilmenite and magnetite. The basement rocks range from mafic through to felsic compositions, as do the soils. The river sediments lack ultrabasic components, and overall have intermediate to felsic compositions. Elemental spikes in the confluences of tributary rivers and high values in the <180 μm fractions indicate sporadic inputs of mafic detritus and/or heavy minerals to the main channel. Al2O3/(K2O + Na2O) and K2O/Na2O ratios of the sediments and LOI values of the soils correlate well with the climatic zones, suggesting intense weathering in the wet zone, lesser weathering in the intermediate zone, and least weathering in the dry zone. Low Sr and CaO contents and Cr/V ratios in stream sediments in the wet zone also suggest climatic influence. Fe-normalized enrichment factors (EFs) for As, Pb, Zn, Cu, Ni and Cr in stream sediments in the main channel are nearly all <1.5, indicating there is no significant environmental contamination. The chemistry of the sediments, rocks and the soils in the Mahaweli River are thus mainly controlled by source lithotype, weathering, sorting, and heavy mineral accumulation.  相似文献   

3.
The fate of potentially harmful metals (PHM) after their entry into an unpolluted fresh water body depends on the physicochemical and biological parameters of the aquatic ecosystem. This paper considers the effect of pH and suspended particles (SP) on the behavior of Cu, Zn and Cd when they enter a fresh water reservoir. In a field experiment, four mesocosms were constructed in the Novosibirskoye Reservoir to allow systematic variation of SP concentration (15 or 250 mg/L) and pH (8.5 or 6.5). The initial concentrations of Cu, Zn and Cd in the mesocosms were 1000, 1000 and 200 μg/L, respectively. Natural bottom sediments were used to provide additional mineral SP, and water hyacinth was used as a floating plant species. Over 11 days, measurements were made of several indicators: residual metal concentration in solution ([PHM]w); metal concentration in SP ([PHM]s); primary productivity of the phytoplankton community; mass of settled SP; PHM concentration in settled SP; and PHM bioaccumulation by water hyacinth. The ratio [PHM]w/[PHM]s in the water varied in the order Cu < Zn < Cd and was higher at pH 6.5 than at pH 8.5. This observation reflects different PHM sorption (Cu > Zn > Cd) onto mineral SP and PHM biosorption by planktonic organisms. Phytoplankton acts as a renewable source of organic SP and plays an important role in metal removal from the water in the mesocosms. After 11 days the residual concentrations of Cu, Zn and Cd in the mesocosm without SP addition (initial SP concentration was 15 mg/L) were 272, 355 and 84 μg/L, respectively. The residual concentrations of Cu, Zn and Cd in mesocosms with SP addition were 57, 100 and 14 μg/L at pH 8.5 and 80, 172 and 20 μg/L at pH 6.5, respectively. Therefore, addition of SP resulted in faster and more complete removal of metals into the bottom sediments. Floating plants (water hyacinth) accumulated PHM (Cu > Zn > Cd) more effectively at pH 8.5 than at pH 6.5, and PHM concentrations in the roots were higher than in settling SP. The general trends of PHM removal from contaminated water via sedimentation and bioaccumulation are compared with changes of metal speciation in solution.  相似文献   

