首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development and characteristics of coastal internal boundary layers were investigated in 28 tests. These were made at all seasons and in both gradient and sea-breeze flows but only during mid-day periods. Measurements of turbulence and temperature were taken from a light aircraft which flew traverses across Long Island at successive altitudes parallel to the wind direction. These were used to locate the boundary between modified and unmodified air as a function of height and distance from the coast. The same measurements plus tower measurements of wind, turbulence and temperature, pilot balloon soundings and measurements of land and water surface temperatures by a remote sensing IR thermometer were used to quantify the characteristics of the modified and unmodified air. The boundary layer slope was steep close to the land-water interface and became shallower with downwind distance. Growth of the boundary layer was initially slower with stable lapse rates upwind than with neutral or unstable conditions over the water. An equilibrium height was found in many tests except under conditions of free convection when the internal boundary layer merged into the mixed layer inland and with sea-breeze conditions. The equilibrium height depended on downwind conditions and was greater with low wind speeds and strong land surface heating than with stronger winds and small land-water temperature differences. Current theoretical models are not adequate to predict the height of the boundary layer at the altitudes and distances studied but reasonably good predictions were given by an empirical model developed earlier. Wind speed in the modified air averaged about 70% of that at the coast but turbulence levels were several times higher both near the surface and aloft. These findings have important implications for diffusion from coastal sites.  相似文献   

2.
Atmospheric turbulence measurements made at the U.S. Army Corps of Engineers Field Research Facility (FRF) located on the Atlantic coast near the town of Duck, North Carolina during the CASPER-East Program (October–November 2015) are used to study air–sea/land coupling in the FRF coastal zone. Turbulence and mean meteorological data were collected at multiple levels (up to four) on three towers deployed at different landward distances from the shoreline, with a fourth tower located at the end of a 560-m-long FRF pier. The data enable comparison of turbulent fluxes and other statistics, as well as investigations of surface-layer scaling for different footprints, including relatively smooth sea-surface conditions and aerodynamically rough dry inland areas. Both stable and unstable stratifications were observed. The drag coefficient and diurnal variation of the sensible heat flux are found to be indicators for disparate surface footprints. The drag coefficient over the land footprint is significantly greater, by as much as an order of magnitude, compared with that over the smooth sea-surface footprint. For onshore flow, the internal boundary layer in the coastal zone was either stable or (mostly) unstable, and varied dramatically at the land-surface discontinuity. The offshore flow of generally warm air over the cooler sea surface produced a stable internal boundary layer over the ocean surface downstream from the coast. While the coastal inhomogeneities violate the assumptions underlying Monin–Obukhov similarity theory (MOST), any deviations from MOST are less profound for the scaled standard deviations and the dissipation rate over both water and land, as well as for stable and unstable conditions. Observations, however, show a poor correspondence with MOST for the flux-profile relationships. Suitably-averaged, non-dimensional profiles of wind speed and temperature vary significantly among the different flux towers and observation levels, with high data scatter. Overall, the statistical dependence of the vertical gradients of scaled wind speed and temperature on the Monin–Obukhov stability parameter in the coastal area is weak, if not non-existent.  相似文献   

3.
Surface and remote-sensing instruments deployed during ESCOMPTE experiment over the Marseille area, along the Mediterranean coast, were used to investigate the fine structure of the atmospheric boundary layer (ABL) during sea-breeze circulation in relation to pollutant transport and diffusion. Six sea-breeze events are analyzed with a particular focus on 25 June 2001.Advection of cool and humid marine air over land has a profound influence on the daytime ABL characteristics. This impact decreases rapidly with the inland distance from the sea. Nearby the coast (3 km inland), the mixing height Zi rises up to 750 m and falls down after 15:00 (UT) when the breeze flow reaches its maximum intensity. A more classical evolution of the ABL is observed at only 11-km inland where Zi culminates in the morning and stabilizes in the afternoon at about 1000 m height.Fine inspection of the data revealed an oscillation of the sea-breeze with a period about 2 h 47 min. This feature, clearly discernable for 3 days at least, is present in several atmospheric variables such as wind, temperature, not only at the ground but also aloft in the ABL as observed by sodar/RASS and UHF wind profilers. In particular, the mixing height Zi deduced from UHF profilers observations is affected also by the same periodicity. This pulsated sea-breeze is observed principally above Marseille and, at the northern and eastern shores of the Berre pond.In summary, the periodic intrusion over land of cool marine air modifies the structure of the ABL in the vicinity of the coast from the point of view of stability, turbulent motions and pollutants concentration. An explanation of the source of this pulsated sea-breeze is suggested.  相似文献   

