首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Ensembles of boreal summer atmospheric simulations, spanning a 15-year period (1979–1993), are performed with the ARPEGE climate model to investigate the influence of soil moisture on climate variability and potential predictability. All experiments are forced with observed monthly mean sea surface temperatures. In addition to a control experiment with interactive soil moisture boundary conditions, two sensitivity experiments are performed. In the first, the interannual variability of the deep soil moisture is removed during the whole season, through a relaxation toward the monthly mean model climatology. In the second, only the variability of the initial soil moisture conditions is suppressed. While it is shown that soil moisture strongly contributes to the climate variability simulated in the control experiment, an analysis of variance indicates that soil moisture does not represent a significant source of predictability in most continental areas. The main exception is the North American continent, where climate predictability is clearly reduced through the use of climatological initial conditions. Using climatological soil moisture boundary conditions does not lead to strong and homogeneous impacts on potential predictability, thereby suggesting that the climate signals driven by the sea surface temperature variability are not generally amplified by interactive soil moisture and that the relevance of soil moisture for seasonal forecasting is mainly an initial value problem.  相似文献   

2.
F. Chen 《Climate Dynamics》2005,24(7-8):667-684
The International Satellite Land-Surface Climatology Project (ISLSCP) Initiative-I 1-degree 1987–1988 data were used to drive a land surface model (LSM) to simulate global surface energy budgets. Simulated surface heat fluxes show remarkable spatial variability and seem to capture well their annual and interannual variability. A shift of maximum evaporation across the equator is more closely related to the seasonal shifting of precipitation pattern than to surface radiation changes. The NCEP/NCAR reanalysis did not reflect this shift, presumably due to its dominant rainfall maximum in the Southern Hemisphere. To assess the “reliability” of these fields, both Global Soil Wetness Project (GSWP) and reanalysis were verified against observations, at two sites. Monthly mean ISLSCP forcing conditions agree fairly well with observations, but its precipitation is usually lower during spring and summer. Low summer GSWP evaporation may be due to low precipitation and incorrect specification of vegetation and soil conditions. The reanalysis had larger seasonal variability than GSWP and observations, and overestimated summer heat fluxes because of its large rainfall and surface radiation. Despite uncertainty in ISLSCP data, an LSM with a modest treatment of vegetation was able to capture reasonably well the seasonal variations in surface heat fluxes at global scales. With some caution, these types of simulations can be used as “pseudo-observations” to evaluate climate-model simulations and to investigate global energy budgets. For the next phase of ISLSCP data development, higher resolution data, which can reflect local heterogeneity of vegetation and soil characteristics, include more rain gauge data are highly desirable to improve model simulations.  相似文献   

3.
Three ensembles of AMIP-type simulations using the Arpege-climat coupled land–atmosphere model have been designed to assess the relative influence of SST and soil moisture (SM) on climate variability and predictability. The study takes advantage of the GSWP2 land surface reanalysis covering the 1986–1995 period. The GSWP2 forcings have been used to derive a global SM climatology that is fully consistent with the model used in this study. One ensemble of ten simulations has been forced by climatological SST and the simulated SM is relaxed toward the GSWP2 reanalysis. Another ensemble has been forced by observed SST and SM is evolving freely. The last ensemble combines the observed SST forcing and the relaxation toward GSWP2. Two complementary aspects of the predictability have been explored, the potential predictability (analysis of variance) and the effective predictability (skill score). An analysis of variance has revealed the effects of the SST and SM boundary forcings on the variability and potential predictability of near-surface temperature, precipitation and surface evaporation. While in the tropics SST anomalies clearly maintain a potentially predictable variability throughout the annual cycle, in the mid-latitudes the SST forced variability is only dominant in winter and SM plays a leading role in summer. In a similar fashion, the annual cycle of the hindcast skill (evaluated as the anomalous correlation coefficient of the three ensemble means with respect to the “observations”) indicates that the SST forcing is the dominant contributor over the tropical continents and in the winter mid-latitudes but that SM is supporting a significant part of the skill in the summer mid-latitudes. Focusing on boreal summer, we have then investigated different aspects of the SM and SST contribution to climate variations in terms of spatial distribution and time-evolution. Our experiments suggest that SM is potentially an additional source of climate predictability. A realistic initialization of SM and a proper representation of the land–atmosphere feedbacks seem necessary to improve state-of-the-art dynamical seasonal predictions, but will be actually efficient only in the areas where SM anomalies are themselves predictable at the monthly to seasonal timescale (since remote effects of SM are probably much more limited than SST teleconnections).  相似文献   

4.
基于NCAR大气模式CAM3.1模式,设计了有、无土壤湿度年际异常两组试验对中国区域近40a(1961-2000年)气候进行了模拟。从气候态和年际变率的角度,通过分析两组试验的差值场来探讨土壤湿度年际异常对气候模拟的影响,并初步探讨了影响的可能机制。结果表明:模式模拟的温度和降水对土壤湿度的年际异常非常敏感,土壤湿度的年际变化对中国春夏季气候及其年际变率均有显著影响。当不考虑土壤湿度年际异常时,模式模拟的春夏季平均温度、最高温度、最低温度在我国大范围内降低,春夏季降水在东部大部分地区明显减少,西部增加。而模式模拟的春夏季温度、降水年际变率在中国大部分地区减弱。但当考虑土壤湿度的年际变化,则能在一定程度上提高模式对气候年际变率的模拟能力。在进一步分析表明土壤湿度年际异常时,主要通过改变地表能量通量和环流场,对温度、降水产生影响。当不考虑土壤湿度年际异常时,地表净辐射通量减少,地表温度降低,感热通量减少。感热通量差值场的空间变化和温度差值场的空间变化一致,感热通量对温度有一定影响。而潜热通量差值场的空间变化和降水的差值场的空间变化一致,可见降水受地表潜热通量的影响。土壤湿度年际异常引起的环流场的变化也是导致气候变化的原因之一,地表能量和环流场年际变率的改变对春夏季气候年际变率存在一定影响。  相似文献   