4.
5.
New geochemical data on cosmic spherules (187 major element, 76 trace element, and 10 oxygen isotope compositions) and 273 analyses from the literature were used to assess the chemical diversity observed among glass cosmic spherules with chondritic composition. Three chemical groups of glass spherules are identified: normal chondritic spherules, CAT-like spherules (where CAT refers to Ca-Al-Ti-rich spherules), and high Ca-Al spherules. The transition from normal to high Ca-Al spherules occurs through a progressive enrichment in refractory major elements (on average from 2.3 wt.% to 7.0 wt.% for CaO, 2.8 wt.% to 7.2 wt.% for Al2O3, and 0.14 wt.% to 0.31 wt.% for TiO2) and refractory trace elements (from 6.2 μg/g to 19.3 μg/g for Zr and 1.6CI-4.3CI for Rare Earth Elements-REEs) relative to moderately refractory elements (Mg, Si) and volatile elements (Rb, Na, Zn, Pb). Based on a comparison with experimental works from the literature, these chemical groups are thought to record progressive heating and evaporation during atmospheric entry. The evaporative mass losses evaluated for the high Ca-Al group (80-90%) supersede those of the CAT spherules which up to now have been considered as the most heated class of stony cosmic spherules. However, glass cosmic spherules still retain isotopic and elemental evidence of their source and precursor mineralogy. Four out of the 10 normal and high Ca-Al spherules analysed for oxygen isotopes are related to ordinary chondrites (δ18O = 13.2-17.3‰ and δ17O = 7.6-9.2‰). They are systematically enriched in Ni and Co (Ni = 24-500 μg/g) with respect to spherules related to carbonaceous chondrites (Ni < 1.2 μg/g, δ18O = 13.1-28.0‰ and δ17O = 5.1-14.0‰). REE abundances in cosmic spherules, which are not fractionated according to parent body or atmospheric entry heating, can then be used to unravel the precursor mineralogy. Spherules with flat REE pattern close to unity when normalized to CI are the most abundant in our dataset (54%) and likely derive from homogeneous, fine-grained chondritic precursors. Other REE patterns fall into no more than five categories, a surprising reproducibility in view of the mineralogical heterogeneity of chondritic lithologies at the micrometeorite scale.  相似文献   

6.
The shallow aquifer beneath the Western Snake River Plain (Idaho, USA) exhibits widespread elevated arsenic concentrations (up to 120 μg L−1). While semi-arid, crop irrigation has increased annual recharge to the aquifer from approximately 1 cm prior to a current rate of >50 cm year−1. The highest aqueous arsenic concentrations are found in proximity to the water table (all values >50 μg L−1 within 50 m) and concentrations decline with depth. Despite strong vertical redox stratification within the aquifer, spatial distribution of aqueous species indicates that redox processes are not primary drivers of arsenic mobilization. Arsenic release and transport occur under oxidizing conditions; groundwater wells containing dissolved arsenic at >50 μg L−1 exhibit elevated concentrations of O2 (average 4 mg L−1) and NO3 (average 8 mg L−1) and low concentrations of dissolved Fe (<20 μg L−1). Sequential extractions and spectroscopic analysis of surficial soils and sediments indicate solid phase arsenic is primarily arsenate and is present at elevated concentrations (4–45 mg kg−1, average: 17 mg kg−1) relative to global sedimentary abundances. The highest concentrations of easily mobilized arsenic (up to 7 mg kg−1) are associated with surficial soils and sediments visibly stained with iron oxides. Batch leaching experiments on these materials using irrigation waters produce pore water arsenic concentrations approximating those observed in the shallow aquifer (up to 152 μg L−1). While As:Cl aqueous phase relationships suggest minor evaporative enrichment, this appears to be a relic of the pre-irrigation environment. Collectively, these data indicate that infiltrating irrigation waters leach arsenic from surficial sediments to the underlying aquifer.  相似文献   

7.
The fractionation of P in Pandoh Lake surface sediments has been investigated for the first time in order to understand its environmental availability and sources, and the eutrophication status of this lake. Inorganic-P is present mainly as authigenic-P (step-III). The authigenic P concentration is higher in winter relative to the summer and monsoon seasons and ranged from 35.9 to 46.9 μg/g. The loosely sorbed or exchangeable-P (step-I), Fe(III)-bound-P (step-II) and detrital inorganic-P (step-IV) were higher in the monsoon season and varied from 3.70 to 11.1 μg/g, 16.9 to 32.0 μg/g and 9.89 to 17.0 μg/g, respectively. Organic-P reached a maximum in the summer season and ranged from 8.00 to 14.9 μg/g. Authigenic-P and detrital inorganic-P show seasonal changes, as pH influences the interaction between P and CaCO3 in the water column. In the winter season, phosphate is precipitated out of the water column and fixed in the sediments as a result of an increase in pH. Calcite-bound-P in the sediments may be redissolved by decreasing pH in the summer season. Relatively high rates of mineralization during the monsoon results in the seasonal pattern of organic-P fractionation to sediment as follows: monsoon = winter < summer. Iron, Ca, organic matter and silt and clay contents seem to play a significant role in regulating the seasonal P budget. Principal component analysis (PCA) was used to identify the factors which influence sedimentary P in the different seasons.  相似文献   

