首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Okmok volcano is situated on oceanic crust in the central Aleutianarc and experienced large (15 km3) caldera-forming eruptionsat 12 000 years BP and 2050 years BP. Each caldera-forming eruptionbegan with a small Plinian rhyodacite event followed by theemplacement of a dominantly andesitic ash-flow unit, whereaseffusive inter- and post-caldera lavas have been more basaltic.Phenocryst assemblages are composed of olivine + pyroxene +plagioclase ± Fe–Ti oxides and indicate crystallizationat 1000–1100°C at 0·1–0·2 GPain the presence of 0–4% H2O. The erupted products followa tholeiitic evolutionary trend and calculated liquid compositionsrange from 52 to 68 wt % SiO2 with 0·8–3·3wt % K2O. Major and trace element models suggest that the moreevolved magmas were produced by 50–60% in situ fractionalcrystallization around the margins of the shallow magma chamber.Oxygen and strontium isotope data (18O 4·4–4·9,87Sr/ 86Sr 0·7032–0·7034) indicate interactionwith a hydrothermally altered crustal component, which led toelevated thorium isotope ratios in some caldera-forming magmas.This compromises the use of uranium–thorium disequilibria[(230Th/ 238U) = 0·849–0·964] to constrainthe time scales of magma differentiation but instead suggeststhat the age of the hydrothermal system is 100 ka. Modellingof the diffusion of strontium in plagioclase indicates thatmany evolved crystal rims formed less than 200 years prior toeruption. This addition of rim material probably reflects theremobilization of crystals from the chamber margins followingreplenishment. Basaltic recharge led to the expansion of themagma chamber, which was responsible for the most recent caldera-formingevent. KEY WORDS: Okmok; caldera; U-series isotopes; Sr-diffusion; time scales; Aleutian arc  相似文献   

2.
In the Northern Volcanic Zone of the Andes, the Cayambe VolcanicComplex consists of: (1) a basal, mostly effusive volcano, theViejo Cayambe, whose lavas (andesites and subordinate dacitesand rhyolites) are typically calc-alkaline; and (2) a younger,essentially dacitic, composite edifice, the Nevado Cayambe,characterized by lavas with adakitic signatures and explosiveeruptive styles. The construction of Viejo Cayambe began >1·1Myr ago and ended at 1·0 Ma. The young and still activeNevado Cayambe grew after a period of quiescence of about 0·6Myr, from 0·4 Ma to Holocene. Its complex history isdivided into at least three large construction phases (Angurealcone, Main Summit cone and Secondary Summit cone) and compriseslarge pyroclastic events, debris avalanches, as well as periodsof dome activity. Geochemical data indicate that fractionalcrystallization and crustal assimilation processes have a limitedrole in the genesis of each suite. On the contrary, field observations,and mineralogical and geochemical data show the increasing importanceof magma mixing during the evolution of the volcanic complex.The adakitic signature of Nevado Cayambe magmas is related topartial melting of a basaltic source, which could be the lowercrust or the subducted slab. However, reliable geophysical andgeochemical evidence indicates that the source of adakitic componentis the subducted slab. Thus, the Viejo Cayambe magmas are inferredto come from a mantle wedge source metasomatized by slab-derivedmelts (adakites), whereas the Nevado Cayambe magmas indicatea greater involvement of adakitic melts in their petrogenesis.This temporal evolution can be related to the presence of thesubducted Carnegie Ridge, modifying the geothermal gradientalong the Wadati–Benioff zone and favouring slab partialmelting. KEY WORDS: adakites; 40Ar/39Ar dating; Cayambe volcano; Ecuador; mantle metasomatism; Andes  相似文献   

