首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
从含铁工业固体废渣中分离出来一种含锌富铁矿物材料(WMT)作为非均相Fenton催化剂,并深入研究WMT对水中偶氮染料橙黄G (orange G, OG) 的催化Fenton氧化脱色降解性能。采用批处理氧化实验方法,探讨在不同条件下WMT对水中OG非均相Fenton氧化脱色降解的效果差异,确定优化工艺参数。研究表明,WMT催化的OG非均相Fenton脱色降解,主要表现为在暗反应下大都遵循零级动力学模型(R2>0.96),但在可见光条件下却遵循伪一级动力学模型(R2>0.97)。而且,WMT具有很好的非均相光-Fenton催化性能。因此,WMT是一种潜在的并可供选择的对OG去除的非均相光-Fenton催化剂。  相似文献   

2.
采用浸渍法制备了用于常温常压下催化Fenton法的负载型Fe2O3/凹凸棒石催化剂,并将其用于处理十二烷基苯磺酸钠废水.采用BET,SEM,FT-IR对其进行了表征,并考察了Fe2O3/凹凸棒石催化剂的催化活性和稳定性.对于初始浓度为40 mg/L的十二烷基苯磺酸钠模拟废水,当Fe2O3/凹凸棒石催化剂和H2O2氧化剂的投加量分别为20 g/L和0.392 mol/L时,pH为5时,反应温度为80℃时,处理1h时染料的十二烷基苯磺酸钠的去除率可达到99.99%.与传统Fenton试剂法相比,以Fe2O3/凹凸棒石为催化剂的Fenton法,具有pH范围广(2~10),降解程度高和催化剂易回收再用的优点.  相似文献   

3.
以蒙脱土为载体制备负载型Fe/Al复合氧化物(FeAlOx/MMT)用于催化Fenton反应降解高浓度苯酚废水。实验结果表明,活性相FeAlOx中Fe/Al摩尔比为0.22时制备所得催化剂对Fenton反应具有最佳活性,且Fe/Al复合氧化物并未嵌入蒙脱土层间。在低温和高pH条件下催化体系存在诱导期,诱导期内FeAlOx/MMT缓释出Fe离子并进而由Fe离子催化溶液中的Fenton反应。通过对非均相催化降解苯酚废水的动力学研究发现,H2O2初始浓度、溶液的pH和反应温度对COD降解效率具有显著影响。调节降解过程中的温度序列和氧化剂引入程序能够缓解高温和高双氧水浓度双重因素耦合导致的HO.自消耗。在优化的降解条件下使用理论用量的H2O2可使得1 g/L的苯酚废水中苯酚降解率达到100%,而COD的降解率则达到97%。  相似文献   

4.
以氧化铁红粉末为载体,钛酸四丁酯为前驱体,无水乙醇为溶剂,制备了Fe2O3-TiO2光催化剂。用XRD、TEM等对催化剂的物相、形貌进行了表征,并通过对酸性大红GR染料废水进行光催化降解实验,研究了催化剂的投加量、光照时间以及起始浓度、pH值、回收方法及催化剂重复使用次数对酸性大红染料废水光降解作用的影响。实验结果表明,氧化铁红粉末负载TiO2催化剂有很好的吸附和光催化性能,并可以多次回收重复使用,在投加量为0.4g/L的条件下,光催化效果最好,1h后的脱色率可达95%以上。  相似文献   

5.
王征  朱茂旭  周良勇 《矿物学报》2007,27(2):131-136
利用锰氧化物具有高的吸附与氧化还原化学活性的特点,研究了采自东太平洋的铁锰结核对阳离子染料次甲基蓝氧化性脱色特征。结果表明,铁锰结核表面的非均相氧化是次甲基蓝脱色的主要机制。在通常的染料废水浓度范围内,铁锰结核可有效地对次甲基蓝染料废水氧化脱色。随染料浓度降低,铁锰结核投放量增加和粒度减小,次甲基蓝的脱色率明显提高。次甲基蓝的矿化程度(TOC去除率)较高,但仍低于脱色率。pH对次甲基蓝脱色的影响主要体现在对表面配位体形成和对体系还原电位的影响,当pH<4.0时,脱色率随酸度的增加明显提高;当pH在4.0~10.0时,溶液pH值对脱色率影响有限。在铁锰结核连续循环体系中,溶解Mn2 浓度和pH的增加是脱色率不断下降的主要原因。  相似文献   

