首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Data obtained on lamprophyres from the carbonatite–volcanic unit in the lower horizon of the Tomtor Massif indicate that the rocks and zoned diopside and kaersutite phenocrysts in them are enriched in incompatible elements more significantly than is typical of alkaline ultramafic rocks of the Maymecha–Kotui and Kola provinces. The concentrations of these elements and their indicator ratios in the cores and intermediate zones of the diopside and kaersutite phenocrysts significantly vary, and this suggests that the minerals might have crystallized from different melts. This is consistent with the earlier conclusions, which were derived from studying melt inclusions, that the phenocrysts crystallized from mixing alkaline mafic melts of sodic and potassic types and different Mg–number which were enriched in the carbonatite component. The cores of the diopside phenocrysts started to crystallize from sodic mafic magma in a magmatic chamber, while the intermediate and outermost zones of this mineral crystallized from mixed sodic–potassic mafic melts. The carbonatite component was separated from the sodic mafic melt at high temperature (>1150°C) during diopside core crystallization. The bulk compositions of the alkaline lamprophyres and of the diopside and kaersutite phenocrysts contain lower normalized concentrations of HREE than LREE. This led us to conclude that the parental sodic and potassic mafic melts were derived from an enriched mantle source material under garnet–facies parameters, as is typical of continental rifts. It is noteworthy that the potassic mafic melt was derived at greater depths and lower degrees of melting of the mantle source than the sodic melt. The iron–rich sodic melt from which the cores of the diopside phenocrysts started to crystallize was enriched in V, REE, Y, and volatile components (H2O, CO2, F, Cl, and S). The onset of carbonate–silicate liquid immiscibility was marked by the redistribution of REE and Y into the carbonatite melt. The potassic, more Mg–rich mafic melt from which the intermediate and outermost zones of the diopside phenocrysts crystallized was enriched in Ti, Nb, Zr, and REE and always remained homogeneous when this mineral crystallized.  相似文献   

2.
The discrimination between potential source materials involved in the genesis of Iberian granites and granodiorites, as well as the role of mantle-crust interactions, are examined using constraints imposed by melting experiments, melting-assimilation experiments and Sr-Nd isotope systematics. The Sr-Nd isotope relationships indicate the existence of different genetic trends in which juvenile mantle materials are involved by different mechanisms: (1) a source trend, traced by a particular evolution of the pre-Hercynian basement and indicating mantle participation at the time of sedimentation; (2) a set of magmatic trends traced by gabbro-tonalite-enclave-granodiorite associations, implying the incorporation of new mantle material at the time of granite generation. These relationships strongly support a pure crustal origin for the peraluminous leucogranites, derived from partial melting of crustal protoliths, and a hybrid origin for the peraluminous granodiorites. These granodiorites are the most abundant granitic rocks of the Central Iberian zone (CIZ) of the Iberian massif, implying that processes of hybridisation by assimilation and/or magma mixing played an important role in granitoid production during the Hercynian orogeny. These hypotheses have been tested by means of melting and assimilation experiments. Melting experiments in the range 800–900 °C and at pressures of 3, 6, 10 and 15 kbar indicate that: (1) several potential source materials such as Bt-Ms gneisses and metagreywackes are suitable for the production of peraluminous leucogranite melts; (2) the melt compositions are always leucogranitic, regardless of pressure; (3) pressure exerts a strong influence on the fertility of the source: experiments at 3 kbar produce more than 20 vol% of melt, compared with less than 5 vol% of melt produced at 10 and 15 kbar and at the same temperature. The melting-assimilation experiments carried out at 1000 °C and 4, 7 and 10 kbar and using a proportion of 50% gabbro and 50% gneiss give high melt proportions (more than 50 vol.%) and noritic residues. These melts have the composition of leucogranodiorites, and overlap with part of the compositional range of peraluminous granodiorites of the Iberian massif. The generation of more mafic granodiorites may be explained by the incorporation of some residual orthopyroxene to the granodiorite magmas. The low solubility of Fe + Mg prevents the generation of granodiorite melts with more than 3 wt% of MgO + FeO at all crustal pressures. The large volumes of peraluminous, hybrid granodiorites, produced by assimilation of crustal rocks by mantle magmas, imply that an important episode of crustal growth took place during the Late-Palaeozoic Hercynian orogeny in the Iberian massif. Received: 30 June 1998 / Accepted: 27 November 1998  相似文献   