8.
Sediments from the Aquia aquifer in coastal Maryland were collected as part of a larger study of As in the Aquia groundwater flow system where As concentration are reported to reach levels as high as 1072 nmol kg−1, (i.e., ∼80 μg/L). To test whether As release is microbially mediated by reductive dissolution of Fe(III) oxides/oxyhydroxides within the aquifer sediments, the Aquia aquifer sediment samples were employed in a series of microcosm experiments. The microcosm experiments consisted of sterilized serum bottles prepared with aquifer sediments and sterilized (i.e., autoclaved), artificial groundwater using four experimental conditions and one control condition. The four experimental conditions included the following scenarios: (1) aerobic; (2) anaerobic; (3) anaerobic + acetate; and (4) anaerobic + acetate + AQDS (anthraquinone-2,6-disulfonic acid). AQDS acts as an electron shuttle. The control condition contained sterilized aquifer sediments kept under anaerobic conditions with an addition of AQDS. Over the course of the 27 day microcosm experiments, dissolved As in the unamended (aerobic and anaerobic) microcosms remained constant at around ∼28 nmol kg−1 (2 μg/L). With the addition of acetate, the amount of As released to the solution approximately doubled reaching ∼51 nmol kg−1 (3.8 μg/L). For microcosm experiments amended with acetate and AQDS, the dissolved As concentrations exceeded 75 nmol kg−1 (5.6 μg/L). The As concentrations in the acetate and acetate + AQDS amended microcosms are of similar orders of magnitude to As concentrations in groundwaters from the aquifer sediment sampling site (127-170 nmol kg−1). Arsenic concentrations in the sterilized control experiments were generally less than 15 nmol kg−1 (1.1 μg/L), which is interpreted to be the amount of As released from Aquia aquifer sediments owing to abiotic, surface exchange processes. Iron concentrations released to solution in each of the microcosm experiments were higher and more variable than the As concentrations, but generally exhibited similar trends to the As concentrations. Specifically, the acetate and acetate + AQDS amended microcosm typically exhibited the highest Fe concentrations (up to 1725 and 6566 nmol kg−1, respectively). The increase in both As and Fe in the artificial groundwater solutions in these amended microcosm experiments strongly suggests that microbes within the Aquia aquifer sediments mobilize As from the sediment substrate to the groundwaters via Fe(III) reduction.  相似文献   

9.
Arsenic-bearing stream sediments enter the Upper Isle River, an Au mining-influenced basin (France), by the discharge of mining sites, tailings runoff and weathering of mineralized veins in granites and gneiss. Some fresh ochreous As-rich deposits on the river banks and in floodplains are identified as additional As-rich point sources (As between 0.07 and 6.5 wt.%). The <63 μm fraction of stream sediments contains elevated As bulk concentrations, ranging from 160 to 890 mg/kg, compared to the geochemical background (70 mg/kg on average). It is also enriched in Cd, Hg and W. Spatial variations of these trace elements show 3 significant increases corresponding to the 3 drained mining districts. They decrease down river but are still enriched 30 km downstream of the mining districts due to downstream transportation. Three types of trace element-bearing phases have been identified as: (i) detrital primary sulfides, with high in situ As percentages (up to 43.7 wt.%). They also carry significant amounts of W according to the differences in chemical compositions of the total and light <63 μm fractions. These sulfide particles do not show any sign of alteration in the oxygenated stream sediments; (ii) Secondary Fe–Mn oxyhydroxides,some with very high in situ As2O5 concentrations (up to 59.8 wt.%) and with about 40% of the total Cd composition. They occur as fresh precipitates in the river banks and floodplains and as discrete particles in stream sediments and (iii) Al–Si fine-grained phases. Their major element composition is highly variable with in situ As2O5 concentrations ranging between 430 and 5020 mg/kg. This type of solid phase is also the major carrier of Hg.  相似文献   