6.
以钛酸四丁酯为前驱体,天然凹凸棒石为载体,采用溶胶凝胶法制备了TiO_2/凹凸棒石复合光催化剂,并用XRD、TEM对其进行表征.以亚甲基蓝染料为模拟污染物,采用300 W汞灯为紫外光源,以光催化实验来评价该催化剂的活性,并研究了H_2O_2的引入对光催化活性的影响.实验结果表明,H_2O_2能显著提高染料的脱色效率:亚甲基蓝的初始浓度为50 mg/L,催化体系为2 mmol/L H_2O_2+0.5 g/L TiO_2/凹凸棒石+UV(紫外线),光催化10 min后其脱色率为95%,相对于单独的0.5 g/L TiO_2/凹凸棒石+UV催化体系,其脱色率提高了约50%.全波段扫描显示,加入H_2O_2后,亚甲基蓝在290 nm对应的苯环吸收蜂急剧下降,665 nm对应的最大吸收峰则近乎消失,且没有新的吸收峰产生.  相似文献   

7.
矿物类Fenton反应降解有机污染物的研究进展   总被引:1,自引:0,他引:1  
作为高级氧化工艺之一,Fenton技术能高效地氧化降解有机污染物,矿物催化类Fenton体系的建立则是对Fenton技术的发展和提升。本文在简要介绍传统Fenton技术的基础上,重点阐述了负载型非均相催化类Fenton反应和天然含铁矿物催化类Fenton反应的产生及发展现状。最后结合笔者的科研工作结果展望了天然黑(铁)电气石在矿物催化类Fenton体系中的应用前景。  相似文献   

8.
以纳基和钙基夏子街膨润土为吸附剂,通过改变吸附时间、吸附剂用量、染料溶液浓度、初始pH值分析其对碱性红46和碱性兰41脱色率的影响,并对其吸附动力学、吸附热力学和吸附机理进行了研究.结果表明,2种膨润土对2种碱性染料废水的最佳脱色条件具有一定差异.准一级动力学模型对膨润土吸附碱性染料废水的过程描述更准确,膨润土对碱性红46的吸附是自发吸热反应,对碱性兰41的吸附是自发放热反应,膨润土对2种碱性染料废水的吸附既有物理吸附也存在离子交换吸附.  相似文献   

9.
随着工业的快速发展,染料的品种日益增加,同时染料废水的成分也越来越复杂.传统处理染料废水的方法有吸附、絮凝、沉淀、过滤、气提等,这些方法只是将污染物分离或浓缩,或者只是将污染物从一相转移到另一相,通常会不可避免的带来大量的废料和二次污染;因此,如何有效的降解污染物越来越重要.  相似文献   

10.
以亚甲基蓝溶液为模型污染物,在超声波芬顿法协同作用下对亚甲基蓝染料废水的降解作用进行了研究,考察了反应时间、H2O2用量、溶液pH值、Fe^2+的浓度等因素对亚甲基蓝溶液降解的影响。结果表明,超声波单独降解亚甲基蓝溶液脱色效果不明显,超声波协同H2O2降解亚甲基蓝,加入30%H2O26mL,脱色率约45.80%;溶液pH2.80,Fe^2+浓度为30mmol/L时,超声波芬顿法协同降解甲基蓝180min,脱色率达92.70%。试验证明,超声波芬顿法是一种降解亚甲基蓝的有效方法。  相似文献   

11.
The selective catalytic reduction (SCR) of nitrogen oxides on M/ZSM-5 (M = Cu, Ni, Co) catalysts was investigated. The catalysts were prepared using hydrothermal impregnation of the metal chlorides and nitrates on ZSM-5. The catalysts were characterized by nitrogen absorption/desorption, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible diffusion reflection spectroscopy (UV–Vis DRS), temperature-programmed reduction (TPR), N2O chemisorption and ammonia temperature-programmed desorption. The performance tests for SCR of NO were carried out in a fixed-bed reactor from 250 to 400 °C. During the impregnation, part of the aluminum was eliminated from the zeolite framework due to the acidity of the metal salt solution and heating process as indicated by the reduction in the intensity of XRD peaks and variations in the positions of the FTIR vibrational bands. The Cu(Cl)/ZSM-5 catalyst exhibited NO conversions over 90% over the entire temperature range. The other catalysts showed comparable activities, but the catalysts prepared with chloride salt precursors demonstrated higher activity than those based on nitrate as the precursor. Moreover, the TPR reduction peaks of the metal ion in catalysts prepared with chloride precursor were lower, and their UV–Vis absorption bands revealed bathochromic transfers with higher intensities. Concurrent with these changes, the activity of the catalyst increased. The TPR profiles indicated that Cu and Ni both had an oxidation number of +2, whereas Co was present in the oxidation number of +2 and +3. The mass transfer limitation analysis showed that for particles in millimeter size range or larger significant intra-particle mass transfer limitation would be expected.  相似文献   