3.
This paper presents results of U–Pb dating (SHRIMP-II) and Lu–Hf (LA–ICP MS) isotope study of zircon from Paleoarchean plagiogneisses and plagiogranitoids of the Onot and Bulun blocks of the Sharyzhalgai uplift. Magmatic zircons from the Onot plagiogneiss and Bulun gneissic trondhjemite are dated at 3388±11 and 3311±16 Ma, respectively. Magmatic zircons from plagiogneisses and plagiogranitoids of the studied tonalite–trondhjemite–granodiorite (TTG) complexes are characterized mainly by positive values of εHf indicating that felsic melts were generated mainly from juvenile (mafic) sources, which are derived from a depleted mantle reservoir. The variable Hf isotope composition in magmatic zircons and the lower average εHf values in comparison with the depleted mantle values suggest the contributions of both mafic and more ancient crustal sources to magma formation. Metamorphic zircons from the gneissic plagiogranite and migmatized plagiogneiss either inherited the Hf isotope composition from magmatic zircon or are enriched in radiogenic Hf. The more radiogenic Hf isotope composition of metamorphic zircons from the migmatized plagiogneisses is due to their interaction with melt during partial melting. Variations in the Lu–Hf isotope composition of zircon from the Bulun rocks in the period 3.33–3.20 Ga are due to the successive melting of mafic crust or the growing contribution of crustal material to their genesis. Correlation between the Lu–Hf isotope characteristics of zircon and the Sm–Nd parameters of the Onot plagiogneisses points to the contribution of ancient crustal material to their formation. The bimodal distribution of the model Hf ages of zircons reflects two stages of crustal growth in the Paleoarchean: 3.45–3.60 and ~ 3.35 Ga. The isotope characteristics of zircon and rocks of the TTG complexes, pointing to recycling of crustal material, argue for the formation of plagiogneisses and plagiogranitoids as a result of melting of heterogeneous (mafic and more ancient crustal) sources in the thickened crust.  相似文献   

4.
This paper is devoted to detailed study of picritic rocks (olivine melanogabbronorites) and comagmatic gabbrodolerites from sills and dikes in the central part of the Bashkirian meganticlinorium. These rocks are ascribed to the Kama-Belsk magmatic province (KBP) that was formed in the eastern East European Platform (EEP) in the Mesoproterozoic time. The study of minerals (EMPA, SIMS), rocks, and their oxygen isotope compositions showed the contribution of crustal contamination, fractional crystallization and cumulus processes in their formation. The geochemical indicators of crustal contamination (Nb/Nb*, (Nb/La) n , δ18O, and others) show strong variations, which indicates uneven crustal contribution in the parental melts during rock formation (10–25%). The study of weakly contaminated (δ18O = 5.3‰) olivine melanogabbronorites (MgO = 22.55 wt %) from the small Ishlya-1 subvolcanic body, which contain subordinate amount of cumulus (24%), high-magnesian olivine (Fo91.3), and high-Cr spinel (cr# 0.67), as well as HREE depleted clinopyroxenes, allowed us to retrieve the composition of parental melt. The latter contained about 20 wt % MgO and was formed by 19–26% melting of mantle source (potential mantle temperature T m of 1530–1545°C). Geochemical characteristics of KBP reflect the formation of primary melts by melting of mantle column at different depths, mixing of the melts, and significant contamination by crustal material. The dominant role in the formation of the rocks of the Ishlya area and Mashak Complex was played by derivatives of spinel peridotites, while the rocks of the Bakal-Satka area were derived from garnet peridotites.  相似文献   