3.
Summary Suites of coarse-grained clasts (plutonic nodules) within the scoria of two separate mafic post-caldera parasitic vents, on Sete Cidades volcano, are described. These involve dunites, wehrlites, olivine clinopyroxenites, clinopyroxenites and olivine gabbros in the Eguas ankaramitic cone and pyroxene hornblendites, kaersutite gabbros and diorites in the Pico das Camarinhas basaltic-hawaiitic cone. The plutonic nodules are inferred to be cumulates, crystallised within the crust from magmas co-genetic with the post-caldera mafic lavas erupted on the flanks of Sete Cidades.The dunites, wehrlites, pyroxenites and olivine gabbros have assemblages and mineral composition consistent with growth as early, high-temperature cumulates, whereas the pyroxene hornblendites, kaersutite gabbros and diorites represent lower temperature products. However, whereas the kaersutite gabbros were not wholly crystallised at the time of their disruption and contain up to 4% intercumulus trachytic and/or tephriphonolitic glass, the pyroxene hornblendites and the diorites were fully crystallised. Compositions of the intercumulus glasses are similar to those of postcaldera trachytic pumices erupted on Sete Cidades.Although the two suites of plutonic clasts can be considered as complementary, they probably derive from different intrusions. We envisage a lensoid (laccolithic) intrusion at very shallow depth as the source for the pyroxene hornblendite - kaersutite gabbro -diorite suite whereas the dunite - wehrlite - olivine clinopyroxenite - clinopyroxenite -olivine gabbro nodules probably originate from intrusive bodies at greater depth.
Sub-vulkanische Kristallisation am Sete Cidades Vulkan, São Miguel, Azoren: Die Bedeutung mafischer und ultramafischer plutonischer Einschlüsse
Zusammenfassung Wir beschreiben Gruppen von grobkörnigen Klasten (Plutonic nodules) in der Scoria von zwei separaten mafischen post-caldera parasitischen Kratern am Sete Cidades Vulkan: Diese umfassen Dunite, Wehrlite, Olivin-Klinopyroxenite und Olivin-Gabbros in dem ankaramitischen Kegel von Eguas. In den basaltisch-hawaiitischen Kegeln von Pico das Camarinhas, kommen Pyroxen-Hornblendite, Kaersutit-Gabbros und Diorite vor. Wir nehmen an, daß die plutonischen nodules Kumulate repräsentieren, die in der Kruste aus Magmen kristallisierten, die mit den post-caldera mafischen Laven, die an den Flanken von Sete Cidades ausgetreten sind kogenetisch sind.Die Dunite, Wehrlite, Pyroxenite und Olivin-Gabbros führen Paragenesen und Mineral-Zusammensetzungen, die im Einklang mit einer Entwicklung als frühe Hoch Temperatur-Kumulate sind. Hingegen stellen die Pyroxen-Hornblendite, Kaersutit-Gabbros und Diorite niedriger temperierte Produkte dar. Die Kaersutit-Gabbros waren zur Zeit /:ihrer Umlagerung noch nicht ganz auskristallisiert und führen bis zu 4% intercumulus trachytisches oder tephriphonolitisches Glas, die Pyroxenhornblendite und die Diorite sind jedoch ganz kristallisiert. Die Zusammensetzungen der Interkumulusgläser sind denen von post-caldera trachytischen Bimssteinen von Sete Cidades ähnlich.Obwohl die zwei Gruppen plutonischer Klasten als komplementär betrachtet werden können, stammen sie wahrscheinlich von verschiedenen Intrusionen. Es dürfte sich um eine lensoide (lakkolithische) Intrusion in geringer Tiefe als Quelle für die Pyroxenhomblendit-Kärsutitgabbro-Diorit-Abfolge handeln, während die Gruppe der Dunite, Wehrlite, Olivinklinopyroxenite und Olivingabbro-Nodules wahrscheinlich aus größerer Tiefe stammt.


With 9 Figures  相似文献   

4.
Rates of magmatic processes in a cooling magma chamber wereinvestigated for alkali basalt and trachytic andesite lavaserupted sequentially from Rishiri Volcano, northern Japan, bydating of these lavas using 238U–230Th radioactive disequilibriumand 14C dating methods, in combination with theoretical analyses.We obtained the eruption age of the basaltic lavas to be 29·3± 0·6 ka by 14C dating of charcoals. The eruptionage of the andesitic lavas was estimated to be 20·2 ±3·1 ka, utilizing a whole-rock isochron formed by U–Thfractionation as a result of degassing after lava emplacement.Because these two lavas represent a series of magmas producedby assimilation and fractional crystallization in the same magmachamber, the difference of the ages (i.e. 9 kyr) is a timescaleof magmatic evolution. The thermal and chemical evolution ofthe Rishiri magma chamber was modeled using mass and energybalance constraints, as well as quantitative information obtainedfrom petrological and geochemical observations on the lavas.Using the timescale of 9 kyr, the thickness of the magma chamberis estimated to have been about 1·7 km. The model calculationsshow that, in the early stage of the evolution, the magma cooledat a relatively high rate (>0·1°C/year), and thecooling rate decreased with time. Convective heat flux fromthe main magma body exceeded 2 W/m2 when the magma was basaltic,and the intensity diminished exponentially with magmatic evolution.Volume flux of crustal materials to the magma chamber and rateof convective melt exchange (compositional convection) betweenthe main magma and mush melt also decreased with time, from 0·1 m/year to 10–3 m/year, and from 1 m/yearto 10–2 m/year, respectively, as the magmas evolved frombasaltic to andesitic compositions. Although the mechanism ofthe cooling (i.e. thermal convection and/or compositional convection)of the main magma could not be constrained uniquely by the model,it is suggested that compositional convection was not effectivein cooling the main magma, and the magma chamber is consideredto have been cooled by thermal convection, in addition to heatconduction. KEY WORDS: convection; magma chamber; heat and mass transport; timescale; U-series disequilibria  相似文献   

