首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
  1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
  2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
  3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
  4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
  5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
  6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
  7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
  8. No unusual velocities are observed in the photosphere at flare time.
  相似文献   

2.
Wang  Haimin 《Solar physics》1997,174(1-2):163-173
This paper reviews studies of the relationship between the evolution of vector magnetic fields and the occurrence of major solar flares. Most of the data were obtained by the video magnetograph systems at Big Bear Solar Observatory (BBSO) and Huairou Solar Observatory (HSO). Due to the favorable weather and seeing conditions at both stations, high-resolution vector magnetograph sequences of many active regions that produced major flares during last solar maximum (1989–1993) have been recorded. We have analyzed several sequences of magnetograms to study the evolution of vector magnetic fields of flare productive active regions. The studies have focused on the following three aspects: (1) processes which build up magnetic shear in active regions; (2) the pre-flare magnetic structure of active regions; and (3) changes of magnetic shear immediately preceding and following major flares. We obtained the following results based on above studies: (1) Emerging flux regions (EFRs) play very important roles in the production of complicated photospheric flow patterns, magnetic shear and flares. (2) Although the majority of flares prefer to occur in magnetically sheared regions, many flares occurred in regions without strong photospheric magnetic shear. (3) We found that photospheric magnetic shear increased after all the 6 X-class flares studied by us. We want to emphasize that this discovery is not contradictory to the energy conservation principle, because a flare is a three-dimensional process, and the photosphere only provides a two-dimensional boundary condition. This argument is supported by the fact that if two initial ribbons of a flare are widely separated (which may correspond to a higher-altitude flare), the correlation of the flare with strong magnetic shear is weak; if the two ribbons of a flare are close (which may correspond to a lower-altitude flare), its correlation with the strong shear is strong. (4) We have analyzed 18 additional M-class flares observed by HSO in 1989 and 1990. No detectable shear change was found for all the cases. It is likely that only the most energetic flares can affect the photospheric magnetic topology.  相似文献   

3.
An investigation of 531 active regions was made to determine the correlation between energy released by flares and the available energy in magnetic fields of the regions. Regions with magnetic flux greater than 1021 maxwell during the years 1967–1969, which included sunspot maximum, were selected for the investigation. A linear regression analysis of flare production on magnetic flux showed that the flare energy is correlated with magnetic energy with a coeificient of correlation of 0.78. Magnetic classification and field configuration also significantly affect the production of flares.This work was supported by the Aerospace Sponsored Research Program.  相似文献   

4.
Theories of solar flares based on the storage of energy (usually as magnetic energy) in the solar atmosphere are shown to be incompatible with observational data.The sunspot energy deficit and the photospheric faculae both involve energy fluxes comparable with the flare requirement ( 3 × 1029 erg s–1). Both also require a subsurface system of waves or oscillations, perhaps those discussed by Danielson and Savage and by Wilson. The flare model proposed is based on a temporary diversion of this energy carried by Alfvén waves through spots and magnetic elements or micro-pores; the calculated plasma perturbation velocity in the umbra is about 6 km s–1 for a major flare.In the atmosphere the wave energy divides into two parts to produce the cool, stationary optical flare and the particle flare. The first part is dissipated around flux tubes which are mainly horizontal in the chromosphere and which tend to concentrate along the magnetic neutral line (B = 0). Each tube vibrates individually as a taut wire in a viscous fluid, to excite the fluid just outside the tube. The second part of the energy emerges along tubes mainly vertical in the chromosphere and is converted to shock waves in the corona and then to particle energy for the radio and X-ray flare and the blast wave.The model includes white-light faculae, quasi-permanent X-ray and fast-particle emissions, sympathetic flares and surges. An unambiguous test would be provided by observations of plasma motions of a few kilometres per second in spots and micro-pores.  相似文献   