5.
Gold bearing metavolcanics of Gadag Gold Field (GGF) are represented by mafic (metabasalt, metabasaltic andesite), intermediate (metaandesite) and felsic (metadacite, metarhyolite) rocks. Mafic metavolcanic rocks are low-K Fe-rich tholeiites and were derived by partial melting of the upper mantle sources with high Fe/Mg ratios and low M values. Intermediate and felsic metavolcanics were formed by remelting of these tholeiites mainly in crustal regimes. Although a complete sequence of metavolcanic rocks from mafic to intermediate to felsic fractions occurs, these products were not the result of differentiation from a single magma, crustal contamination was involved in the formation of intermediate and felsic rocks. A clear gap in the chemical composition as well as index of differentiation among the mafic, intermediate and felsic fractions indicate that these metavolcanics constitute a typical bimodal character. It is suggested that these metavolcanics were emplaced in an active continental margin or a continental island arc setting. The petrogenetic processes of formation of Fe-rich tholeiites that evolved in an active continental margin or a continental island arc setting could have provided a favourable geochemical environment for gold mineralisation under the conditions of deformation and metamorphism.  相似文献   

6.
Data on the composition of rocks in linear tectono-magmatic rises in the Brazil Basin indicate that volcanic rocks in the Vitoria—Trindade seamount chain were derived from a mantle reservoir unevenly enriched in phosphorus under the effect of melts close to subalkaline picrobasalt. These melts contained much of the EM I mantle component because the plume material was contaminated with continental lithospheric component. A long-lived isotopic homogeneity of the source is typical of the whole structure, including the Trindade and Martin Vaz Islands and the Abrolhos Plateau. The analogous isotopic ratios of rocks at the Fernando de Noronha Islands are reportedly explained by a similar mechanism of melt derivation and the similar evolution of the mantle plume material, which was originally situated beneath the South American continent. Compared to the melts of volcanic rocks of all other seamounts discussed herein, the parental melts of volcanics at the Victoria—Trindade Seamounts were derived at lower degrees of melting of enriched source material at a greater depth. The overwhelming majority of volcanic rocks at the northern chain of the Bahia Seamounts were produced by melts generated with the involvement of material of the HIMU type. At the same time, one of our rock samples was derived from a source of composition close to DM with a certain admixture of enriched material like EM I. The mantle source of rocks of the Pernambuco Seamounts consisted of a mixture of DM and HIMU material with a certain admixture of EM I (or, perhaps, EM II). The 10°–11° S Seamounts were formed near the MAR axial zone at the decompressional melting of chemically homogeneous mantle source that consisted of DM material with an admixture of EM I (or, perhaps, EM II) component.  相似文献   

7.
The shoshonitic intrusions of eastern Tibet, which range in age from 33 to 41 Ma and in composition from ultramafic (SiO2 = 42 %) to felsic (SiO2 = 74 %), were produced during the collision of India with Eurasia. The mafic and ultramafic members of the suite are characterized by phenocrysts of phlogopite, olivine and clinopyroxene, low SiO2, high MgO and Mg/Fe ratios, and olivine forsterite contents of Fo87 to Fo93, indicative of equilibrium with mantle olivine and orthopyroxene. Direct melting of the mantle, on the other hand, could not have produced the felsic members. They have a phenocryst assemblage of plagioclase, amphibole and quartz, high SiO2 and low MgO, with Mg/Fe ratios well below the values expected for a melt in equilibrium with the mantle. Furthermore, the lack of decrease in Cr with increasing SiO2 and decreasing MgO from ultramafic to felsic rocks precludes the possibility that the felsic members were derived by fractional crystallization from the mafic members. Similarly, magma mixing, crustal contamination and crystal accumulation can be excluded as important processes. Yet all members of the suite share similar incompatible element and radiogenic isotope ratios, which suggests a common origin and source. We propose that melting for all members of the shoshonite suite was initiated in continental crust that was thrust into the upper mantle at various points along the transpressional Red River-Ailao Shan-Batang-Lijiang fault system. The melt formed by high-degree, fluid-absent melting reactions at high-T and high-P and at the expense of biotite and phengite. The melts acquired their high concentrations of incompatible elements as a consequence of the complete dissolution of pre-existing accessory minerals. The melts produced were quartz-saturated and reacted with the overlying mantle to produce garnet and pyroxene during their ascent. The felsic magmas reacted little with the adjacent mantle and preserved the essential features of their original chemistry, including their high SiO2, low Ni, Cr and MgO contents, and low Mg/Fe ratio, whereas the mafic and ultramafic magmas are the result of extensive reaction with the mantle. Although the mafic magmas preserved the incompatible element and radiogenic isotope ratios of their crustal source, buffering by olivine and orthopyroxene extensively modified their MgO, Ni, Cr, SiO2 contents and Mg/Fe ratio to values dictated by equilibrium with the mantle.  相似文献   