5.
Along strike of the Quaternary magmatic arc in the SouthernVolcanic Zone of the Andes, there is a south to north increasein crustal thickness, and the lavas define systematic geochemicaltrends which have been attributed to variations in the proportionsand compositions of mantle-and crustal-derived components. Realisticinterpretations of these regional geochemical trends requiresan understanding of the sources and processes that control lavacompositions at individual volcanoes. Because it is in an importantgeophysical and geochemical transition zone, we studied theAzufre—Planchon—Peteroa volcanic complex, a nestedgroup of three volcanoes <055 m.y. in age located at 3515'Sin the Southern Volcanic Zone of the Andes. North of this complexat 33–35S the continental crust is thick, basalts areabsent, and there is abundant evidence for crustal componentsin the evolved lavas, but south of 37S, where the crust isrelatively thin, basaltic lavas are abundant and the contributionof continental crust to the lavas is less obvious. In additionto its location, this volcanic complex is important becausethere is a diversity of lava compositions, and it is the northernmostexposure of recent basaltic volcanism on the volcanic front.Therefore, the lavas of this complex can be used to identifythe relative roles of mantle, lower-crustal and upper-crustalsources and processes at a single location. Volcan Azufre is the oldest and largest volcano of the complex;it is a multi-cycle, bimodal, basaltic andesite–dacitestratovolcano. Volcan Planchon is the northernmost basalt-bearingvolcano along the volcanic front of the Southern Andes, andVolcan Peteroa, the youngest volcano of the complex, has eruptedmixed magmas of andesitic and dacitic composition. Most basalticandesite lavas at Azufre and Planchon are related by a plagioclase-poor,anhydrous mineral fractionating assemblage. High-alumina basaltis produced from a tholeiitic parent by an 4–8 kbar fractionatingassemblage. During this moderatepressure crystallization, themagmas also incorporated a crustal component with high La/Yband high abundances of Rb, Cs and Th. Based on the chemicalcharacteristics of the added component and the inferred depthof crystallization, the crustal source may have been garnetgranulite derived from solidified arc magmas in the lower tomiddle continental crust. At Planchon, the role of crustal assimilationhas increased with decreasing eruption age probably becausecrustal temperatures have increased during continued volcanism.Azufre dacite lavas formed at low pressures by fractionationof a plagioclase-rich assemblage. These dacite lavas containan upper-crustal component, probably derived in part from limestone,with high values of 87Sr/86Sr and 18O/16O. Thus two depths (upperand lower crust) of crystallization and associated crustal assimilationare evident in Planchon–Azufre lavas. Peteroa, the focusof recent volcanism, consists of calc-alkaline andesite anddacite eruptive products whose textures and compositions indicatean important role for magma mixing. Therefore, the volcanismevolved from a tholeiitic system of basalt and subordinate dacite(Planchon–Azufre) to a calc-alkaline system with abundantmixed lavas of intermediate composition (Peteroa). In additionto crustal thickness, two important parameters which controlledthe diversity of lava composition in this complex are magmasupply rate from the mantle and crustal temperature. Both parametersvaried with time, and they must be considered in broader interpretationsof along-strike geochemical trends. KEY WORDS: arc magmas; Andes; Peteroa; Planchan; geochemistry *Corresponding author. Present address: ENTRIX, Inc., 4II North Central Avenue, Glendale, CA 91203, USA  相似文献   

6.
Alcedo volcano is one of six shield volcanoes on Isabela Islandin the western Galpagos Islands. Although Alcedo is dominantiybasaltic, it is unusual in that it also has erupted 1 km3 ofrhyolite. The rhyolitic phase marked a 10-fold decrease in themass-eruption rate of the volcano, and the volcano has returnedto erupting basalt. The basalts are tholeiitic and range fromstrongly to sparsely porphyritic. Olivine and plagiodase arethe liquidus phases in the most primitive basalts. The MgO andNi concentrations in the most primitive basalts indicate thatthey have undergone substantial differentiation since extractionfrom the mantle. The rhyolites contain the assemblage oligoclase-augite-titanomagnetite-fayalite-apatiteand sparse xenoliths of quenched basalt and cumulate gabbros.Intermediate rocks are very rare, but some are apparently basaltrhyolitehybrids, and others resulted from differentiation of tholeiiticmagma. Several modeling approaches and Sr-, Nd-, and O-isotopicdata indicate that the rhyolites resulted from 90% fractionation(by weight) of plagiodase, augite, titanomagnetite, olivine,and apatite from the most primitive olivine tholeiite. The dataare inconsistent with the rhyolites originating by crustal anatexis.The extreme Daly gap may be caused by the large increase inviscosity as the basaltic magma differentiates to intermediateand siliceous compositions; highly evolved magmas are eruptibleonly after they become saturated with volatiles by second boiling.The close association of the hybrid intermediate magmas andmagmatic inclusions with the climactic plinian eruption indicatesmixing between mafic and silicic magmas immediately before eruption.Rhyolite production was favored by the decrease in supply ofbasaltic magma as Alcedo was carried away from the focus ofthe Galpagos hotspot. A three-stage model for the magmaticevolution of a Galpagos volcano is proposed. In the first stage,the supply of basaltic magma is large. Basaltic magma continuallyintrudes the subcaldera magma chamber, buffering the magmas'compositional and thermal evolution. As the volcano is carriedaway from the basaltic source, the magma chamber is allowedto cool and differentiate, as exemplified by Alcedo's rhyoliticphase. Finally, the volcano receives even smaller influx ofbasalt, so a large magma chamber cannot be sustained, and thevolcano shifts to isolated basaltic eruptions. KEY WORDS: Galpagos; oceanic rhyolites; fractional crystallization; Isabela Island *Corresponding author, e-mail: Geist{at}IDUI1.csrv.uidaho.edu. Telephone: 208-885-6491. Fax: 208-885-5724  相似文献   