4.
A simple algorithm is proposed in order to transform routine surface wind speed observations near the coast to a wind at the height of the equilibrium planetary boundary layer as well as to any other height over a relatively flat coastal region. The model is based on the well known internal boundary layer (IBL) concept, Monin-Obukhov similarity theory and the resistance law, and describes the effects of the roughness transition from sea to land as well as the effect of stability on the shape of the profiles and the IBL growth. The required input weather data are no more than surface wind speed, air temperature and total cloud cover. Satisfactory agreement was found between measurements at Hellinikon airport and estimations made with the scheme. The introduction of a transition layer above the IBL did not improve the agreement to any significant extent. Mean values of the estimated wind differed by less than 1 m s -1 from the observed ones, a difference within the accuracy of the reported rawinsonde values. The rms error varied in the range of 17–22% of the observed average value, giving the best agreement under unstable conditions. The correlation coefficient between the observed and the estimated values of the wind, at the height of the equilibrium planetary boundary layer, ranged between 0.74 and 0.90.  相似文献   

5.
海面与海岸陆面风速廓线特征   总被引:2,自引:1,他引:1       下载免费PDF全文
利用位于江苏海岸陆地的两座测风塔以及福建海面的一座测风塔气象要素资料,分析了这两种下垫面风速、湍流等要素的日变化规律及廓线特征,探讨了这两种不同下垫面特征导致的风力特征差异。结果表明:海岸陆面日最大风速出现时间较内陆滞后,最小风速出现时间与内陆相差不大,风速日变化位相随高度滞后,日振幅随高度减小,冬季70 m高度风速日变化特征与10 m高度风速日变化特征相反,夜间大于白天,说明冬季的过渡层转换高度低于夏季;海面风速的日变化位相、日振幅等特征随高度变化很小。两种下垫面的风廓线用对数律、指数律拟合的效果相当,海岸陆面的风廓线指数呈现的规律为离岸风组大于向岸风组,冬季大于夏季;海面风廓线指数呈现的规律则是向岸风组大于离岸风组,夏季大于冬季。  相似文献   

6.
Data from the Öresund experiment are used to investigate the structure of the stably stratified internal boundary layer (SIBL) which develops when warm air is advected from a heated land surface over a cooler sea. The present study is based on a theory developed by Stull (1983a, b, c). He proposed that the turbulence and the mean structure of the nocturnal boundary layer is controlled by the time-integrated value of surface heat flux and that the instantaneous heat flux is of less importance.Dimensional arguments are used to define simple, physically consistent, temperature, velocity and length scales. The dimensionless surface heat flux has a high value immediately downwind of the shoreline and it decreases rapidly in magnitude with increasing distance from the coast. Farther away, it is essentially constant. The dimensionless potential temperature change exhibits an exponential profile. It is estimated that turbulence accounts for 71% of boundary-layer cooling while clear-air radiational cooling is responsible for the remaining 29%.Finally it is found that theoretical predictions for the height of the SIBL are in a good agreement with observations.  相似文献   