8.
The Abbott Unit (∼508 Ma) and the Vegetation Unit (∼475 Ma) of the Terra Nova Intrusive Complex (northern Victoria Land, Antarctica) represent the latest magmatic events related to the Early Paleozoic Ross Orogeny. They show different emplacement styles and depths, ranging from forcible at 0.4–0.5 GPa for the Abbott Unit to passive at ∼0.2 GPa for the Vegetation Unit. Both units consist of mafic, felsic and intermediate facies which collectively define continuous chemical trends. The most mafic rocks from both units show different enrichment in trace element and Sr-Nd isotopic signatures. Once the possible effects of upper crustal assimilation-fractional crystallisation (AFC) and lower crustal coupled AFC and magma refilling processes have been taken into account the following features are recognised: (1) the modelled primary Abbott Unit magma shows a slightly enriched incompatible element distribution, similar to common continental arc basalts and (2) the modelled primary Vegetation Unit magma displays highly enriched isotope ratios and incompatible element patterns. We interpreted these major changes in magmatic affinity and emplacement style as linked to a major change in the tectonic setting affecting melt generation, rise and emplacement of the magmas. The Abbott Unit mafic melts were derived from a mantle wedge above a subduction zone, with subcontinental lithospheric mantle marginally involved in the melting column. The Vegetation Unit mafic melts are regarded as products of a different source involving an old layer of subcontinental lithospheric mantle. The crustal evolution of both types of mafic melts is marked by significant compositional contrasts in Sr and Nd isotopes between mafic and associated felsic rocks. The crustal isotope signature showed an increase with felsic character. Geochemical variations for both units can be accounted for by a similar two-stage hybridisation process. In the first stage, the most mafic magma evolved mainly by fractional crystallisation coupled with assimilation of metasedimentary rocks having crustal time-integrated Sr and Nd compositions similar to those of locally exposed metamorphic basement. The second stage involves contaminated products mixing with independently generated crustal melts. Petrographic, geochemical and isotope data also provide evidence of significant compositional differences in the felsic end-members, pointing to the involvement of metaigneous and metasedimentary source rocks for the Abbott granite and Vegetation leucogranite, respectively. Received: 31 March 1998 / Accepted: 3 May 1999  相似文献   

9.
We performed detailed field and drill core mapping of partial melting features and felsic rocks (footwall granophyres, FWGRs) representing segregated and crystallized partial melts within the contact aureole of the Sudbury Igneous Complex (SIC) in the 1.85 Ga Sudbury impact structure. Our results, derived from mapping within the North (Windy Lake, Foy, Wisner areas) and East Ranges (Skynner, Frost areas) of the structure, reveal that partial melting was widespread in both felsic and mafic footwall units up to distances of 500 m from the basal contact of the SIC. Texturally and mineralogically, significant differences exist between rocks formed by partial melting within and between localities. In general, however, melt bodies are dominated by different quartz-feldspar intergrowths (e.g. granophyric, graphic) and miarolitic cavities up to 5 cm in diameter. Major and trace element compositions of Wisner and Frost FWGRs imply that they crystallized from melts dominantly derived from partial melting of felsic Levack Gneiss and Cartier granitoid rocks, as well as from gabbroic rocks only at Frost. These results accord with our observations on in situ partial melting features and crystallized melt of microscopic scale in both felsic and mafic rocks. We conclude that partial melting occurred at a pressure of 1.5 ± 0.5 kbar and at temperatures up to 750°C in the Wisner area and up to 900°C in the Frost and Windy Lake areas. Segregations of partial melt into veins and dikes are present in all localities, and were promoted by deformation of the Sudbury structure in the Penokean orogeny as indicated by dominant strike directions. Whereas veins and dikes reflect brittle conditions during melt migration, sheared melt pods in the Sudbury breccia matrix indicate ductile conditions during their crystallization. Our results suggest a close genetic association of partial melting, melt segregation, and hydrothermal processes responsible for remobilization of Cu–Ni–PGE sulphides into and within the SIC footwall.  相似文献   