5.
We present the analysis of observations of the August flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms and spectra. In each flare the observations fit a model of particle acceleration in the chromosphere with emission produced by impact and by heating by the energetic electrons and protons. The region showed inverted polarity and high gradients from birth, and flares appear due to strong magnetic shears and gradients across the neutral line produced by sunspot motions. Post flare loops show a strong change from sheared, force-free fields parallel to potential-field-like loops, perpendicular to the neutral line above the surface.We detected fast (5 s duration) small (1') flashes in 3835 at the footpoints of flux loops in the August 2 impulsive flare at 1838 UT, which may be explained by dumping of > 50 keV electrons accelerated in individual flux loops. The flashes show excellent time and intensity agreement with > 45 keV X-rays. In the less impulsive 2000 UT flare a less impulsive wave of emission in 3835 moved with the separating footpoints. The thick target model of X-ray production gives a consistent model for X-ray, 3835 and microwave emission in the 18:38 UT event.Spectra of the August 7 flare show emission 12 Å FWHM in flare kernels, but only 1 to 2 Å wide in the rest of the flare. The kernels thus produce most of the H emission. The total emission in H in the August 4 and August 7 flares was about 2 × 1030 erg. We belive this dependable value more accurate than previous larger estimates for great flares. The time dependence of total H emission agrees with radio and X-ray data much better than area measurements which depend on the weaker halo.Absorption line spectra show a large (6 km/s-1) photospheric velocity discontinuity across the neutral line, corresponding to sheared flow across that line.This work has been supported by NASA under NGR 05 002 034, NSF Atmospheric Sciences program under GA 24015, and AFCRL under FI9628-73-C-0085.  相似文献   

6.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

7.
Magnetic fields in the low corona are the only plausible source of energy for solar flares. Other energy sources appear inadequate or uncorrelated with flares. Low coronal magnetic fields cannot be measured accurately, so most attention has been directed toward measurements of the photospheric magnetic fields from which coronal developments may be inferred. Observations of these magnetic fields are reviewed. It is concluded that, except possibly for the largest flares, changes in the photospheric magnetic fields in flaring centers are confined to evolutionary changes associated with emergence of new magnetic flux. Flare observations with the 10830 Å line of helium, in particular, are discussed. It is concluded that the brightest flare knots appear near points of emergent magnetic flux. Pre-flare activation and eruptions of H filaments are discussed. It is concluded that the rapid motions in filaments indicate unambiguously that the magnetic fields in the low corona are severely disrupted prior to most flares. The coronal signature of H filament eruptions is illustrated with soft X-ray photographs from the S-054 experiment of the NASA Skylab mission. An attempt is made, by studying X-ray flare morphology, to determine whether flares grow by reconnections between adjacent or intertwined magnetic elements or by triggering, in which each flaring loop drives adjacent loops to unstable states. It is concluded that successive loop brightenings are most easily interpreted as the result of magnetic field reconnections, although better time resolution is required to settle the question. A model of magnetic field reconnections for flares associated with filament activation and emerging magnetic flux is presented.  相似文献   

8.
Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun??s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the ??proxy Poynting flux,?? and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.  相似文献   

9.
We present the results of a detailed analysis of multi-wavelength observations of a very impulsive solar flare 1B/M6.7, which occurred on 10 March, 2001 in NOAA AR 9368 (N27 W42). The observations show that the flare is very impulsive with a very hard spectrum in HXR that reveal that non-thermal emission was most dominant. On the other hand, this flare also produced a type II radio burst and coronal mass ejections (CME), which are not general characteristics for impulsive flares. In H we observed bright mass ejecta (BME) followed by dark mass ejecta (DME). Based on the consistency of the onset times and directions of BME and CME, we conclude that these two phenomena are closely associated. It is inferred that the energy build-up took place due to photospheric reconnection between emerging positive parasitic polarity and predominant negative polarity, which resulted as a consequence of flux cancellation. The shear increased to >80 due to further emergence of positive parasitic polarity causing strongly enhanced cancellation of flux. It appears that such enhanced magnetic flux cancellation in a strongly sheared region triggered the impulsive flare.  相似文献   