10.
Two samples of produced-water collected from a storage tank at US Geological Survey research site B, near Skiatook Lake in northeastern Oklahoma, have activity concentrations of dissolved 226Ra and 228Ra that are about 1500 disintegrations/min/L (dpm/L). Produced-water also contains minor amounts of small (5–50 μm) suspended grains of Ra-bearing BaSO4 (barite). Precipitation of radioactive barite scale in the storage tank is probably hindered by low concentrations of dissolved SO4 (2.5 mg/L) in the produced-water. Sediments in a storage pit used to temporarily collect releases of produced-water have marginally elevated concentrations of “excess” Ra (several dpm/g), that are 15–65% above natural background values. Tank and pit waters are chemically oversaturated with barite, and some small (2–20 μm) barite grains observed in the pit sediments could be transferred from the tank or formed in place. Measurements of the concentrations of Ba and excess Ra isotopes in the pit sediments show variations with depth that are consistent with relatively uniform deposition and progressive burial of an insoluble Ra-bearing host (barite?). The short-lived 228Ra isotope (half-life = 5.76 a) shows greater reductions with depth than 226Ra (half-life = 1600 a), that are likely explained by radioactive decay. The 228Ra/226Ra activity ratio of excess Ra in uppermost pit sediments (1.13–1.17) is close to the ratio measured in the samples of produced-water (0.97, 1.14). Declines in Ra activity ratio (excess) with sediment depth can be used to estimate an average rate of burial of 4 cm/a for the Ra-bearing contaminant. Local shallow ground waters contaminated with NaCl from produced-water have low dissolved Ra (<20 dpm/L) and also are oversaturated with barite. Barite is a highly insoluble Ra host that probably limits the environmental mobility of Ra at site B.  相似文献   

11.
We measured U in sediments (both pore waters and solid phase) from three locations on the middle Atlantic Bight (MAB) from the eastern margin of the United States: a northern location on the continental shelf off Massachusetts (OC426, 75 m water depth), and two southern locations off North Carolina (EN433-1, 647 m water depth and EN433-2, 2648 m water depth). These sediments underlie high oxygen bottom waters (250-270 μM), but become reducing below the sediment-water interface due to the relatively high organic carbon oxidation rates in sediments (EN433-1: 212 μmol C/cm2/y; OC426: 120 ± 10 μmol C/cm2/y; EN433-2: 33 μmol C/cm2/y). Pore water oxygen goes to zero by 1.4-1.5 cm at EN433-1 and OC426 and slightly deeper oxygen penetration depths were measured at EN433-2 (∼4 cm).All of the pore water profiles show removal of U from pore waters. Calculated pore water fluxes are greatest at EN433-1 (0.66 ± 0.08 nmol/cm2/y) and less at EN433-2 and OC426 (0.24 ± 0.05 and 0.13 ± 0.05 nmol/cm2/y, respectively). Solid phase profiles show authigenic U enrichment in sediments from all three locations. The average authigenic U concentrations are greater at EN433-1 and OC426 (5.8 ± 0.7 nmol/g and 5.4 ± 0.2 nmol/g, respectively) relative to EN433-2 (4.1 ± 0.8 nmol/g). This progression is consistent with their relative ordering of ‘reduction intensity’, with greatest reducing conditions in sediments from EN433-1, less at OC426 and least at EN433-2. The authigenic U accumulation rate is largest at EN433-1 (0.47 ± 0.05 nmol/cm2/y), but the average among the three sites on the MAB is ∼0.2 nmol/cm2/y. Pore water profiles suggest diffusive fluxes across the sediment-water interface that are 1.4-1.7 times greater than authigenic accumulation rates at EN433-1 and EN433-2. These differences are consistent with oxidation and loss of U from the solid phase via irrigation and/or bioturbation, which may compromise the sequestration of U in continental margin sediments that underlie bottom waters with high oxygen concentrations.Previous literature compilations that include data exclusively from locations where [O2]bw < 150 μM suggest compelling correlations between authigenic U accumulation and organic carbon flux to sediments or organic carbon burial rate. Sediments that underlie waters with high [O2]bw have lower authigenic U accumulation rates than would be predicted from relationships developed from results that include locations where [O2]bw < 150 μM.  相似文献   