10.
 Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ∼7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts ( >∼60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents. Received: 15 June 1995 / Accepted: 13 December 1995  相似文献   

11.
Dehydration melting of biotite is the main control on crustal differentiation in the mid to lower continental crust because this reaction produces the most voluminous and most mobile granitic melts. Biotite breaks down over a broad temperature interval, so the partitioning behaviour of elements between biotite and melt is likely to vary. It has been hypothesized that fluorine may stabilize biotite to higher melting temperatures because biotite is typically F‐rich in ultra‐high temperature (UHT) metamorphic rocks. If true, F would be an important influence on crustal differentiation because not only would it broaden the temperature range of melting but also elevated F concentration decreases melt viscosity. Furthermore, ligand partitioning between biotite and melt may be an important influence on the metallogeny of magmas. This study used electron microprobe analysis of biotite in rocks from the Ballachulish and Rogaland metamorphic aureoles to investigate the concentration of F and Cl in biotite heated to 600–1,000°C. Results show a broad increase in biotite F content (up to 5.04% F) with temperature until 850–920°C, beyond which F content decreases (<2.5% F). Chlorine concentrations in biotite are consistently lower (<1% Cl), and show a progressive decrease after the onset of partial melting. It was found that Mg content, and the processes that control Mg distribution, are most strongly correlated with F and Cl concentration in biotite. Calculations based on these results indicate that F‐enriched biotite could be a significant source of F for continental crust‐derived melts. Generation of a hot, F‐rich melt at UHT conditions could be important for transporting lower crustal metals to the upper crust.  相似文献   

12.
Rock complexes composing the Daribi Range were produced in Late Vendian, Early Cambrian, and Early Paleozoic suprasubduction systems. All of the studied mafic and ultramafic magmatic mantle rocks (the post-Vendian ophiolite complex, Early Cambrian pillow basalts, and Early Paleozoic picrobasalts of the sill-dike complex) have geochemical characteristics typical of early evolutionary episodes of island arcs: low LILE concentrations, horizontal REE patterns or patterns close to those of N-MORB, and HFSE minima. The magmas were derived from depleted mantle sources of variable isotopic composition with ?Nd(T) from +2.5 to +10. The Early Paleozoic rocks of the sill-dike complex were likely produced by a complicated interaction of melts derived from different sources. The rocks of group 1 resulted from the mixing of low-K picrite and tonalite melts. The picrite melts with ?Nd(T) from +6 to +8 were melted out of garnet lherzolite in the mantle wedge. The tonalite melts with ?Nd(T) = ?3 seem to have been formed by the partial melting of mafic oceanic rocks of a subducted slab or the bottom of an island arc. The trondhjemite melts of group 2 with ?Nd(T) varying from 2.5 to 7.5 could be formed via the melting of subducted metapelites or amphibolites with low sulfide concentrations. Massifs of sodic Early Paleozoic granites also occur elsewhere in western Mongolia, Tuva, and the Altai territory. The generation of sodic silicic melts was likely a common process in supra-subduction systems in CAFB. The potassic granites (group 4) could be formed by the melting of subducted pelites or by the fractionation of mantle magmas. The genesis of the basaltic andesites (group 5) was likely related to Mesozoic-Cenozoic intraplate processes.  相似文献   