7.
The Kwinana Coastal Fumigation Study took place inearly 1995 at Kwinana near Perth in Western Australia.The study involved surface and elevated meteorologicaland plume fumigation measurements in sea-breeze flowsnear the coast, and has yielded a comprehensive dataset that is suitable for assessing meteorological andplume dispersion models. In this paper, wesimulate the meteorology and turbulence on four casestudy days, and compare model results with thedetailed surface and aircraft measurements takenduring the study. These days had surface synopticwinds ranging from southerly to northeasterly, witheither stable or near-neutral temperature profilesover the sea.The model used was based on that developed by Hurley(Boundary-Layer Meteorol. 83, 43–73, 1997), but extended here to allow domain nesting,optional non-hydrostatic simulations, and a vegetativecanopy at the surface. The model was forced bystandard weather service synoptic data, and thesimulations have captured the essential features ofthe strong sea-breeze circulation observed on thesedays. The boundary-layer structure over the sea waspredicted to be near-neutral or stable in agreementwith the observations on the particular day. The windspeed and direction in the sea-breeze flow weregenerally predicted well, although the predictedmaximum inflow speed over the land was a little toohigh. The potential temperature was generallyover-predicted, but temperature gradients agreed well.Predicted turbulence levels in the bottom-half of thethermal internal boundary layer compared well to theobservations, but under-estimated the observations inthe in the upper half of this layer. Near-surfacemeasurements of meteorological variables werepredicted well over the entire diurnal cycle, althoughthe predicted sea-breeze onset was generally tooearly. A quantitative model evaluation for thenear-surface sites showed the model performance to bebetter than that from other studies, with Index ofAgreement (IOA) values of 0.8 (wind speed) and 0.96(temperature), compared with values of 0.5–0.6 (windspeed) and 0.33 (temperature) obtained from otherstudies.The availability of new higher resolution synopticanalyses should obviate the lack of spatial andtemporal resolution in synoptic inputs. Theincorporation of these higher resolution synopticinputs and new parameterisation schemes should improvefuture model performance.  相似文献   

8.
We report results of preliminary high-resolution in situ atmospheric measurements through the boundary layer and lower atmosphere over the southern coast of Perú. This region of the coast is of particular interest because it lies adjacent to the northern coastal edge of the sub-tropical south-eastern Pacific, a very large area of ocean having a persistent stratus deck located just below the marine boundary layer (MBL) inversion. Typically, the boundary layer in this region during winter is topped by a quasi-permanent, well-defined, and very large temperature gradient. The data presented herein examine fine-scale details of the coastal atmosphere at a point where the edge of this MBL extends over the coastline as a result of persistent onshore flow. Atmospheric data were gathered using a recently-developed in-house constructed, GPS-controlled, micro-autonomous-vehicle aircraft (the DataHawk). Measured quantities include high-resolution profiles of temperature, wind, and turbulence structure from the surface to 1,300 m.  相似文献   

9.
Sodar measurements have been made at La Spezia, Italy during land- and sea-breeze conditions. The backscatter returns are discussed qualitatively, including their relation to the vertical structure of the boundary layer as revealed by vertical soundings of wind and temperature. During inversion conditions, the sodar signals may be difficult to interpret especially when there is a land breeze flowing over irregular terrain.  相似文献   

10.
Aircraft measurements of potential temperature and turbulent kinetic energy are used to examine the growth of the thermal internal boundary layer (TIBL) in sea-breeze flows on four selected days of a coastal fumigation study performed in 1995 at Kwinana in Western Australia. The aircraft data, together with radiosonde measurements taken on the same days, show a multi-layered low-level onshore flow in the vertical with a superadiabatic layer extending to about 50 m above the water surface on all four days. On the first three days the layer above the superadiabatic layer was neutral, typically 200 m deep, capped by a stably stratified region, whereas on the remaining day it was fully stable. The occurrence of the neutral layer on most experimental days contrasts with the more usual situation involving an entirely stable onshore flow. A composite approach based on both temperature and turbulence data is used to provide a pragmatic but self-consistent definition of the TIBL height. The data for the first three days indicate that the TIBL grows rapidly into the neutrally stratified region to the top of the region within about 2 km from the coast, with a very slow subsequent growth into the stable stratification aloft. On the other hand, the TIBL grows only to about 200 m within a distance of 7 km from the coast on the fourth day due to a strong stable stratification.An existing numerical TIBL model based on the slab approach, capable of describing the TIBL growth in both neutral and stable environments, and a recent analytical model, more efficient for operational use, are used to simulate the aircraft TIBL observations. The predictions by both models agree reasonably well with the data.  相似文献   