7.
The origin of large-volume Yellowstone ignimbrites and smaller-volumeintra-caldera lavas requires shallow remelting of enormous volumesof variably 18O-depleted volcanic and sub-volcanic rocks alteredby hydrothermal activity. Zircons provide probes of these processesas they preserve older ages and inherited 18O values. This studypresents a high-resolution, oxygen isotope examination of volcanismat Yellowstone using ion microprobe analysis with an averageprecision of ± 0·2 and a 10 µm spot size.We report 357 analyses of cores and rims of zircons, and isotopeprofiles of 142 single zircons in 11 units that represent majorYellowstone ignimbrites, and post-caldera lavas. Many zirconsfrom these samples were previously dated in the same spots bysensitive high-resolution ion microprobe (SHRIMP), and all zirconswere analyzed for oxygen isotope ratios in bulk as a functionof grain size by laser fluorination. We additionally reportoxygen isotope analyses of quartz crystals in three units. Theresults of this work provide the following new observations.(1) Most zircons from post-caldera low-18O lavas are zoned,with higher 18O values and highly variable U–Pb ages inthe cores that suggest inheritance from pre-caldera rocks exposedon the surface. (2) Many of the higher-18O zircon cores in theselavas have U–Pb zircon crystallization ages that postdatecaldera formation, but pre-date the eruption age by 10–20kyr, and represent inheritance of unexposed post-caldera sub-volcanicunits that have 18O similar to the Lava Creek Tuff. (3) Youngand voluminous 0·25–0·1 Ma intra-calderalavas, which represent the latest volcanic activity at Yellowstone,contain zircons with both high-18O and low-18O cores surroundedby an intermediate-18O rim. This implies inheritance of a varietyof rocks from high-18O pre-caldera and low-18O post-calderaunits, followed by residence in a common intermediate-18O meltprior to eruption. (4) Major ignimbrites of Huckleberry Ridge,and to a lesser extent the Lava Creek and Mesa Falls Tuffs,contain zoned zircons with lower-18O zircon cores, suggestingthat melting and zircon inheritance from the low-18O hydrothermallyaltered carapace was an important process during formation ofthese large magma bodies prior to caldera collapse. (5) The18O zoning in the majority of zircon core–rim interfacesis step-like rather than smoothly inflected, suggesting thatprocesses of solution–reprecipitation were more importantthan intra-crystalline oxygen diffusion. Concave-downward zirconcrystal size distributions support dissolution of the smallercrystals and growth of rims on larger crystals. This study suggeststhat silicic magmatism at Yellowstone proceeded via rapid, shallow-levelremelting of earlier erupted and hydrothermally altered Yellowstonesource rocks and that pulses of basaltic magma provided theheat for melting. Each post-caldera Yellowstone lava representsan independent homogenized magma batch that was generated rapidlyby remelting of source rocks of various ages and 18O values.The commonly held model of a single, large-volume, super-solidus,mushy-state magma chamber that is periodically reactivated andproduces rhyolitic offspring is not supported by our data. Rather,the source rocks for the Yellowstone volcanism were cooled belowthe solidus, hydrothermally altered by heated meteoric watersthat caused low 18O values, and then remelted in distinct pocketsby intrusion of basic magmas. Each packet of new melt inheritedzircons that retained older age and 18O values. This interpretationmay have significance for interpreting seismic data for crustallow-velocity zones in which magma mush and solidified areasexperiencing hydrothermal circulation occur side by side. Newbasalt intrusions into this solidifying batholith are requiredto form the youngest volcanic rocks that erupted as independentrhyolitic magmas. We also suggest that the Lava Creek Tuff magmawas already an uneruptable mush by the time of the first post-calderaeruption after 0·1 Myr of the climactic caldera-formingeruption. KEY WORDS: Yellowstone; oxygen isotopes; geochronology; isotope zoning; zircon; U–Pb dating; caldera; rhyolite; ion microprobe  相似文献   

8.
Whole-rock geochemical data on basaltic to rhyolitic samplesfrom 12 volcanic centers are used to constrain the role of continentalcrust in the genesis of magmas formed beneath the anomalouslywide subduction-related volcanic arc in Ecuador. Relativelyhomogeneous, mantle-like, isotopic compositions across the arcimply that the parental magmas in Ecuador were produced largelywithin the mantle wedge above the subduction zone and not byextensive melting of crustal rocks similar to those upon whichthe volcanoes were built. Cross-arc changes in 143Nd/144Nd and7/4Pb are interpreted to result from assimilation of geochemicallymature continental crust, especially in the main arc area, 330–360km from the trench. Mixing calculations limit the quantity ofassimilated crust to less than 10%. Most andesites and dacitesin Ecuador have adakite-like trace element characteristics (e.g.Y <18 ppm, Yb <2 ppm, La/Yb >20, Sr/Y >40). Availablewhole-rock data do not provide a clear basis for distinguishingbetween slab-melting and deep crustal fractionation models forthe genesis of Ecuador adakites; published data highlightinggeochemical evolution within individual volcanoes, and in magmaticrocks produced throughout Ecuador since the Eocene, appear tosupport the deep fractionation model for the genesis of mostevolved Ecuadoran lavas. A subset of andesites, which displaya combination of high Sr (>900 ppm), Nd >4·1 and7/4Pb <6·0, appear to be the best candidates amongEcuador lavas for slab-melts associated with the subductionof the relatively young, over-thickened, oceanic crust of theCarnegie Ridge. KEY WORDS: andesite; Ecuador; trace elements; isotopes; adakite  相似文献   

9.
DUFEK  J.; BERGANTZ  G. W. 《Journal of Petrology》2005,46(11):2167-2195
We present a quantitative assessment of the thermal and dynamicresponse of an amphibolitic lower crust to the intrusion ofbasaltic dike swarms in an arc setting. We consider the effectof variable intrusion geometry, depth of intrusion, and basaltflux on the production, persistence, and interaction of basalticand crustal melt in a stochastic computational framework. Distinctmelting and mixing environments are predicted as a result ofthe crustal thickness and age of the arc system. Shallow crustal(30 km) environments and arc settings with low fluxes of mantle-derivedbasalt are likely repositories of isolated pods of mantle andcrustal melts in the lower crust, both converging on daciticto rhyodacitic composition. These may be preferentially rejuvenatedin subsequent intrusive episodes. Mature arc systems with thickercrust (50 km) produce higher crustal and residual basaltic meltfractions, reaching 0·4 for geologically reasonable basaltfluxes. The basaltic to basaltic andesite composition of bothcrustal and mantle melts will facilitate mixing as the networkof dikes collapses, and Reynolds numbers reach 10–4–1·0in the interiors of dikes that have been breached by ascendingcrustal melts. This may provide one mechanism for melting, assimilation,storage and homogenization (MASH)-like processes. Residual mineralassemblages of crust thickened by repeated intrusion are predictedto be garnet pyroxenitic, which are denser than mantle peridotiteand also generate convective instabilities where some of thecrustal material is lost to the mantle. This reconciles thethinner than predicted crust in regions that have undergonea large flux of mantle basalt for a prolonged period of time,and helps explain the enrichment of incompatible elements suchas K2O, typical of mature arc settings, without the associatedmass balance problem. KEY WORDS: crustal anatexis; delamination; lower crust; magma mixing; thermal model  相似文献   

