首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular data from a large set of source rock, crude oil and oil-containing reservoir rock samples from the Tarim Basin demonstrate multiple sources for the marine oils in the studied areas of this basin. Based on gammacerane/C31 hopane and C28/(C27 + C28 + C29) sterane ratios, three of the fifteen crude oils from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the other crude oils from the Tazhong Uplift and all 39 crude oils from the Tahe oilfield in the Tabei Uplift correlate with Middle-Upper Ordovician source rocks. These two ratios further demonstrate that most of the free oils and nearly all of the adsorbed and inclusion oils in oil-containing reservoir rocks from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the free and inclusion oils in oil-containing carbonates from the Tahe oilfield correlate mainly with Middle-Upper Ordovician source rocks. This result suggests that crude oils in the Tazhong Uplift are partly derived from the Cambrian-Lower Ordovician source rocks while those in the Ordovician carbonate reservoirs of Tahe oilfield are overwhelmingly derived from the Middle-Upper Ordovician source rocks.The scatter of C23 tricyclic terpane/(C23 tricyclic terpane + C30 17α,21β(H)-hopane) and C21/(C21 + ΣC29) sterane ratios for the free and inclusion oils from oil-containing carbonates in the Tahe oilfield possibly reflects the subtle organofacies variations in the source rocks, implying that the Ordovician reservoirs in this oilfield are near the major source kitchen. In contrast, the close and positive relationship between these two ratios for oil components in the oil-containing reservoir rocks from the Tazhong Uplift implies that they are far from the major source kitchen.  相似文献   

2.
Carbon isotopic compositions were determined by GC–IRMS for individual n-alkanes in crude oils and the free, adsorbed and inclusion oils recovered by sequential extraction from reservoir rocks in the Tazhong Uplift and Tahe oilfield in the Tabei Uplift of Tarim Basin as well as extracts of the Cambrian–Ordovician source rocks in the basin. The variations of the δ13C values of individual n-alkanes among the 15 oils from the Tazhong Uplift and among the 15 oils from the Triassic and Carboniferous sandstone reservoirs and the 21 oils from the Ordovician carbonate reservoirs in the Tahe oilfield demonstrate that these marine oils are derived from two end member source rocks. The major proportion of these marine oils is derived from the type A source rocks with low δ13C values while a minor proportion is derived from the type B source rocks with high δ13C values. Type A source rocks are within either the Cambrian–Lower Ordovician or the Middle–Upper Ordovician strata (not drilled so far) while type B source rocks are within the Cambrian–Lower Ordovician strata, as found in boreholes TD2 and Fang 1. In addition, the three oils from the Cretaceous sandstone reservoirs in the Tahe oilfield with exceptionally high Pr/Ph ratio and δ13C values of individual n-alkanes are derived, or mainly derived, from the Triassic–Jurassic terrigenous source rocks located in Quka Depression.The difference of the δ13C values of individual n-alkanes among the free, adsorbed and inclusion oils in the reservoir rocks and corresponding crude oils reflects source variation during the reservoir filling process. In general, the initial oil charge is derived from the type B source rocks with high δ13C values while the later oil charge is derived from the type A source rocks with low δ13C values.The δ13C values of individual n-alkanes do not simply correlate with the biomarker parameters for the marine oils in the Tazhong Uplift and Tahe oilfield, suggesting that molecular parameters alone are not adequate for reliable oil-source correlation for high maturity oils with complex mixing.  相似文献   

3.
塔里木盆地塔河油田原油与源岩对比研究   总被引:7,自引:2,他引:5  
塔河油田是我国迄今为止在古生界海相碳酸盐岩层系中发现的最大的油气田,但是原油的油源目前仍然是一个有争异的问题。对塔河油田原油和寒武系、奥陶系烃源岩进行了地球化学分析,研究了生物标志化合物组成和分布特征,进行了油源对比。原油和烃源岩中正构烷烃、类异戊二烯烃、甾烷和萜烷组成及分布特征,显示了塔河油田原油与寒武系、奥陶系烃源岩具有亲缘关系,这与塔河油田长期成藏和多期成藏,从而允许寒武系、奥陶系烃源岩持续供油的地质事实相符合。研究认为,塔河油田原油与寒武系、奥陶系烃源岩中一些生物标志化合物组成的差异,可能与它们起源于有机质不同演化阶段有关,这一点应在研究具有高演化有机质特征的油源对比时予以重视。  相似文献   