11.
Abstract

Airborne measurements of mean wind velocity and turbulence in the atmospheric boundary layer under wintertime conditions of cold offshore advection suggest that at a height of 50 m the mean wind speed increases with offshore distance by roughly 20% over a horizontal scale of order 10 km. Similarly, the vertical gust velocity and turbulent kinetic energy decay on scales of order 3.5 km by factors of 1.5 and 3.2, respectively. The scale of cross‐shore variations in the vertical fluxes of heat and downwind momentum is also 10 km, and the momentum flux is found to be roughly constant to 300 m, whereas the heat flux decreases with height. The stability parameter, z/L (where z = 50 m and L is the local Monin‐Obukhov length), is generally small over land but may reach order one over the warm ocean. The magnitude and horizontal length scales associated with the offshore variations in wind speed and turbulence are reasonably consistent with model results for a simple roughness change, but a more sophisticated model is required to interpret the combined effects of surface roughness and heat flux contrasts between land and sea.

Comparisons between aircraft and profile‐adjusted surface measurements of wind speed indicate that Doppler biases of 1–2 m s?1 in the aircraft data caused by surface motions must be accounted for. In addition, the wind direction measurements of the Minimet anemometer buoy deployed in CASP are found to be in error by 25 ± 5°, possibly due to a misalignment of the anemometer vane. The vertical fluxes of heat and momentum show reasonably good agreement with surface estimates based on the Minimet data.  相似文献   

12.
A Lagrangian model is applied to simulate the dispersion of passive tracers (in particular, water vapour) in coastal atmospheric boundary layers under onshore wind conditions. When applied to convective boundary layers over uniform surfaces, the model gives results in agreement with those of similar studies. Numerical simulation of turbulent dispersion in coastal areas also reproduces the basic features known from experimental studies. Under onshore wind conditions, the humidity field is plume-shaped with the maximum vertical transport being over land downstream of the coast line. The model shows that the surface sensible heat flux over land, the static stability of the onshore air flow and the onshore wind speed are the most important factors determining the basic features of turbulent dispersion in coastal areas.  相似文献   

13.
A numerical two-dimensional-mesoscale model with a level 1.5 closure scheme for turbulence is described. The model is used to simulate the boundary layer over coastal complex terrain. Meteorological data available from the Øresund land-sea-land terrain experiment are used to study the performance of the model. The model could simulate generally observed complexities in the mean wind and temperature fields. Internal boundary layers over the water and land surfaces were identified by the height of lowest value in the turbulence kinetic energy profile and this showed good agreement with radiosonde (RS) observations.Some disagreements with the data were also noticed, especially near the surface. The wind speed was over-predicted. Attempts were made to improve the model performance by adopting different schemes for model initialisation. Results showed that initialisation with an early model start time and observed wind profile near the inflow boundary improved the performance. The wind speed over-prediction could be further minimised by using a more realistic objective initialisation scheme. The problem centred around the proper estimation of the turbulent diffusion coefficient K through the closure scheme. Despite using the most popular empirical relationships in the level 1.5 closure scheme, these differences persisted. While this needs further investigation, the present model can be used to supply wind fields for practical purposes such as air pollution calculations.  相似文献   