10.
Aniakchak caldera, Alaska, produced a compositionally heterogeneousignimbrite 3400 years ago, which changes from rhyodacitic atthe base to andesitic at the top of the eruptive sequence. Interpretationsof compositionally heterogeneous ignimbrites typically includeeither in situ fractional crystallization of mafic magma andgeneration of a stratified magma body or replenishment of asilicic magma chamber by mafic inputs. Another possibility,silicic replenishment of a more mafic chamber, exists. Geochemicalcharacteristics of the caldera-forming rhyodacite and severallate pre-caldera rhyodacites indicate independent origins foreach, within a maximum of 5000 years prior to caldera formation.Isotopic considerations preclude derivation of the caldera-formingrhyodacite from the caldera-forming andesite. However, the caldera-formingrhyodacite can be explained as the residual liquid of a mostlycrystallized basalt, with addition of crustal material. TheAniakchak andesite probably formed in a shallow chamber by successivemixing events involving small volumes of basalt and rhyodacite,together with contamination. The pre-caldera rhyodacites representerupted portions of intruding silicic magma, whereas anotherportion homogenized with the resident mafic magma. The caldera-formingevent reflects a large influx of rhyodacite, which erupted beforesignificant mixing occurred and also triggered draining of muchof the andesitic magma from the chamber. KEY WORDS: Aniakchak; caldera-forming eruption; geochemistry; ignimbrite; silicic replenishment  相似文献   

11.
D. Briot 《Lithos》1990,25(4):227-241
Sr and Nd isotopic compositions have been determined on basaltic and acid trachyandesites (BTA-ATA) from the Sancy volcano (Mont-Dore massif, France). These represent more than 80% of the lavas erupted during its activity between 0.9 and 0.2 Ma. These lavas have been recently interpreted as the result of two-component magma mixing during and after repeated injections of basaltic magmas in trachytic reservoirs. Magmatic heterogeneities in the ATA's (large to small enclaves, banded lavas, megacrysts…) testify to the mingling event. Complete mixing is supposed to have been achieved in the “hybrid” BTA's which contain sanidine, plagioclase and clinopyroxene megacrysts in disequilibrium with their host. The megacrysts are interpreted as relicts of the trachytic end-member. Isotopic data on basic comagmatic enclaves and host ATA matrix samples from three different cycles of mingling (succession of heterogeneous pyroclastics, heterogeneous ATA lava flows or domes and occasionally homogeneous BTA lava flows) are not incompatible with two component mixing but could just reflect the heterogeneity of the analysed samples. However, the BTA's have Sr contents and Sr isotopic ratios which are too high to be simple binary mixing products between the postulated end-members. Three hypotheses are considered to explain this discrepancy: (1) the analysed end-members are not those involved in BTA genesis, (2) some crustal contamination occurred during and after the mixing event, (3) Sr-rich sanidine xenocrysts with radiogenic 87Sr/86Sr have been assimilated and digested in the BTA's. In this third hypothesis that I favour, it is not necessary to resort to magma mixing to explain the genesis of the BTA's: assimilation of xenocrysts by basaltic, hawaiitic or mugearitic magmas accounts for both mineralogical disequilibria and isotopic characteristics of these lavas.  相似文献   

12.
Leucocratic and Gabbroic Xenoliths from Hualalai Volcano, Hawai'i   总被引:1,自引:0,他引:1  
A diverse range of crustal xenoliths is hosted in young alkalibasalt lavas and scoria deposits (erupted 3–5 ka) at thesummit of Huallai. Leucocratic xenoliths, including monzodiorites,diorites and syenogabbros, are distinctive among Hawaiian plutonicrocks in having alkali feldspar, apatite, zircon and biotite,and evolved mineral compositions (e.g. albitic feldspar, clinopyroxeneMg-number 67–78). Fine-grained diorites and monzodioritesare plutonic equivalents of mugearite lavas, which are unknownat Huallai. These xenoliths appear to represent melt compositionsfalling along a liquid line of descent leading to trachyte—amagma type which erupted from Huallai as a prodigious lava flowand scoria cone at 114 ka. Inferred fractionating assemblages,MELTS modeling, pyroxene geobarometry and whole-rock norms allpoint to formation of the parent rocks of the leucocratic xenolithsat 3–7 kbar pressure. This depth constraint on xenolithformation, coupled with a demonstrated affinity to hypersthene-normativebasalt and petrologic links between the xenoliths and the trachyte,suggests that the shift from shield to post-shield magmatismat Huallai was accompanied by significant deepening of the activemagma reservoir and a gradual transition from tholeiitic toalkalic magmas. Subsequent differentiation of transitional basaltsby fractional crystallization was apparently both extreme—culminatingin >5·5 km3 of trachyte—and rapid, at 2·75x 106 m3 magma crystallized/year. KEY WORDS: geothermobarometry; magma chamber; xenolith; cumulate; intensive parameters  相似文献   