13.
Alan R. Hastie  Andrew C. Kerr 《Earth》2010,98(3-4):283-293
The Caribbean oceanic plateau formed in the Pacific realm when it erupted onto the Farallon plate from the Galapagos hotspot at ~ 90 Ma. The plateau was subsequently transported to the northeast and collided with the Great Arc of the Caribbean thus initiating subduction polarity reversal and the consequent tectonic emplacement of the Caribbean plate between the North and South American continents. The plateau represents a large outpouring of mafic volcanism, which has been interpreted as having formed by melting of a hot mantle plume. Conversely, some have suggested that a slab window could be involved in forming the plateau. However, the source regions of oceanic plateaus are distinct from N-MORB (the likely source composition for slab window mafic rocks). Furthermore, melt modelling using primitive (high MgO) Caribbean oceanic plateau lavas from Curaçao, shows that the primary magmas of the plateau contained ~ 20 wt.% MgO and were derived from 30 to 32% partial melting of a fertile peridotite source region which had a potential temperature (Tp) of 1564–1614 °C. Thus, the Caribbean oceanic plateau lavas are derived from decompression melting of a hot upwelling mantle plume with excess heat relative to ambient upper mantle. Extensional decompression partial melting of sub-slab asthenosphere in a slab window with an ambient mantle Tp cannot produce enough melt to form a plateau. The formation of the Caribbean oceanic plateau by melting of ambient upper mantle in a slab window setting, is therefore, highly improbable.  相似文献   

14.
赵子福  代富强  陈启 《地球科学》2019,44(12):4119-4127
俯冲到地幔深度的地壳物质不可避免地在板片-地幔界面与地幔楔发生相互作用,由此形成的超镁铁质交代岩就是造山带镁铁质火成岩的地幔源区.因此,造山带镁铁质火成岩为研究俯冲地壳物质再循环和壳-幔相互作用提供了重要研究对象.为了揭示俯冲陆壳物质再循环的机制和过程,对大别造山带碰撞后安山质火山岩开展了元素和同位素地球化学研究.这些安山质火山岩的SIMS锆石U-Pb年龄为124±3~130±2 Ma,表明其形成于早白垩世.此外,残留锆石的U-Pb年龄为中新元古代和三叠纪,分别对应于大别-苏鲁造山带超高压变火成岩的原岩年龄和变质年龄.它们具有岛弧型微量元素特征、富集的Sr-Nd-Hf同位素组成,以及变化的且大多不同于正常地幔的锆石δ18O值.这些元素和同位素特征指示,这些安山质火山岩是交代富集的造山带岩石圈地幔部分熔融的产物.在三叠纪华南陆块俯冲于华北陆块之下的过程中,俯冲华南陆壳来源的长英质熔体交代了上覆华北岩石圈地幔楔橄榄岩,大陆俯冲隧道内的熔体-橄榄岩反应产生了富沃、富集的镁铁质地幔交代岩.这种地幔交代岩在早白垩世发生部分熔融,就形成了所观察到的安山质火山岩.因此,碰撞造山带镁铁质岩浆岩的地幔源区是通过大陆俯冲隧道内板片-地幔相互作用形成的,而加入地幔楔中长英质熔体的比例决定了这些镁铁质岩浆岩的岩石化学和地球化学成分.   相似文献   