12.
为研究双金属催化剂去除有机污染物的效果,采用自制Fe/Ag催化剂对模拟苯酚废水进行了臭氧催化氧化处理。通过扫描电子显微镜(SEM)、比表面积分析仪(BET)和X射线衍射(XRD)对催化剂进行表征,并考察了催化剂类型、催化剂投加量和溶液初始pH值对降解效果的影响规律。结果表明:与Fe相比,Fe/Ag比表面积减少了22.8%,在Fe/Ag/O3与含苯酚废水的反应体系中,反应遵循臭氧直接作用和活性自由基(·OH、·O2、H2O2)共同作用的机理;Fe/Ag在反应过程中体现出良好的协同作用;300 mg/L的苯酚模拟废水在pH=6.3、Fe/Ag投加量为1.00 g的最优反应条件下经60 min反应,苯酚与化学需氧量(COD)去除率比单独臭氧氧化分别提高了18.4%和29.4%。  相似文献   

13.
This study examined the natural and anthropogenic pollution of groundwater at a national groundwater monitoring station (NGMS) in a dyeing industry complex, Korea. The arsenic contamination of a shallow well at the NGMS was noticed, starting from 22 months after the well installation. Possibilities of several mechanisms for As pollution of the groundwater were examined. The arsenical pyrite oxidation as a source mechanism in the shallow aquifer may be disregarded because of deficiency of pyrite in the shallow sediments, concomitant with depleted dissolved oxygen and very low levels of redox potentials of the As-polluted groundwater. The effect of wastewater from the general industrial area through a covered sewer stream was also considered as a possible source. Even though occurrence patterns of phenol and volatile organic hydrocarbons were very similar to those of the polluted shallow groundwater, As was not detected in the wastewater. One of the most plausible sources of the arsenic pollution was believed to be the reductive dissolution of Fe hydroxide. The As-polluted shallow groundwater had also very high levels of pH, HCO3, COD and very low levels of DO and NO3, which support the possibility of As pollution by the reductive dissolution. Consequently, the shallow groundwater in and around the NGMS has been polluted with various contaminants including As, phenol, chlorinated solvents, and petroleum hydrocarbons through multiple sources of contamination, such as natural reductive dissolution, dyeing wastewater, industrial wastewater, and municipal sewage.  相似文献   

14.
钛磁铁矿的制备及其异相Fenton反应催化性能   总被引:2,自引:0,他引:2  
在水相中合成了钛磁铁矿(Fe3-xTixO4),并用XRD、MSssbauer、TG-DSC和SEM等手段对合成的Fe3-xTixO4进行了表征。结果表明,合成的Fe3-xTixO4为立方晶系尖晶石结构,样品中的钛离子都已经进入其晶格中;钛掺杂有抑制钛磁铁矿进一步向钛磁赤铁矿转化和稳定尖晶石结构的作用。此外,以亚甲基蓝降解为探针反应,考察了钛磁铁矿异相Fenton反应的催化性能。实验表明,钛含量较高的钛磁铁矿是一种性能优越的异相Fenton反应催化剂。  相似文献   

15.
Fenton氧化膜-生物反应器出水中丙烯腈的实验研究   总被引:4,自引:0,他引:4  
采用膜-生物反应器和Fenton氧化组合工艺对丙烯腈废水进行处理。从GC/MS测量结果来看,膜-生物反应器出水中主要物质为2,6双(二甲基-乙基)-4-酚、苯二甲酸和硝基苯二甲酸,均为生物难降解有机物,使出水不能达标。后续Fenton氧化工艺处理膜生物反应器出水,可以使COD含量等指标达到所要求的排放标准。经过膜-生物处理与Fenton法结合的优化工艺,COD去除率达到80%~88%,去除率达到98%,出水水质可达排放标准。Fenton氧化工艺的最佳工艺条件为:pH值为3.4,硫酸亚铁的投加量为700mg/L,双氧水的投加量为600mg/L。  相似文献   