4.
<正>The oil source of the Tarim Basin has been controversial over a long time.This study characterizes the crude oil and investigates the oil sources in the Lunnan region,Tarim Basin by adopting compound specific isotopes of n-alkanes and biomarkers approaches.Although the crude oil has a good correlation with the Middle-Upper Ordovician(O_(2+3)) source rocks and a poor correlation with the Cambrian-Lower Ordovician((?)-O_1) based on biomarkers,theδ~(13)C data of n-alkanes of the Lunnan oils show an intermediate value between(?)-O_1 and O_(2+3) genetic affinity oils,which suggests that the Lunnan oils are actually of an extensively mixed source.A quantification of oil mixing was performed and the results show that the contribution of the Cambrian-Lower Ordovician source rocks ranges from 11%to 70%(averaging 36%),slightly less than that of the Tazhong uplift.It is suggested that the inconsistency between the biomarkers andδ~(13)C in determining the oil sources in the Lunnan Region results from multiple petroleum charge episodes with different chemical components in one or more episode(s) and different sources.The widespread marine mixed-source oil in the basin indicates that significant petroleum potential in deep horizons is possible.To unravel hydrocarbons accumulation mechanisms for the Lunnan oils is crucial to further petroleum exploration and exploitation in the region.  相似文献   

5.
       混源油的定量判识是当前石油地质地球化学研究的热点与难点。以塔里木盆地塔河油田奥陶系中聚集的混源油为典型研究实例,通过地质地球化学与数理统计学相结合的方法,探索了定量研究混源油的方法,取得良好效果。原油地球化学研究结果表明,塔河油田原油普遍混源,并表现出多期充注特征,早期充注原油遭受了生物降解,因此目前原油中的轻烃、链状烃、规则甾烷等生物标志物主要反映的是后期充注原油的特征,不能很好地指示早期充注原油。据此,选择受生物降解影响相对较小的三环萜烷和藿烷定量数据,采用多元数理统计学交替最小二乘算法进行了原油成因研究,综合分析后认为现今混源油中可划分出4个端元,其中端元1和2可能主要代表了中上奥陶统烃源岩的贡献,而端元3和4则可能主要代表了寒武系烃源岩的贡献。塔河主体区以寒武系原油聚集为主,而外围地区则以中上奥陶统原油聚集为主,并且在整个塔河油田,总体上以寒武系原油的贡献比例相对最高。这一综合对比研究表明,多元数理统计学方法在混源油的比例计算、端元分析等方面具有重要作用,是对传统地球地球化方法研究的有效补充,值得推广应用,此外,研究认识还为区域油气勘探提供了新的参考信息。  相似文献   

6.
Research on the molecular fossil characteristics of heavy oil from Well Tadong-2 is of great importance to constrain the source of marine crude oils in the Tarim Basin, Xinjiang, China. The authors synthetically applied the isotope mass spectrograph, chromatography and chromatography-mass spectrography to the studies of molecular fossil characteristics of heavy oil from Well Tadong-2 in the Tarim Basin, and the results obtained revealed that heavy oil from Well Tadong-2 is characterized by high gammacerane, high C28 sterane, low rearranged sterane and high C27-triaromatic steroid, these characteristics are similar to those of Cambrian-Lower Ordovician source rocks, demonstrating that Cambrian crude oils came from Cambrian-Lower Ordovician source rocks; condensed compounds (fluoranthene, pyrene, benzo[a]anthracene, bow, benzo fluoranthene, benzopyrene) of high abundance were detected in heavy oil from Well Tadong-2, and the carbon isotopic values of whole oil are evidently heavy, all the above characteristics revealed that hydrocarbons in the crude oils became densified in response to thermal alteration.  相似文献   