15.
       根据大陆下地壳的成分、含水基性岩体系部分熔融的基本原理和实验岩石学资料,本文对大陆下地壳的熔融机制展 开了讨论,并在此基础上对比实验熔体与大别山C 型埃达克岩的成分,进而探讨约束源岩成分、熔融的温压条件和部分熔 融程度。研究结果表明,大陆下地壳总体上是中- 基性(SiO2 50%~60% )和含少量水的,在缺乏流体相条件下伴随含水 矿物脱水的部分熔融是下地壳产生含水长英质熔体和无水残留体的主要机制。角闪岩在中等压力下(1.0~1.2 GPa,相当于 35~40 km)理论上能够产生石榴石含量超过~20% 的熔融残余,从而使得与之平衡的长英质熔体具有低Y,高Sr/Y 和La/Yb 比值等埃达克岩特征。基于水活度模型和变质基性岩p -t 相图的估算显示,含有40%~60% 角闪石的源岩(含水0.8%~1.2%) 在~950 ℃能够得到最大为15%~20% 的熔体,该熔体分数满足熔体分离的要求。大别山C型埃达克岩主要为高钾钙碱性系 列(K2O 3.5%~5%),与实验熔体成分的对比可知,其无法由低钾源岩在合理的部分熔融程度形成。根据钾在角闪岩部分熔 融过程过表现为强不相容元素的原理,利用合理假设的残余体组合得到的分配系数,估算K2O 含量为~1% 的源岩在熔融程 度为15%~20% 的情况下能够得到类似大别山C 型埃达克岩成分的熔体。  相似文献   

16.
The linkage between intracontinental extension and the Early Cretaceous Cu-Mo-W polymetallic metallogenesis in the Middle-Lower Yangtze River Belt (MLYRB) has long been a subject of controversy due to the lack of convincing petrogenetic evidence to identify the nature of magmatic sources and their geological histories during extensional mantle upwelling. Here we present new zircon UPb ages, isotopic and geochemical data for granodiorites, quartz diorites and mafic microgranular enclaves (MMEs) in the Tongshankou area. Comparing the MMEs with their host porphyries, the different ratios of incompatible elements and the similar formation ages, coupled with quenched margins and the xenocrysts in the MMEs, indicate that the MMEs was most likely formed by mixing between mafic magma and their host felsic magma. The MMEs share similar geochemical and isotopic characteristics with the Cretaceous mafic rocks from MLYRB, indicating that MMEs were mostly derived from an enriched lithospheric mantle source without adakitic characteristics. Mixing of a crustal melt derived by melting of an amphibolite bearing juvenile lower crust with a mantle melt derived from melting of enriched lithospheric mantle can account for the generation of the Tongshankou prophyries. The melting of juvenile mafic lower crust and enriched lithospheric mantle is suggested to be caused by upwelling of asthenospheric mantle and the reactivity of trans-lithospheric faults in the intracontinental extensional environment. Our results therefore highlight that juvenile mafic lower crust beneath the Yangtze plate is one of the likely source for ore-forming magmatic rocks in the Early Cretaceous.  相似文献   

17.
王春光  许文良 《地球科学》2019,44(12):4112-4118
使用活塞-圆筒式高温高压装置进行一系列榴辉岩部分熔融熔体与橄榄岩反应实验,可以为深入了解俯冲带壳-幔相互作用的影响因素及地幔不均一性的成因提供重要信息.实验使用反应偶的方法,并在0.8~3.0 GPa和1 200~1 425℃条件下进行.实验结果表明,榴辉岩部分熔融熔体-橄榄岩反应的动力学和结果受控于熔体主量元素成分、熔体中的H2O、温度、压力和橄榄岩的物理状态等因素.大陆俯冲带地幔岩石中斜方辉石的富集是再循环陆壳熔体与上覆地幔反应的结果,地幔岩石中斜方辉石岩脉的形成与含水熔体交代有关,地幔岩石中的石榴辉石岩和石榴石岩可能形成于高压、低温条件下的熔体-橄榄岩反应.   相似文献   

18.
The Ulaan Tolgoi massif of rare-metal (Ta, Nb, and Zr) granites was formed at approximately 300Ma in the Eastern Sayan zone of rare-metal alkaline magmatism. The massif consists of alkaline salic rocks of various composition (listed in chronologic order of their emplacement): alkaline syenite → alkaline syenite pegmatite → pantellerite → alkaline granite, including ore-bearing alkaline granite, whose Ta and Nb concentrations reach significant values. The evolution of the massif ended with the emplacement of trachybasaltic andesite. The rocks of the massif show systematic enrichment in incompatible elements in the final differentiation products of the alkaline salic magmas. The differentiation processes during the early evolution of the massif occurred in an open system, with influx of melts that contained various proportions of incompatible elements. The magma system was closed during the origin of the ore-bearing granites. Rare-metal granitoids in the Eastern Sayan zone were produced by magmas formed by interaction between mantle melts (which formed the mafic dikes) with crustal material. The mantle melts likely affected the lower parts of the crust and either induced its melting, with later mixing the anatectic and mantle magmas, or assimilated crustal material and generated melts with crustal–mantle characteristics. The origin of the Eastern Sayan zone of rare-metal alkaline magmatism was related to rifting, which was triggered by interaction between the Tarim and Barguzin mantle plumes. The Eastern Sayan zone was formed in the marginal part of the Barguzin magmatic province, and rare-metal magmas in it were likely generated in relation with the activity of the Barguzin plume.  相似文献   