14.
The adjustment of the boundary layer immediately downstream froma coastline is examined based on two levels of eddy correlation data collected on a mast at the shore and six levels of eddy correlation data and profiles of mean variables collected from a mast 2 km offshore during the Risø Air-Sea Experiment. The characteristics of offshore flow are studied in terms of case studies and inter-variable relationships for the entire one-month data set. A turbulent kinetic energy budget is constructed for each case study.The buoyancy generation of turbulence is small compared to shear generation and dissipation. However, weakly stable and weakly unstable cases exhibit completely different vertical structure. With flow of warm air from land over cooler water, modest buoyancy destruction of turbulence and reduced shear generation of turbulence over the less rough sea surface cause the turbulence to rapidly weaken downstream from the coast. The reduction of downward mixing of momentum by the stratification leads to smaller roughness lengths compared to the unstable case. Shear generation at higher levels and advection of stronger turbulence from land often lead to an increase of stress and turbulence energy with height and downward transport of turbulence energy toward the surface.With flow of cool air over a warmer sea surface, a convective internal boundary layer develops downstream from the coast. An overlying relatively thick layer of downward buoyancy flux (virtual temperature flux) is sometimes maintained by shear generation in the accelerating offshore flow.  相似文献   

15.
Wind-tunnel experiments were carried out to study turbulence statistics in the wake of a model wind turbine placed in a boundary-layer flow under both neutral and stably stratified conditions. High-resolution velocity and temperature measurements, obtained using a customized triple wire (cross-wire and cold wire) anemometer, were used to characterize the mean velocity, turbulence intensity, turbulent fluxes, and spectra at different locations in the wake. The effect of the wake on the turbulence statistics is found to extend as far as 20 rotor diameters downwind of the turbine. The velocity deficit has a nearly axisymmetric shape, which can be approximated by a Gaussian distribution and a power-law decay with distance. This decay in the near-wake region is found to be faster in the stable case. Turbulence intensity distribution is clearly non-axisymmetric due to the non-uniform distribution of the incoming velocity in the boundary layer. In the neutral case, the maximum turbulence intensity is located above the hub height, around the rotor tip location and at a distance of about 4–5.5 rotor diameters, which are common separations between wind turbines in wind farms. The enhancement of turbulence intensity is associated with strong shear and turbulent kinetic energy production in that region. In the stable case, the stronger shear in the incoming flow leads to a slightly stronger and larger region of enhanced turbulence intensity, which extends between 3 and 6 rotor diameters downwind of the turbine location. Power spectra of the streamwise and vertical velocities show a strong signature of the turbine blade tip vortices at the top tip height up to a distance of about 1–2 rotor diameters. This spectral signature is stronger in the vertical velocity component. At longer downwind distances, tip vortices are not evident and the von Kármán formulation agrees well with the measured velocity spectra.  相似文献   

16.
Turbulence characteristics in the surface layer of the coastal area of Akhtopol (Bulgaria) under conditions of the breeze circulation are measured. The measurements were carried out at the level of 4.5 m by means of three-component ultrasonic anemometer. To estimate the wind regime in the atmospheric boundary layer, the sodar data and synoptic charts were used. All turbulent characteristics except the correlation coefficient of the friction flow have an appreciable daily course in the case of the sea breeze. In the frontal zone, some characteristics demonstrate sometimes short-term variations of their numerical values. The sea-land front of the breeze circulation is effectively detected from the measurements of wind speed, wind direction, and temperature in the surface layer. It is also possible to judge about the breeze circulation type and turbulence structure in this layer on the basis of these measurements.  相似文献   

17.
Wind-turbine-wake evolution during the evening transition introduces variability to wind-farm power production at a time of day typically characterized by high electricity demand. During the evening transition, the atmosphere evolves from an unstable to a stable regime, and vertical stratification of the wind profile develops as the residual planetary boundary layer decouples from the surface layer. The evolution of wind-turbine wakes during the evening transition is examined from two perspectives: wake observations from single turbines, and simulations of multiple turbine wakes using the mesoscale Weather Research and Forecasting (WRF) model. Throughout the evening transition, the wake’s wind-speed deficit and turbulence enhancement are confined within the rotor layer when the atmospheric stability changes from unstable to stable. The height variations of maximum upwind-downwind differences of wind speed and turbulence intensity gradually decrease during the evening transition. After verifying the WRF-model-simulated upwind wind speed, wind direction and turbulent kinetic energy profiles with observations, the wind-farm-scale wake evolution during the evening transition is investigated using the WRF-model wind-farm parametrization scheme. As the evening progresses, due to the presence of the wind farm, the modelled hub-height wind-speed deficit monotonically increases, the relative turbulence enhancement at hub height grows by 50%, and the downwind surface sensible heat flux increases, reducing surface cooling. Overall, the intensifying wakes from upwind turbines respond to the evolving atmospheric boundary layer during the evening transition, and undermine the power production of downwind turbines in the evening.  相似文献   