7.
GC、GC-MS、GC-MS-MS分析表明,塔河17区块各油藏原油饱和烃、芳烃生物标志物组成和稳定碳同位素特征具有同源性,即塔河原油来自相同的烃源灶(或烃源层)。然而,对原油物性特征、成熟度特征、生物降解特征及原油馏分碳同位素组成等的深入研究发现,塔河原油属于早、晚两次充注成藏:早期充注为一般成熟型原油,相当于Ro值0.70%0.80%成熟阶段的生排烃产物,遭受生物降解后具有重、稠油特征,主要分布在4、6、7区下奥陶统储层中;晚期成藏原油相当于Ro值0.80%1.00%的高成熟阶段的生烃产物,表现为正常油、甚至轻质油或凝析油,在塔河油田广泛分布,并可以与早期充注油藏原油的生物降解残留成分进行充分混合,呈现复杂的地球化学特征。   相似文献   

8.
The free, adsorbed and inclusion oils were recovered by sequential extraction from eleven oil and tar containing reservoir rocks in the Tazhong Uplift of Tarim Basin. The results of gas chromatography (GC) and GC–mass spectrometry analyses of these oil components and seven crude oils collected from this region reveal multiple oil charges derived from different source rocks for these oil reservoirs. The initially charged oils show strong predominance of even over odd n-alkanes in the range n-C12 to n-C20 and have ordinary maturities, while the later charged oils do not exhibit any predominance of n-alkanes and have high maturities. The adsorbed and inclusion oils of the reservoir rocks generally have high relative concentrations of gammacerane and C28 steranes, similar to the Cambrian-Lower Ordovician source rocks. In contrast, the free oils of these reservoir rocks generally have low relative concentrations of gammacerane and C28 steranes, similar to the Middle-Upper Ordovician source rocks. There are two interpretations of this result: (1) the initially charged oils are derived from the Cambrian-Lower Ordovician source rocks while the later charged oils are derived from the Middle-Upper Ordovician source rocks; and (2) both the initially and later charged oils are mainly derived from the Cambrian-Lower Ordovician source rocks but the later charged oils are contaminated by the oil components from the Silurian tar sandstones and the Middle-Upper Ordovician source rocks.  相似文献   

9.
渤海湾盆地南堡凹陷滩海地区奥陶系原油油源分析   总被引:4,自引:1,他引:3  
近年来渤海湾盆地南堡凹陷的油气勘探取得了重大突破。在滩海区奥陶系古潜山钻遇工业性高产油气流,使奥陶系古潜山成为南堡油田重要勘探目的层之一,但目前对奥陶系主要产油层中油气的来源问题仍存在着不同的认识。通过对奥陶系原油与古近系沙三段、沙一段和东三段3套烃源岩的地球化学特征进行对比研究,并结合奥陶系油气成藏特征,探讨了奥陶系原油的油源。结果表明:南堡油田奥陶系原油生物标志化合物特征和稳定碳同位素组成与沙三段烃源岩的相似,二者具有较好的亲缘关系;同时,区域性的不整合面、油源断层可以成为沟通奥陶系古潜山储层与沙三段油源的运移通道;奥陶系原油主要来源于沙三段烃源岩。  相似文献   