10.
Observations and analyses of the 1B/M3 flare of 15 June, 1973 in active region NOAA 131 (McMath 12379) are presented. The X-ray observations, consisting of broadband photographs and proportional counter data from the Skylab/ATM NASA-MSFC/Aerospace S-056 experiment, are used to infer temperatures, emission measures, and densities for the flaring plasma. The peak temperature from the spatially resolved photographs is 25 × 106 K, while the temperature from the full-disk proportional counter data is 15 × 106 K. The density is 3 × 1010cm–3. The X-ray flare emission appears to come primarily from two low-lying curvilinear features lying perpendicular to and centered on the line where the photospheric longitudinal magnetic field is zero. Similarities in the preflare and postflare X-ray emission patterns indicate that no large-scale relaxation of the coronal magnetic configuration was observed. Also discussed are H and magnetic field observations of the flare and the active region. Finally, results of numerical calculations, including thermal conduction, radiative loss and chromospheric evaporation, are in qualitative agreement with the decay phase observations.Presently at NASA/Marshall Space Flight Center.  相似文献   

11.
The NOAA active region (AR) 11029 was a small but highly active sunspot region which produced 73 GOES soft X-ray flares during its transit of the disk in late October 2009. The flares appear to show a departure from the well-known power law frequency-size distribution. Specifically, too few GOES C-class and no M-class flares were observed by comparison with a power law distribution (Wheatland, Astrophys. J. 710, 1324, 2010). This was conjectured to be due to the region having insufficient magnetic energy to power the missing large events. We construct nonlinear force-free extrapolations of the coronal magnetic field of AR 11029 using data taken on 24 October by the SOLIS Vector SpectroMagnetograph (SOLIS/VSM) and data taken on 27 October by the Hinode Solar Optical Telescope SpectroPolarimeter (Hinode/SP). Force-free modeling with photospheric magnetogram data encounters problems, because the magnetogram data are inconsistent with a force-free model. We employ a recently developed “self-consistency” procedure which addresses this problem and accommodates uncertainties in the boundary data (Wheatland and Régnier, Astrophys. J. 700, L88, 2009). We calculate the total energy and free energy of the self-consistent solution, which provides a model for the coronal magnetic field of the active region. The free energy of the region was found to be ≈?4×1029?erg on 24 October and ≈?7×1031?erg on 27 October. An order of magnitude scaling between RHESSI non-thermal energy and GOES peak X-ray flux is established from a sample of flares from the literature and is used to estimate flare energies from the observed GOES peak X-ray flux. Based on the scaling, we conclude that the estimated free energy of AR 11029 on 27 October when the flaring rate peaked was sufficient to power M-class or X-class flares; hence, the modeling does not appear to support the hypothesis that the absence of large flares is due to the region having limited energy.  相似文献   

12.
The evolution of vector photospheric magnetic fields has been studied in concert with photospheric spot motions for a flare-productive active region. Over a three-day period (5–7 April, 1980), sheared photospheric velocity fields inferred from spot motions are compared both with changes in the orientation of transverse magnetic fields and with the flare history of the region. Rapid spot motions and high inferred velocity shear coincide with increased field alignment along the B L= 0 line and with increased flare activity; a later decrease in velocity shear precedes a more relaxed magnetic configuration and decrease in flare activity. Crude energy estimates show that magnetic reconfiguration produced by the relative velocities of the spots could cause storage of 1032 erg day–1, while the flares occurring during this time expended 1031 erg day–1.Maps of vertical current density suggest that parallel (as contrasted with antiparallel) currents flow along the stressed magnetic loops. For the active region, a constant-, force-free magnetic field (J = B) at the photosphere is ruled out by the observations.Presently located at NASA/MSFC, Huntsville, Ala. 35812, U.S.A.  相似文献   