16.
In the present study, the effectiveness of physicochemical treatment processes (coagulation and Fenton’s oxidation) was investigated for simulated dairy wastewater (pH = 7.3, chemical oxygen demand (COD) = 3600 mg/l, 5-day biochemical oxygen demand (BOD5) = 1950 mg/l, total Kjeldahl nitrogen (TKN) = 87 mg/l, and total phosphorous (TP) = 14 mg/l). Plain and ballasted coagulation runs were carried out in a jar apparatus, while Fenton’s oxidation was performed in a three-neck glass reactor. Ballasted coagulation caused an enhancement in the settling rate of sludge though no significant enhancement in the removal of organics was observed. Individually, coagulation and Fenton’s oxidation processes resulted in ~67 and 80 % COD removals, respectively, from the wastewater. The sequential treatment exploring coagulation followed by Fenton’s oxidation showed overall COD, BOD5, TKN, and TP reductions of ~93, 97, 84, and 70 %, respectively, from the wastewater. However, a biological post-treatment would be required to achieve the effluent discharge standards. The removal of proteins, fats, and amino acids from wastewater was confirmed from Fourier transform infrared analysis of the settled sludge (obtained after coagulation process). Preliminary cost analysis suggested coagulation and the sequential treatment (i.e. coagulation followed by Fenton’s oxidation) as the preferred options.  相似文献   

17.
Co supported on ZSM-5 (Co-ZSM-5) catalysts was synthesized by wet ion exchange (WIE), impregnation (IM), and in situ hydrothermal (IHT) methods. Their adsorptive catalytic activities for the removal of VOC’s [Benzene, Toluene, Ethylbenzene and Toluene (BTEX)] in air were tested. The physicochemical properties were investigated by XRD, FTIR, SEM, XPS, and low-temperature N2 adsorption. The results indicate that the catalytic performance of Co-ZSM-5 for VOC’s abatement is effective and the synthesis methods reasonably influence the catalytic activity of Co-ZSM-5. Among three samples prepared by three different methods, the catalyst synthesized by the hydrothermal method possesses the highest adsorptive catalytic activity for BTEX oxidation. The optimized contact time was 60 min. The catalytic activities of the prepared catalysts are varied in the order of IHT > IM > WIE based on the combined removal capacity 59.24 > 34.46 > 23.82 (mg/g). For the Co-ZSM-5 WIE catalysts, the procedure has an evident effect on their catalytic performance. For example, the WIE catalysts prepared with cobalt chloride (II) by ion exchange have a higher acidity and surface area than the catalyst prepared with cobalt chloride (II) by impregnation method but less cobalt content. The excellent performance of IHT catalysts may be endorsed to the better availability of the oxidized form (Co3+), due to high content, higher surface area and acidity. Moreover, the Co-ZSM-5 catalyst synthesized by the IHT method shows high stability after being used.  相似文献   

18.
Pretreatment of waste emulsions with high organic content by a combined process of vibratory shear enhanced process and Fenton’s oxidation prior to biological treatment was investigated. Vibrating membrane had shown good performance in chemical oxygen demand and oil removals and the mitigation of concentration polarization. However, the permeate after filtration processing still contained high content of organics. Thus, additional Fenton oxidation was applied to reduce the organic loading, and improve the biodegradability of the wastewater. The optimal molar ratio of ferrous iron to hydrogen peroxide was 0.05 obtained from the jar-test experiments. Removal of organics was enhanced by increasing hydrogen peroxide dosage, while efficiency of hydrogen peroxide reached maximum of 1.11(w/w) at the hydrogen peroxide dosage of 6.8 g/L. Furthermore, the biological experiments indicated that the high concentration of organics could inhibit microbial activity, which decreased the chemical oxygen demand degradation rates. The adaptive period of the microbe was greatly shortened using Fenton’s reagent at the low dosages. The improvement of the biodegradability could be explained by partial mineralization and chemical transformation of parent organic compounds after Fenton oxidation.  相似文献   

19.
Fe-ZSM-5 zeolites are important for many applications, especially for catalysis and volatile organic carbon removal. However, the inclusion of a high content of iron in the ZSM-5 structure is hindered due to the high pH required for hydrothermal synthesis. To overcome this problem, the synthesis of Fe-ZSM-5 zeolites with a novel iron chelate complex as the iron source (ammonium iron citrate) and a common iron source (iron chloride) was investigated. The synthesized materials were characterized by XRD, BET, SEM, FTIR, XPS and ICP. The total iron content was determined by ICP. Fe-ZSM-5 zeolites prepared by the ammonium iron citrate source method contain the highest iron concentration within the framework of a Mobil five structure, which has a high surface area and crystallinity. The prepared materials were used to remove phenol and ammonium. The catalytic results demonstrated that Fe-ZSM-5 prepared with ammonium iron citrate is the best catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号