10.
Paraffinic crude oils are designated ‘primary’ because their composition is very close or identical to that of the hydrocarbons extracted from the corresponding oil source rocks. Heavy and medium-gravity naphthenic crude oils, on the other hand, typically are quite different compositionally from hydrocarbon mixtures in either mature or immature shales.The normal paraffin carbon number odd/even ratio 2C29/(C28 + C30) of all the heavy to medium-gravity crude oils which could be analysed are in exactly the same range as is observed for the primary paraffinic crude oils, namely 0.95–1.42. The naphthene indices of the medium to heavy gravity naphthenic crude oils and of the primary paraffinic crude oils from the same area are identical or close. These facts are significant because both the n-paraffin carbon number odd/even ratio and the naphthene index of shale hydrocarbons are strongly depth and subsurface temperature dependent. The facts observed demonstrate beyond question that, in the same area, the paraffinic precursors of the heavy to medium-gravity naphthenic crude oils are generated and expelled in the identical depth range, and from the same mature relatively deep oil source beds as the primary paraffinic crude oils. Later, during and/or after a generally upward migration into oil reservoirs, the primary crude may be transformed compositionally into a naphthenic crude oil.In none of the five widely scattered oil basins studied are medium to heavy naphthenic crude oils found at temperatures greater than a limiting subsurface temperature. The abruptness of the temperature cutoff of the change in oil compositions in all five oil basins, as well as the average value of the cutoff temperature of 66°C (150°F), leaves no doubt that the mechanism of this crude oil transformation process is microbial.Optical activity, which was observed in narrow saturate hydrocarbon fractions of the 80–325°C range of all microbially transformed crude oils, but not in the primary untransformed oils, is strong additional evidence for the microbial nature of the crude oil transformation process. The observed optical activity is explained by the microbial digestion at different rates of optical antipodes present in the primary paraffinic crude oils.To gain perspective the vast scale of the microbial oil transformation process in nature is pointed out. Billions of tons of heavy to medium-gravity naphthenic crude oils, originating from the microbial transformation of primary paraffinic oils, are present in oil fields and tar sands all over the world.  相似文献   

11.
A new method has been devised, based on high resolution GLC component analyses of the C6-C7 hydrocarbons from shales and from crude oils, whereby composition parameters in an oil are compared with the corresponding parameters in a shale. Ideally, a given composition parameter should have the same value for a crude oil and the source rock which generated and expelled that crude oil. A Similarity Coefficient has been devised, to measure the degree of correlation between crude oil and source rock hydrocarbons or between the hydrocarbons from different groups of crude oils. The maximum value of the Similarity Coefficient is 1.00, and the theoretical minimum is a positive fraction close to zero. Based on the natural variation in composition of primary (not biodegraded) crude oils of the same basin and origin, it was found that if the Similarity Coefficient is about 0.80 or higher, correlation between the natural hydrocarbons considered is good. If the Similarity Coefficient is less than 0.73, correlation is poor.Based on strict rules for sample selection (e.g. maturity of shales and lack of biodegradation in the oils), ten presumed crude oil-source formation pairs were selected. Most of these pairs have high Similarity Coefficients of 0.80 or more. Erroneous crude oil-source rock combinations from areas with more than one source formation, as in West Texas, have low Similarity Coefficients. This indicates that the crude oil-source formation correlation method based on the Similarity Coefficient generally is functioning properly.  相似文献   

12.
The Halahatang Depression in the Tabei Uplift of the Tarim basin is an active exploration area because it has substantial reservoir potential and contains or is near to many commercial oil fields. Geochemical analysis indicates that Halahatang oils were derived from marine carbonate source rocks deposited under anoxic reducing conditions. The maturities for Halahatang oils are corresponding to the peak of the oil window and slightly higher than the neighboring Tahe oils. The Halahatang oils feature low Pr/Ph, C21/C23 tricyclic terpane and, C28/C29 sterane ratios, high C29/C30 hopane and C35/C34 hopane ratios, a “V” shape in the distribution of C27–C28–C29 steranes and light carbon isotope ratios, similar to the Tahe oils and correlate well with the Middle-Upper Ordovician source rock. However, some source-related biomarker parameters imply a more reducing source organofacies with more zooplanktonic contribution than that for the Tahe oils.  相似文献   

13.
塔河油田原油甾藿烷系列化合物地球化学再认识   总被引:1,自引:0,他引:1  
生物标志化合物是油气油源、成熟度、运移等领域研究中的一项得力工具。运用生物标志物色谱质谱技术,对比研究了塔河油田各油区原油生物标志化合物中甾、藿烷系列化合物特征。研究表明,塔河油田为一由晚期成熟高、轻微改造的原油与早期成熟度低、遭受较强降解原油混合而成的复合油藏,该油藏各区原油C27—C29甾烷同系物以及C27—C29重排甾烷特征反映出该区不同成熟度原油来自同一母源,原油Ts/(Tm+Ts)、重排甾烷/规则甾烷和ββ/(ββ+αα) C29比值关系立体图指示出原油的充注方向,印证了“塔河地区的油气主要来自于南部的满加尔坳陷”这一论点。  相似文献   