13.
Of 21 flares of importance 1 or greater, observed on 15 days, all were found to lie adjacent to a neutral line in the longitudinal component of photospheric magnetic fields. In most of these cases, the flare consisted of two or more segments separated by the neutral line and located in areas of strong field and high-longitudinal field gradient. In some cases, the flare segments extended into areas of weak-magnetic field and low-field gradient, but maintained an orientation adjacent to a neutral line.Optical and magnetic field records of higher resolution were obtained on 6 July 1965. These observations reveal an excellent correlation between the size, shape, and intensity of the H fine structures and the longitudinal component of the photospheric magnetic fields, except in the vicinity of the neutral line. Sections of the neutral line are marked by long fibrils lying perpendicular to the neutral line or by small filaments lying along the neutral line.The development of a flare of importance 1 in this region appeared to be more precisely related to the neutral line than was found for the flares and magnetic fields observed with lower resolution. The two major segments of this flare lengthened in directions approximately parallel to the neutral line, while simultaneously drifting perpendicularly away from the neutral line. The initial rate of drift systematically varied from 1 to 12 km/sec at a series of positions approximately parallel to the neutral line and corresponding to increasing distance from strong fields. The rate of drift was also observed to decelerate throughout the life of the flare.  相似文献   

14.
X-ray photographs obtained with a zone plate camera on October 3, 1967 in the wavelength band 49.5–52.5 Å have been investigated photometrically.The most intense X-ray emission corresponds with active regions in H and Ca ii. About one quarter of the total solar flux is emitted by the three brightest X-ray sources (A, E and J). X-ray emission from quiet regions is also observed. Limb brightening is found, also at the poles, which indicates a higher electron density at the poles than during solar minimum.The brightest X-ray regions have a very small core of the order of 20. No relation to magnetic field strengths of sunspots has been found. However, a correlation with active prominences cannot be ruled out. X-ray source A is related either to prominence activity or to flare activity. One X-ray region (J) is probably related to flare activity.Assuming an electron temperature of 3 × 106K to 5 × 106K for coronal active regions an emission measure of a few times 1049 cm–3 is derived, which yields an electron density of a few times 1010 cm–3.  相似文献   

15.
A time sequence of magnetograms and velocity-grams in the H and Fe i 6569 Å lines has been made at a rate of 12 h–1 of McMath Region 10385 from 26 to 29 October, 1969. The 14 flares observed during this period have been studied in relation to the configuration and changes in the magnetic and velocity fields. There was little correlation between flare position and the evolutionary changes in the photospheric magnetic and velocity field, except at large central meridian distances where the velocity observations suggested shearing taking place at flare locations. At central meridian distances > 30° we found that flares are located in areas of low line-of-sight photospheric velocity surrounded by higher velocity hills. The one exception to this was the only flare which produced a surge. Blue-shifted velocity changes in the photosphere of 0.3 to 1 km s–1 were observed in localized areas at the times of 8 of 14 flares studied.Visiting Astronomer, Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

16.
Hongqi Zhang 《Solar physics》2016,291(12):3501-3517
We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity \(\frac{1}{4\pi}{\mathbf{B}}_{n}\cdot{\mathbf{B}}_{p}\) is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (\(\mathbf{B}_{p}\)) and the non-potential magnetic field (\(\mathbf{B}_{n}\)), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere.  相似文献   

17.
Observations of emission in the Mgi b2 line at 5172 Å are presented for 13 flares. Also discussed are 3 flares which occurred in regions under observation but which showed no Mg emission. The Mg flare kernels resemble white-light flare kernels in their general morphology and location. Comparison of Mg filtergrams with magnetograms indicates that the Mg kernels occur at the feet of magnetic arches across neutral lines. Time-lapse Mg filtergram films indicate photospheric shearing motions near flare sites for several hours before flare onset. We have compared flare Mg emission with microwave and both hard and soft X-ray flare emissions. Examination at the time development of the 1981, July 27 flare shows that the microwave and X-ray bursts may be clearly related to the appearance of successive Mg flare kernels. We have also compared subjective, relative Mg flare importances with other flare emission measurements. For the full sample of flares, Mg importance is significantly correlated with hard and soft X-ray emission peaks, with X-ray ‘hardness’ (ratio of hard to soft peaks) and with the rise slope of soft X-ray bursts. The Mg importance does not correlate with the microwave peaks when the full sample of flares is used, but for the subset showing Mg emission there is significant correlation. No correlation with Hα importance was found. Our results suggest that Mg emission is associated with an impulsive component which may be absent from some flares. The San Fernando Observatory magnesium etalon filter system is described.  相似文献   