18.
As a warm well-mixed air mass flows off a land surface and over a cooler sea, the air is modified in a layer near the surface. Within this layer, humidity decreases while temperature increases with height and a stably stratified internal boundary layer is formed. The non-dimensional parameters governing the growth of the modified layer are derived by dimensional analysis; simple forms are found for the increase of layer height with fetch and for the shapes of humidity and temperature profiles.  相似文献   

19.
Simulated Climatology of Atmospheric Ducts Over the Persian Gulf   总被引:4,自引:0,他引:4  
A simulated climatology of ducts in the Persian Gulf area was produced with the MM3 atmospheric model. From November to January ducts were sporadic, land and surface based, shallow and weak. From February to October ducts of all types occurred. In the duct season, spatial and temporal variations were related to the land/sea distribution and to day and night. Over land at night, widespread, shallow, weak surface ducts occurred well away from the sea; within about 100 km of the south-western coast in the late evening, ducts were S-shaped. Over land in daytime, the dry, convective boundary layer prevented duct formation. Over the Gulf in the season, duct coverage was complete throughout night and day. A spatial sequence of shallow, weak surface ducts, deeper, stronger S-shaped ducts and deep, strong elevated ducts lay from north-west to south-east over the Gulf. This sequence was related to the growth of a marine internal boundary layer (MIBL) and the effects of land- and sea-breeze circulations. Subsidence in the sea-breeze circulation reduced magnitudes of depth and strength and created gradients in a direction normal to the main growth axis of the MIBL. Ducts growing in the MIBL were tilted upward from west to east. The combined effect gave relatively weak surface ducts in the north-west and strong elevated ducts in the south-east. Duct depth and strength increased as the season progressed, owing to increased wind speed within, and increased depth of, the MIBL.  相似文献   

20.
This work presents the detailed characterization of sea breeze (SB) over the Rayong coastal area, one of the most rapidly developed and highly industrialized areas during the last decade in Thailand, using observation data analysis and fine-resolution (2?km) mesoscale meteorological modeling with incorporation of new land cover and satellite-derived vegetation fraction data sets. The key characteristics considered include frequency of SB occurrence, sea-breeze day (SBD) identification, degree of inland penetration, and boundary layer development. It was found that SBs occur frequently in the winter due mainly to relatively large land–sea temperature contrasts and minimally in the wet season. Monthly mean SB onset and cessation times are at around 12–15 local time (LT) and 18–21 LT, respectively, and its strength peaks during the early- to mid-afternoon. Monthly SB hodographs generally exhibit clockwise rotations, and SB inland penetration (at PCD-T tower) ranges widely with the monthly means of 25–55?km from the coast. Mesoscale MM5 modeling was performed on two selected SBDs (13 January and 16 March 2006), on which the SBs are under weak and onshore strong influences from background winds, respectively. Simulated near-surface winds and temperature were found to be in fair-to-acceptable agreement with the observations. The SB circulation along the Rayong coast is clearly defined with a return flow aloft and a front on 13 January, while it is enhanced by the onshore background winds on 16 March. Another SB along the Chonburi coast also develops separately, but their fronts merge into one in the mid-afternoon, resulting in large area coverage by the SB. Simulated planetary boundary layer height over the land area is significantly affected by a thermal internal boundary layer (TIBL) induced by an SB, which is found to be low near the coast and increases toward the front (up to 800–1,000?m along the Rayong coast).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号