13.
The caldera-forming 26·5 ka Oruanui eruption (Taupo,New Zealand) erupted 530 km3 of magma, >99% rhyolitic, <1%mafic. The rhyolite varies from 71·8 to 76·7 wt% SiO2 and 76 to 112 ppm Rb but is dominantly 74–76 wt% SiO2. Average rhyolite compositions at each stratigraphiclevel do not change significantly through the eruption sequence.Oxide geothermometry, phase equilibria and volatile contentsimply magma storage at 830–760°C, and 100–200MPa. Most rhyolite compositional variations are explicable by28% crystal fractionation involving the phenocryst and accessoryphases (plagioclase, orthopyroxene, hornblende, quartz, magnetite,ilmenite, apatite and zircon). However, scatter in some elementconcentrations and 87Sr/86Sr ratios, and the presence of non-equilibriumcrystal compositions imply that mixing of liquids, phenocrystsand inherited crystals was also important in assembling thecompositional spectrum of rhyolite. Mafic compositions comprisea tholeiitic group (52·3–63·3 wt % SiO2)formed by fractionation and crustal contamination of a contaminatedtholeiitic basalt, and a calc-alkaline group (56·7–60·5wt % SiO2) formed by mixing of a primitive olivine–plagioclasebasalt with rhyolitic and tholeiitic mafic magmas. Both maficgroups are distinct from other Taupo Volcanic Zone eruptivesof comparable SiO2 content. Development and destruction by eruptionof the Oruanui magma body occurred within 40 kyr and Oruanuicompositions have not been replicated in vigorous younger activity.The Oruanui rhyolite did not form in a single stage of evolutionfrom a more primitive forerunner but by rapid rejuvenation ofa longer-lived polygenetic, multi-age ‘stockpile’of silicic plutonic components in the Taupo magmatic system. KEY WORDS: Taupo Volcanic Zone; Taupo volcano; Oruanui eruption; rhyolite, zoned magma chamber; juvenile mafic compositions; eruption withdrawal systematics  相似文献   

14.
We present a combined Sr, Nd, Pb and Os isotope study of lavasand associated genetically related megacrysts from the Biu andJos Plateaux, northern Cameroon Volcanic Line (CVL). Comparisonof lavas and megacrysts allows us to distinguish between twocontamination paths of the primary magmas. The first is characterizedby both increasing 206Pb/204Pb (19·82–20·33)and 87Sr/86Sr (0·70290–0·70310), and decreasingNd (7·0–6·0), and involves addition of anenriched sub-continental lithospheric mantle-derived melt. Thesecond contamination path is characterized by decreasing 206Pb/204Pb(19·82–19·03), but also increasing 87Sr/86Sr(0·70290–0·70359), increasing 187Os/188Os(0·130–0·245) and decreasing Nd (7·0–4·6),and involves addition of up to 8% bulk continental crust. Isotopicsystematics of some lavas from the oceanic sector of the CVLalso imply the involvement of a continental crustal component.Assuming that the line as a whole shares a common source, wepropose that the continental signature seen in the oceanic sectorof the CVL is caused by shallow contamination, either by continent-derivedsediments or by rafted crustal blocks that became trapped inthe oceanic lithosphere during continental breakup in the Mesozoic. KEY WORDS: crustal contamination; CVL; megacrysts; ocean floor; osmium isotopes  相似文献   

15.
Two coexisting series of strongly alkaline (basanite-tephritephonolite)and weakly alkaline (alkali basalt-trachyandesite-trachyte-rhyolite)lavas occur in the Cantal volcano (French Massif Central). Theparental magmas appear to be derived by variable degrees ofpartial melting of a common asthenospheric mantle source. Derivativetrachyandesites and feldspathoidbearing tephrites show depletionsand enrichments in trace elements which indicate that they havebeen generated by broadly similar fractionation processes, relatedto the removal of a mineral extract, from the parental alkalibasalts and basanites respectively, dominated by olivine, clinopyroxene,amphibole, apatite and titaniferous magnetite±plagioclase.In the most extreme differentiates (trachytes, rhyolites andphonolites) fractionation of zircon, sphene and alkali feldsparexerts a major control on the trace element characteristicsof the magmas. Sr-Nd-Pb isotopic data for the two magma series suggest theimportance of combined assimilation-fractional crystallizationprocesses (AFC) within the lower crust in their evolution. Modellingdemonstrates that the AFC process amplifies the original compositionaldifferences between the parent magmas. After 55% crystallizationin the strongly alkaline series and 65% in the weakly alkalineseries crustal contamination ceases, although fractional crystallizationcontinues beyond this point to produce the most evolved differentiates(phonolites and rhyolites). This may reflect progressive sealingof the lowercrustal magma reservoirs. The tendency of the magmasto follow over- or under-saturated evolutionary trends, producingrhyolitic and phonolitic residua respectively, appears to beestablished at the early stages of magmatic differentiation,reflecting inherent differences in the compositions of the parentalmagmas. KEY WORDS: alkaline magmas; Massif Central; Cantal; AFC; magmatic differentiation  相似文献   