18.
The structure of the photospheric magnetic field during solar flares is examined using echelle spectropolarimetric observations. The study is based on several Fe i and Cr i lines observed at locations corresponding to brightest Hα emission during thermal phase of flares. The analysis is performed by comparing magnetic-field values deduced from lines with different magnetic sensitivities, as well as by examining the fine structure of I±V Stokes-profiles’ splitting. It is shown that the field has at least two components, with stronger unresolved flux tubes embedded in weaker ambient field. Based on a two-component magnetic-field model, we compare observed and synthetic line profiles and show that the field strength in small-scale flux tubes is about 2?–?3 kG. Furthermore, we find that the small-scale flux tubes are associated with flare emission, which may have implications for flare phenomenology.  相似文献   

19.
A topological model with magnetic reconnection at two separators in the corona is used to account for the recently discovered changes of the photospheric magnetic field in the active region NOAA 9077 during the July 14, 2000 flare. The model self-consistently explains the following observed effects: (1) the magnetic field strength decreases on the periphery of the active region but increases in its inner part near the neutral line of the photospheric magnetic field; (2) the center-of-mass positions of the fields of opposite (northern and southern) polarities converge; and (3) the magnetic flux of the active region decreases after the flare. The topological model gives not only a qualitative interpretation of the flare phenomena (the structure of the interacting magnetic fluxes in the corona, the location of the energy sources, the shape of the flare ribbons and kernels in the chromosphere and photosphere), but also correct quantitative estimates of the large-scale processes that form the basis for solar flares. The electric field emerging in the flare during large-scale reconnection is calculated. The electric field strength correlates with the observed intensity of the hard X-ray bremsstrahlung, suggesting an electron acceleration as a result of reconnection.  相似文献   

20.
The hypothesis that solar flares may be caused by a choking off of the normal energy flux to the corona by the strong closed magnetic fields of a plage is examined. If the energy flux into a plage from the photosphere is of the order of 108 ergs/cm2 sec, and if a substantial fraction of this energy is carried in the form of Alfvén waves, then the rate of dissipation of the waves is slower than the rate at which energy is injected. Since the waves must propagate along the magnetic field and cannot reenter the photosphere, they must remain within the plage; hence, the magnetic and kinetic energy in a small-scale motion (either waves, turbulence, or high-energy particles) must increase with time, eventually causing disruption of the volume when the small-scale energy density exceeds the energy in the mean field. It is believed that the unusually broad wings in the emission lines represent evidence of this phenomenon. The accumulation of waves is manifested as a resonance which occurs initially only at discrete locations in the magnetic field, but later is expected to involve the whole flare volume. The response of a typical volume of flare dimensions due to a trapping of the normal wave supply to the corona is studied through use of the virial equation. For magnetic fields typical of a plage, the region expands in a time scale of 102–103 sec, with a velocity in the neighborhood of 10–20 km/sec. Small-scale velocities within the region, however, have reached 100–300 km/sec, indicating that almost all the energy in the flare resides in small-scale forms. The energy density of the flare region exhibits a behavior much more explosive than the expansion rate. There is a rapid rise to maximum in 102 sec or less, and a slow subsequent decline taking about 103–104 sec due to the dilution of energy caused by expansion of the region. The predicted temporal behavior of the energy density coincides qualitatively with the light curves observed during flares, and it is suggested that the rise and decline of the energy density is to be associated with the optical flare. The total flare is defined as the time required for the energy density of the chromosphere and corona to return to the pre-flare state. During this time (about one hour) a large flare can derive the necessary 1032 ergs from normal photospheric energy output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号