12.
The solubility and partitioning of Pt in a S-free vapor - brine - rhyolite melt - Pt metal assemblage has been quantified at 800 °C, fO2=NNO and pressures of 100 and 140 MPa. Vapor and brine were sampled at run conditions by trapping these phases as glass-hosted fluid inclusions as the melt cooled through the glass transition temperature. The vapor and brine were in equilibrium with the melt at the time of trapping and, thus, represent fluids which were sampled at the termination of each experimental run. The microthermometrically determined salinities of vapor and brine are ∼2 and ∼63 wt.% NaCl eq. and ∼9 and ∼43 wt.% NaCl eq. at 100 and 140 MPa, respectively. Platinum solubilities in vapor, brine and glass (i.e., quenched melt) were quantified by using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS). Equilibrium is discussed with reference to the major and trace element concentrations of glass-hosted fluid inclusions as well as the silicate melt over run times that varied from 110 to 377 h at 140 MPa and 159 to 564 h at 100 MPa. Platinum solubility values (±1σ) in H2O-saturated felsic melt are 0.28 ± 0.13 μg/g and 0.38 ± 0.06 μg/g at 140 and 100 MPa, respectively. Platinum solubility values () at 140 and 100 MPa, respectively, in aqueous vapor are 0.91 ± 0.29 μg/g and 0.37 ± 0.17 μg/g and in are brine 16 ± 10 μg/g and 3.3 ± 1.0 μg/g. The measured solubility data were used to calculate Nernst-type partition coefficients for Pt between vapor/melt, brine/melt and vapor/brine. The partition coefficient values () for vapor/melt, brine/melt and vapor/brine at 140 MPa are 2.9 ± 1.0, 67 ± 27, and 0.13 ± 0.05 and at 100 MPa are 1.0 ± 0.2, 6.8 ± 2.4, and 0.15 ± 0.05. The partitioning data were used to model the Pt-scavenging capacity of vapor and brine during the crystallization-driven degassing (i.e., second boiling) of a felsic silicate melt over a depth range (i.e., 3-6 km) consistent with the evolution of magmatic-hydrothermal ore deposits. Model calculations suggest that aqueous vapor and brine can scavenge sufficient quantities of Pt, and by analogy other platinum group elements (PGE), to produce economically important PGE-rich magmatic-hydrothermal ore deposits in Earth’s upper continental crust.  相似文献   