16.
The lavas of Nisyros were erupted between about 0?2 m.y B.P.and 1422 A.D., and range in composition from basaltic andesiteto rhyodacite. Most were erupted prior to caldera collapse (exactdate unknown), and the post-caldera lavas are petrographically(presence of strongly resorbed phenocrysts) and chemically (lowerTiO2 K2O, P2O5, and LIL elements) distinct from the pre-calderalavas. The pre-caldera lavas do not form a continuous seriessince lavas with SiO2 contents between 60 and 66 wt.% are absent.Nevertheless, major element variations demonstrate that fractionalcrystalliz ation (involving removal of olivine, dinopyroxene,plagioclase, and Fe-Ti oxide from the basaltic andesites andandesites and plagioclase, clinopyroxene, hypersthene, Ti-magnetite,ilmenite, apatite, and zircon from the dacites and rhyodacites)played a major role in the evolution of the pre-caldera lavas.Several lines of evidence indicate that other processes werealso important in magma evolution: (1) Quantitative modelingof major element data shows that phenocryst phases of unlikelycomposi tion or unrealistic assemblages of phenocryst phasesare required to relate the dacites and rhyodacites to the basalticandesites and andesites; (2) The proportions of olivine andclinopyroxene required in quantitative models for the initialstages of evolution differ from those observed petrographicallyand this is not likely to reflect either differential ratesof crystal settling or the curvature of cotectics along whichliquids of basaltic andesite to andesite composition lie; (3)The concentrations of Rb, Cs, Ba, La, Sm, Eu, and Th in therhyod.acites are too high for these lavas to be related to thedacites by fractional crystallization alone; and (4) 87Sr/86Srratios for the andesites and rhyodacites are higher than thosefor the basaltic andesites and dacites, respectively. It isshown that fractional crystallization was accompanied by assimilation,and that magma mixing played a minor role (if any) in the evolutionof the pre-caldera lavas. Trace element and isotopic data indicatethat the andesites evolved from the basaltic andesites by AFCinvolving average crust or upper crust, whereas the rhyodacitesevolved from the dacites by AFC involving lower crust. Additionalevidence for polybaric evolution is provided by the occurrenceof distinct Ab-rich cores of plagioclase phenocrysts in thedacites and rhyodacites, which record a period of high pressurecrystallization, and by the occurrence of both normal and reverse-zonedphenocrysts in the basaltic andesites and andesites. Furthermore,calculated pressures of crystallization are {small tilde}8 kbfor the dacites and rhyodacites and 3?5–4 kb for the basalticandesites and andesites. It is concluded that the dacites andrhyodacites evolved via AFC from basaltic andesites and andesiteslargely in chambers sited near the base of the crust whereasthe basaltic andesites and andesites mostly evolved in chamberssited at mid-crustal levels. Eruption from different chambersexplains the compositional gap in the chemistry of the pre-calderalavas since eruptive products represent a more or less randomsampling of residual liquids which separate (via filter pressing)from bodies of crystallizing magma at various depths. Magmamixing was important in the evolution of the post-caldera lavas,but geochemical data require that these magmas evolved fromparental magmas which were derived from a more refractory sourcethan the parental magmas to the pre-caldera lavas. *Present address: Netherlands Energy Research Foundation (ECN), P.O. Box 1, 1755 ZG Petten, The Netherlands  相似文献   

17.
Compositionally heterogeneous basaltic centers from a varietyof tectonic environments, including Pisgah Crater in the MojaveDesert region of California, exhibit secular changes in theirchemistry that might be explained by the sequential meltingof ultramafic to mafic mantle sources. We have analyzed phenocrystsfrom alkali basalts and hawaiites erupted at Pisgah Crater toinvestigate the effects of open-system modifications imposedon basaltic systems. We present 87Sr/86Sr data for individualphenocrysts of amphibole and clinopyroxene and the first publishedresults of single olivine grains, in addition to plagioclase.Each mineral phase exhibits a range in Sr isotope compositionthat may only partially overlap the isotopic composition ofthe other mineral phases, suggesting an interplay between twomagmatic end-members that continued up to the time of eruption.Limited 87Sr/86Sr variability in minerals from early and intermediatelavas indicates only moderate syn-crystallization open-systemmodification, whereas minerals in late-erupted lavas have muchhigher 87Sr/86Sr, consistent with extensive open-system modification.Rimward increases in 87Sr/86Sr of plagioclase confirm that thesechanges occurred within the stability field of plagioclase and,therefore, at crustal or near-crustal depths. The major elementcompositions of olivine-hosted melt inclusions indicate thatan Al-rich component of andesitic composition (87Sr/86Sr 0·7056),possibly derived from plagioclase-rich cumulates or pelites,was assimilated by magma generated from asthenosphere or younglithosphere with 87Sr/86Sr 0·7038. The results clearlydemonstrate the utility of measuring the 87Sr/86Sr of individualminerals and indicate that Pisgah Crater basalts probably acquiredisotopically enriched geochemical signatures from crustal contamination,rather than from mixing of heterogeneous mantle melts. KEY WORDS: assimilation; basalts; melt inclusions; minerals; Sr isotopes  相似文献   