14.
High-temperature gas chromatography (HTGC) has enhanced our ability to characterize hydrocarbons extending to C120 in crude oils. As a result, hydrocarbons in waxes (> C20) have been observed to vary significantly between crude oils, even those presumed to originate from the same source. Prior to this development, microcrystalline waxes containing hydrocarbons above C40 were not characterized on a molecular level due to the analytical limitations of conventional gas chromatography. Routine screenings of high pour-point crude oils by high-temperature gas chromatography has revealed that high molecular weight hydrocarbons (> C40) are very common in most oils and may represent 2% of the crude oil. Precise structures, origins, and significance of these high molecular weight compounds remain elusive. As a preliminary step to expand our knowledge of these compounds their general molecular structures and formulas have been investigated in this study. Initial results suggest that the major high molecular weight compounds include a homologous series of n-alkanes, methylbranched alkanes, alkylcyclopentanes, alkylcyclohexanes, alkylbenzenes and alkylcycloalkanes.  相似文献   

15.
Some Ordovician and Triassic oils in Block 9 are characterized by light oils,which have distinctly differentiated from heavy oils in other blocks in the Tahe Oilfield,Tarim Basin.Based on the whole oil gas chroma- tograms,this paper estimates the effect of oil migration and fractionation and the amount of depletion(Q)in terms of the n-alkanes depletion model.The results showed that the amount of depletion in the Ordovician reservoir is highest in the east of this block,e.g.the depletion is 97% in Well T904.The amount of Q gets lower to the west,e.g.the depletion is 53.4%in Well T115 and there is no sign of depletion in Well S69.It is suggested that the direction of gas washing is from the east to the west.The compositions and isotopic characteristics of associated gas in Ordovician oils indicated that the gas might be derived from Cambrian source rocks of the Caohu Depression which lies to the east of Block 9.In contrast,no obvious depletion of n-alkanes in Triassic oils was found,suggesting that the migration pathway of natural gas has been limited to the Ordovician karst fracture system formed in the Early Hercynian Orogeny.Different depletions of the Ordovician and Triassic oils can reveal fault activities in this region.  相似文献   

16.
<正>The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution.For this reason,the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area.Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks,i.e.,heavy oils are distributed in the TZ47-15 well-block in the North Slope while normal and light oils in the No.Ⅰfault belt and the TZ16 well-block,which means that the oil properties are controlled by structural patterns.Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks,suggesting a good genetic relationship. However,the compound specific isotope of n-alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian-Lower Ordovician source rocks.Most Silurian oils have a record of secondary alterations like earlier biodegradation,including the occurrence of "UCM" humps in the total ion current(TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils,and regular changes in the abundances of light and heavy components from the structural low to the structural high.The fact that the Silurian oils are enriched in chain alkanes,e.g.,n-alkanes and 25-norhopane,suggests that they were mixed oils of the earlier degraded oils with the later normal oils.It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions.The migration and accumulation models of these oils in the TZ47-15 well-blocks,the No.Ⅰfault belt and the TZ16 well-block are different from but related to each other.The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area.  相似文献   

17.
塔北隆起雅克拉油气田原油成因特征   总被引:1,自引:0,他引:1  
针对雅克拉油气田多个含油气层位的原油,进行了一系列的地球化学测试分析,对雅克拉油气田原油的地球化学特征、成因特征进行了解剖。研究结果表明,雅克拉油气田深浅不同层位原油轻烃组成与轻烃单体烃碳同位素、类异戊二烯烷烃组成以及原油与馏分碳同位素组成具有明显的海相原油特征;深浅层原油三环萜烷、C28甾烷、三芳甾烷和甲基三芳甾烷以及原油与馏分碳同位素组成皆具有典型上奥陶统来源油的特征,与寒武-下奥陶统来源油特征差异明显,暗示雅克拉油气田原油来源于上奥陶统烃源层。  相似文献   