13.
Antimony in the environment: Lessons from geochemical mapping   总被引:2,自引:0,他引:2  
The distribution of Sb in a variety of sample materials, including soils, plants and surface water, was studied at different scales, from continental to local, combining published data sets with the aim of delineating the impact and relative importance of geogenic vs. anthropogenic Sb sources. Geochemical mapping demonstrates that variation is high at all scales – from the detailed scale with sample densities of many sites per km2 to the continental-scale with densities of 1 site per 5000 km2. Different processes govern the Sb distribution at different scales. A high sample density of several samples per km2 is needed to reliably detect mineralisation or contamination in soil samples. Median concentrations are so low for Sb in most sample materials (below 1 mg/kg in rocks and soils, below 0.1 mg/kg in plants, below 0.1 μg/L in surface water) that contamination is easier to detect than for many other elements. Distribution patterns on the sub-continental to continental-scale are, however, still dominated by natural variation. Given that the geochemical background is characterised by a high variation at all scales, it appears impossible to establish a reliable single value for “good soil quality” or a “natural background concentration” for Sb for any sizeable area, e.g., for Europe. For such a differentiation, geochemical maps at a variety of scales are needed.  相似文献   

14.
15.
Indigofera melanadenia and Tephrosia longipes plant species, collected from Cu–Ni mining area, were evaluated for accumulation of Cu and Ni. The total and bioavailable concentrations of Cu and Ni in the host soils were also determined. Flame Atomic Absorption Spectrometry was used for all metal determinations. The total and bioavailable concentrations of Cu in the soils were in the range 900–9000 μg/g and 200–2000 μg/g respectively. For Ni, the total and bioavailable concentrations were in the range 900–2000 μg/g and ∼ 40–100 μg/g respectively. The concentrations of Cu and Ni in the leaves of I. melanadenia were higher than in the roots with a range 80–130 μg/g in the leaves and 20–80 μg/g in the roots for Cu and a range of 150–200 μg/g in the leaves and 20–60 μg/g in the roots for Ni. Concentration of Cu in T. longipes was in the range of 37–240 μg/g and 150–200 μg/g in the leaves and roots respectively while the concentration of Ni was 80–140 μg/g in the leaves and 25–100 μg/g in the roots. Results indicate that both species have a potential for accumulating Cu and Ni. Translocation factor, a ratio of shoots to roots metal concentration, was used to evaluate the translocation properties of the plants from roots to shoots. Translocation factors of the plants were ≥ 1 suggesting efficient translocation of metals from roots to shoots.  相似文献   

16.
17.
We re-evaluate the cycling of molybdenum (Mo) and rhenium (Re) in the near-surface environment. World river average Mo and Re concentrations, initially based on a handful of rivers, are calculated using 38 rivers representing five continents, and 11 of 19 large-scale drainage regions. Our new river concentration estimates are 8.0 nmol kg−1 (Mo), and 16.5 pmol kg−1 (Re, natural + anthropogenic). The linear relationship of dissolved Re and in global rivers (R2 = 0.76) indicates labile continental Re is predominantly hosted within sulfide minerals and reduced sediments; it also provides a means of correcting for the anthropogenic contribution of Re to world rivers using independent estimates of anthropogenic sulfate. Approximately 30% of Re in global rivers is anthropogenic, yielding a pre-anthropogenic world river average of 11.2 pmol Re kg−1. The potential for anthropogenic contribution is also seen in the non-negligible Re concentrations in precipitation (0.03-5.9 pmol kg−1), and the nmol kg−1 level Re concentrations of mine waters. The linear Mo- relationship (R2 = 0.69) indicates that the predominant source of Mo to rivers is the weathering of pyrite. An anthropogenic Mo correction was not done as anthropogenically-influenced samples do not display the unambiguous metal enrichment observed for Re. Metal concentrations in high temperature hydrothermal fluids from the Manus Basin indicate that calculated end-member fluids (i.e. Mg-free) yield negative Mo and Re concentrations, showing that Mo and Re can be removed more quickly than Mg during recharge. High temperature hydrothermal fluids are unimportant sinks relative to their river sources 0.4% (Mo), and 0.1% (pre-anthropogenic Re). We calculate new seawater response times of 4.4 × 105 yr (τMo) and 1.3 × 105 yr (τRe, pre-anthropogenic).  相似文献   