18.
We report major and trace element abundances for 147 samplesand Sr, Nd, Hf, and Pb isotope compositions for a 36 samplesubset of basaltic lava flows, sills, and dykes from the Karoocontinental flood basalt (CFB) province in Botswana, Zimbabwe,and northern South Africa. Both low- and high-Ti (TiO2 <2 wt % and > 2 wt %) rocks are included. MELTS modeling showsthat these magmas evolved at low pressure (1 kbar) through fractionalcrystallization of gabbroic assemblages. Whereas both groupsdisplay enrichment in light rare earth elements (LREE) relativeto heavy REE (HREE) and high field strength elements, and systematicnegative Nb anomalies, they differ in terms of contrasting middleREE (MREE) to HREE fractionation, which is greater for the high-Tibasalts. This reflects different depths of melting of slightlyenriched mantle sources: calculations suggest that the low-Tibasalts were generated by melting of a shallow spinel-bearing(2 % spinel) lherzolite, whereas the high-Ti magmas originatedfrom a deeper-seated garnet-bearing (2–7% garnet) lherzolite.In most isotope plots, the high-Ti lavas together with the picritesdefine a common trend from Bulk Silicate Earth (BSE) to compositionswith strongly negative Ndi and Hfi akin to those of some nephelinitesand lamproites. The low-Ti rocks are shifted from BSE-like tomore radiogenic Sr isotope ratios, indicative of upper crustalcontamination. Trace element and isotope characteristics ofthe Karoo magmas require a combination of enrichment processes(subduction induced?) and long-term isolation of the mantlesources. We propose two distinct scenarios to explain the originof the Karoo province. The first calls for polybaric meltingof spatially heterogeneous, partially veined, sub-continentallithospheric mantle (SCLM). Calculations show that mixing betweenSCLM (BSE) and a strongly Nd–Hf unradiogenic nephelinite-likecomponent (sediment input?) could account for the compositionalvariations of most of the high-Ti group lavas, whereas the mantlecomposition responsible for the low-Ti magmas is more likelyto be similar to a vein-free, metasomatically enriched SCLMcomponent. The second scenario involves mixing between two end-membersrepresented by the SCLM and its deep-seated alkalic veins anda sub-lithospheric (asthenospheric- or ocean island basalt-like?)mantle plume. In this case, the data are compatible with anincreasing mantle plume contribution as the plume rises andexpands through the lithosphere. Regardless of which of thetwo scenarios is invoked, the spatial distribution of the low-and high-Ti magmas matches the relative positioning of the cratonsand the Limpopo belt in such a way that strong control of thelithosphere on magma composition and distribution is a mandatoryrequirement of any petrogenetic model applied to the Karoo CFB. KEY WORDS: Karoo; large igneous province; flood basalts; dyke swarms; major and trace elements; Sr; Nd; Hf; and Pb isotopes  相似文献   

19.
In the western USA calcalkaline magmas were generated hundreds of kilometres from the nearest destructive plate margin, and in some areas during regional extension several Ma after the cessation of subduction. The Mogollon-Datil Volcanic Field (MDVF) in southern New Mexico was a centre of active magmatism in the mid- to late-Tertiary, and a detailed field, petrographic and geochemical study has been undertaken to evaluate the relations between extensional tectonics and calcalkaline magmatism in the period 30–20 Ma. The rocks comprise alkalic to high-K calcalkaline lavas, ranging from basalt to high silica andesitc. Most of the basaltic rocks have relatively low HFSE abundances, elevated 87Sr/86Sr and low 143Nd/144Nd, similar to many Tertiary basalts across the western USA, and they are inferred to have been derived from the continental mantle lithosphere. Two differentiation trends are recognised, with the older magmas having evolved to more calcalkaline compositions by magma mixing between alkalic basaltic andesites and silicic crustal melts, and the younger rocks having undergone 30–40% fractional crystallisation to more alkalic derivatives. The younger basalts also exhibit a shift to relatively higher HSFE abundances, with lower 87Sr/86Sr and higher 143Nd/144Nd, and these have been modelled as mixtures between an average post-5 Ma Basin and Range basalt and the older MDVF lithosphere-derived basalts. It is argued that the presence of subduction-related geochemical signatures and the development of calcalkaline andesites in the 30–20 Ma lavas from the MDVF are not related to the magmatic effects of Tertiary subduction. Rather, basic magmas were generated by partial melting of the lithospheric mantle which had been modified during a previous subduction event. Since these basalts were generated at the time of maximum extension in the upper crust it is inferred that magma generation was in response to lithospheric extension. The association of the 30–20 Ma calcalkaline andesites with the apparently anorogenic tectonism of late mid-Tertiary extension, is the result of crustal contamination, in that fractionated, mildly alkaline, basaltic andesite magmas were mixed with silicic crustal melts, generating hybrid andesite lavas with calcalkaline affinities.  相似文献   

20.
Augustine Volcano, a Quaternary volcanic centre of the easternAleutian Arc, produces predominantly andesites and dacites oflow- to medium-K calc-alkaline composition. Mineralogical andmajor element characteristics of representative lavas suggestthat magmatic evolution has been influenced by both crystalfractionation and magma-mixing processes. However, incompatibletrace element variations (e.g. K/Rb) indicate that these evolvedlavas have been contaminated by the mafic arc crust of the underlyingTalkeetna accreted terrane. The limited range of isotope compositionsalso supports the assimilation of non-radiogenic mafic crust(e.g. 87Sr/86Sr = 0.7032–0.7034; 143Nd/144 Nd = 0.51301–0.5130).In addition, Pb-isotope compositions parallel the North Pacificmean oceanic trend (206Pb/204 Pb = 18.3–18.8; 207Pb/204Pb= 15.5–15.6; 208Pb/204Pb = 38.2–38.3) and do notrequire a subducted sediment component in the source. Relativelyhigh (Ba/La) N (0.79–18.10) and B/Be (14.5) ratios do,however, suggest a metasomatic fluid component derived fromthe dehydration of the subducting plate. The thickened continental crust (35 km) of the eastern AleutianArc prevents the ascent of basaltic melts, which fractionateand assimilate at various depths to produce andesitic magmas.These andesites evolve towards more silicic compositions byfractional crystallization. The absence of evidence for a largehigh-level crustal magma chamber implies that the magmatic systembeneath the volcano is young and at an immature stage of evolution. KEY WORDS: Augustine Volcano; Aleutians; assimilation; melasomatism; geochemistry *Corresponding author. Present address: Department of Geology and Geophysics, University of New Orleans, New Orleans, LA 70148, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号