19.
A combined study of major and trace elements, Nd isotopes, and U-Pb systematics has been conducted for the early Palaeoproterozoic (Sumian) volcanic rocks and granites localized in different portions of the Karelian Craton. SHRIMP dating of zircons from the Sumian basalts indicates an emplacement age of 2423 ± 31 Ma, which constrains the lower age boundary of the early Palaeoproterozoic sequence at the Karelian Craton. The early Palaeoproterozoic mafic volcanic rocks of the Karelian Craton show practically no lateral geochemical and isotope-geochemical variations. The rocks bear signs of crustal contamination, in particular Nb and Ti negative anomalies, light rare earth element (LREE) enrichment, and nonradiogenic Nd isotope composition. However, some correlations between incompatible element ratios suggest that the crustal signatures were mainly inherited from mantle sources metasomatized during a previous subduction event. En route to the surface, melts presumably experienced only insignificant contamination by crustal material. Felsic rocks do not define common trends with mafic rocks and were formed independently. They exhibit higher REE contents, large-ion lithophile element (LILE) enrichment, and extremely wide variations in Nd isotope composition, which clearly demonstrates a considerable contribution of heterogeneous basement to their formation. Geochemically, the felsic rocks of the Karelian Craton correspond to A2-type granites and were formed by melting of crustal rocks in an anorogenic setting. Their possible sources are Archaean sanukitoid-type granitoids and Archaean granite gneisses. The high Yb content and pronounced Eu anomaly imply that they were generated from a garnet-free pyroxene – plagioclase source at shallow depths. By the Palaeoproterozoic, the older Vodlozero block was colder than the Central Domain, which facilitated the development of the brittle deformations and faulting and, correspondingly, rapid magma ascent to the surface without melting of crustal rocks. This resulted in the absence of felsic rocks and the formation of more primitive basalts in this area.  相似文献   

20.
Mafic and intermediate intrusions occur in the Slavkovsky les as dykes, sills and minor tabular bodies emplaced in metamorphic rocks or enclosed in late Variscan granites near the SW contact of the Western Krušné hory/Erzgebirge granite pluton. They are similar in composition and textures to the redwitzites defined in NE Bavaria. Single zircon Pb-evaporation analyses constrain the age of a quartz monzodiorite at 323.4 ± 4.4 Ma and of a granodiorite at 326.1 ± 5.6 Ma. The PT range of magma crystallization is estimated at ~1.4–2.2 kbar and ~730–870°C and it accords with a shallow intrusion level of late Variscan granites but provides lower crystallization temperatures compared to the Bavarian redwitzites. We explain the heterogeneous composition of dioritic intrusions in the Slavkovsky les by mixing between mafic and felsic magmas with a minor effect of fractional crystallization. Increased K, Ba, Rb, Sr and REE contents compared to tholeiitic basalts suggest that the parental mafic magma was probably produced by melting of a metasomatised mantle, the melts being close to lamprophyre or alkali basalt composition. Diorites and granodiorites originated from mixed magmas derived by addition of about 25–35 and 50 vol.%, respectively, of the acid end-member (granite) to lamprophyre or alkali-basalt magma. Our data stress an important role of mafic magmas in the origin of late Variscan granitoids in NW Bohemian Massif and emphasize the effect of mantle metasomatism on the origin of K-rich mafic igneous rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号