18.
Dissolved (<1 kDa), colloidal (1 kDa–0.45 μm) and particulate (>0.45 μm) size fractions of 30 elements were determined for four rivers (Sirppujoki, Laajoki, Mynäjoki and Paimionjoki), including 12 low-order inflow streams, largely affected by soil erosion and acidity in SW Finland. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these rivers. Total metal concentrations were relatively high but most of the elements occurred mainly in a colloidal or particulate form and even elements expected to be very soluble occurred to a large extent in colloidal form. According to geochemical modelling these patterns could be explained by in-stream metal complexation/adsorption only to a limited extent. Instead there were strong indications that the high metal concentrations and dominant solid fractions were largely caused by erosion of metal bearing phyllosilicates. A strong influence of acid sulphate (AS) soils, known to exist in the catchment, could be clearly distinguished in Sirppujoki river as it had very high concentrations of dissolved metals, while in the two nearby rivers (Laajoki and Mynäjoki) the influence of AS soils was largely masked by eroded phyllosilicates. In Paimionjoki river the colloidal and particulate fractions dominated very strongly, indicating that total metal concentrations are almost solely controlled by erosion of phyllosilicates. Consequently, rivers draining clay plains sensitive to erosion, like those in SW Finland, have generally high “background” metal concentrations due to erosion of relatively non-toxic colloidal/particulate phyllosilicates. Thus, relying on only semi-dissolved (<0.45 μm) concentrations obtained in routine monitoring and/or speciation modelling can lead to a great overestimation of the water toxicity in this environment.  相似文献   

19.
The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.  相似文献   

20.
Volcanogenic sediments are typically rich in Fe and Mn-bearing minerals that undergo substantial alteration during early marine diagenesis, however their impact on the global biogeochemical cycling of Fe and Mn has not been widely addressed. This study compares the near surface (0-20 cm below sea floor [cmbsf]) aqueous (<0.02 μm) and aqueous + colloidal here in after ‘dissolved’ (<0.2 μm) pore water Fe and Mn distributions, and ancillary O2(aq), and solid-phase reactive Fe distributions, between two volcanogenic sediment settings: [1] a deep sea tephra-rich deposit neighbouring the volcanically active island of Montserrat and [2] mixed biosiliceous-volcanogenic sediments from abyssal depths near the volcanically inactive Crozet Islands archipelago. Shallow penetration of O2(aq) into Montserrat sediments was observed (<1 cmbsf), and inferred to partially reflect oxidation of fine grained Fe(II) minerals, whereas penetration of O2(aq) into abyssal Crozet sediments was >5 cmbsf and largely controlled by the oxidation of organic matter. Dissolved Fe and Mn distributions in Montserrat pore waters were lowest in the surface oxic-layer (0.3 μM Fe; 32 μM Mn), with maxima (20 μM Fe; 200 μM Mn) in the upper 1-15 cmbsf. Unlike Montserrat, Fe and Mn in Crozet pore waters were ubiquitously partitioned between 0.2 μm and 0.02 μm filtrations, indicating that the pore water distributions of Fe and Mn in the (traditionally termed) ‘dissolved’ size fraction are dominated by colloids, with respective mean abundances of 80% and 61%. Plausible mechanisms for the origin and composition of pore water colloids are discussed, and include prolonged exposure of Crozet surface sediments to early diagenesis compared to Montserrat, favouring nano-particulate goethite formation, and the elevated dissolved Si concentrations, which are shown to encourage fine-grained smectite formation. In addition, organic matter may stabilise authigenic Fe and Mn in the Crozet pore waters. We conclude that volcanogenic sediment diagenesis leads to a flux of colloidal material to the overlying bottom water, which may impact significantly on deep ocean biogeochemistry. Diffusive flux estimates from Montserrat suggest that diagenesis within tephra deposits of active island volcanism may also be an important source of dissolved Mn to the bottom waters, and therefore a source for the widespread hydrogenous MnOx deposits found in the Caribbean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号