18.
Ordovician natural gases in the Tahe Oilfield are composed predominantly of hydrocarbon gases dominated by methane with a significant amount of heavy hydrocarbon gas component. The non-hydrocarbon gases include N2, CO2 and minor H2S. The Ordovician natural gases are believed to have originated from the same source rocks, and are composite of gases differing in thermal maturity. Carbon dioxide was derived from thermal metamorphism of Ordovician carbonate rocks. The generation of natural gases involves multiple stages from mature normal oil and condensate-associated gas to thermally cracked gas at the maturity to over-maturity stages. In the main part of the Tahe Oilfield, the Ordovician natural gases appear to be filled in two major phases with a typical petroleum-associated gas from southeast to northwest and from east to west in the early stage; and a thermally cracked gas from east to west in the late stage. At the same time, the oil/gas filling boundary has been primarily established between the two stages.  相似文献   

19.
塔中421井和塔中402井石炭系油层2个原油样和8个油砂样连续抽提组分甾烷、萜烷分布特征和正构烷烃单体碳同位素组成具有明显的差异,具有不同的来源。塔中421井上石炭统3个油砂样自由态组分、束缚态组分和油气包裹体具有伽马蜡烷和C28甾烷相对含量高、正构烷烃单体碳同位素组成重的特征,划分为Ⅰ类原油,对比认为主要来源于寒武系-下奥陶统烃源岩。塔中421井和塔中402井上石炭统的2个油样具有伽马蜡烷和C28甾烷相对含量低、并且正构烷烃单体碳同位素组成轻的特征,划分为Ⅱ类原油,其来源尚不明确。塔中402井石炭系上、中和下统的5个油砂样各类组分具有介于Ⅰ、Ⅱ类原油之间的特征,为Ⅰ和Ⅱ类原油的混合物。5个油砂样从自由态组分、束缚态组分至油气包裹体Ⅰ类原油含量依次增高,Ⅱ类原油含量依次降低。2口井8个油砂样从自由态组分、束缚态组分至油气包裹体C23三环萜烷/(C23三环萜烷+C30藿烷)和C21/(C21+∑C29)甾烷比值都依次降低,反映了油气充注过程中,原油成熟度不断升高。塔中4井区储层油砂不同吸附态烃类分子与碳同位素的研究结果反映塔中4油田具有多种油气来源,经历长期油气充注过程,寒武系-下奥陶统烃源岩在地史上对该区具有成烃贡献。  相似文献   

20.
The absolute amounts and relative distributions of neutral nitrogen compounds in the Tabei oilfield (e. G. Blocks Ln1-Ln1 1) showed remarkable migration fractionation in the vertical direction. From Ordovician reservoirs (O) to oil legs TⅢ and T Ⅰ of Triassic reservoirs in blocks LN1-LN11, the concentrations of [a] [c] decreased from 1. 59μg/g, 0.49μg/g to 0.17 μg/g (oil). The ratios of various alkylcarbazole isomers, such as 1,8-dimethylcarbazole/nitrogenpartially shielded isomers and 1,8-dimethylcarbazole/nitrogen-exposed isomers, were adopted as the indicators of petroleum migration. The ratios increased from 0.13, 0.20 to 0.67 and from going from the south to the north of the Tabei oilfield, the absolute concentrations of neutral nitrogen compounds decreased drastically, and the nitrogen-shielded isomers were enriched relative to nitrogen-exposed isomers and nitrogen-partially shielded isomers. Crude oils in the Tabei oilfield migrated laterally from the Jilake structure to the Sangtamu fault uplift and Lunnan fault uplift, and crude oils in the same fault uplift migrated and remigrated vertically from Ordovician reservoirs, to oil legs TⅢ to TⅠ of Triassic reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号