5.
土壤湿度影响中国夏季气候的数值试验   总被引:10,自引:0,他引:10  
利用"全球土壤湿度计划第2阶段"提供的土壤湿度资料强迫区域气候模式RegCM3,通过数值试验讨论了土壤湿度对东亚夏季气候模拟效果的影响。结果表明,合理考虑土壤湿度的作用,能够提高区域气候模式对中国夏季降水和2 m气温的空间分布型及逐日变化的模拟效果;模拟结果与观测的相关分析显示,降水和2 m气温的年际变化都得到了有效改进,这种改进在气温上尤为明显。不过上述改进具有区域依赖性。数值试验结果表明,气温对土壤湿度的敏感性强于降水,这也从一个侧面说明提高降水模拟效果的难度。总体而言,合理的土壤湿度能够提高区域气候模式对中国夏季气候的模拟能力。因此,合理描述土壤湿度的变化,是提高中国夏季气候预报技巧的潜在途径之一。  相似文献   

6.
 Global soil moisture data of high quality and resolution are not available by direct observation, but are useful as boundary and initial conditions in comprehensive climate models. In the framework of the GSWP (Global Soil Wetness Project), the ISBA land-surface scheme of Météo-France has been forced with meteorological observations and analyses in order to study the feasibility of producing a global soil wetness climatology at a 1°×1° horizontal resolution. A control experiment has been performed from January 1987 to December 1988, using the ISLSCP Initiative I boundary conditions. The annual mean, the standard deviation and the normalised annual harmonic of the hydrologic fields have been computed from the 1987 monthly results. The global maps which are presented summarise the surface hydrologic budget and its annual cycle. The soil wetness index and snow cover distributions have been compared respectively to the results of the ECMWF reanalysis and to satellite and in situ observations. The simulated runoff has been validated against a river flow climatology, suggesting a possible underestimation over some large river basins. Besides the control run, other simulations have been performed in order to study the sensitivity of the hydrologic budget to changes in the surface parameters, the precipitation forcing and the runoff scheme. Such modifications have a significant impact on the partition of total precipitation into evaporation and runoff. The sensitivity of the results suggests that soil moisture remains one of the most difficult climatological parameters to model and that any computed soil wetness climatology must be considered with great caution. Received: 3 January 1997 / Accepted: 19 August 1987  相似文献   

7.
Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carried out to investigate the climate impacts of fractional vegetation cover (FVC) and leaf area index (LAI) on East Asia summer precipitation, especially in the Yellow River Basin (YRB). One set employed prescribed FVC and LAI which have no interannual variations based on the climatology of vegetation distribution; the other with FVC and LAI derived from satellite observations of the International Satellite Land Surface Climate Project (ISLSCP) for 1987 and 1988. The simulations of the two experiments were compared to study the influence of FVC, LAI on summer precipitation interannual variation in the YRB. Compared with observations and the NCEP reanalysis data, the experiment that included both the effects of satellite-derived vegetation indexes and sea surface temperature (SST) produced better seasonal and interannual precipitation variations than the experiment with SST but no interannual variations in FVC and LAI, indicating that better representations of the vegetation index and its interannual variation may be important for climate prediction. The difference between 1987 and 1988 indicated that with the increase of FVC and LAI, especially around the YRB, surface albedo decreased, net surface radiation increased, and consequently local evaporation and precipitation intensified. Further more, surface sensible heat flux, surface temperature and its diurnal variation decreased around the YRB in response to more vegetation. The decrease of surface-emitting longwave radiation due to the cooler surface outweighed the decrease of surface solar radiation income with more cloud coverage, thus maintaining the positive anomaly of net surface radiation. Further study indicated that moisture flux variations associated with changes in the general circulation also contributed to the precipitation interannual variation.  相似文献   

8.
陈海山  周晶 《大气科学》2013,37(1):1-13
利用NCARCAM3.1大气环流模式,设计了有、无土壤湿度年际异常的两组数值试验,探讨了土壤湿度年际异常对极端气候事件模拟的可能影响。结果表明,模式模拟的极端气候事件对土壤湿度异常十分敏感,土壤湿度异常对极端气候指标的多年平均空间分布、年际变率以及年际变化均具有重要影响。当不考虑土壤湿度的年际异常时:(1)模拟的暖夜日数、暖昼日数和热浪持续指数的发生频次在全国范围内均明显减少,而霜冻日数则明显增加。极端降水指标的响应表现出明显的空间差异,极端降水频次在江淮流域明显减小,而极端降水强度则表现为东北减弱、长江流域增强;中雨日数和持续湿期在我国大部分地区减少。(2)极端气温指标的年际变率在我国大部分地区呈减小趋势;而极端降水事件的变化则较为复杂,极端降水频次和极端降水强度的年际变率在长江以南有所增强,而北方地区则有所减弱。中雨日数和持续湿期的年际变率在我国呈现出较为一致的减少趋势。(3)模式对暖夜日数、霜冻日数的年际变化的模拟能力明显下降,并对4个极端降水指标的年际变化的模拟能力在全国多数区域均有不同程度的下降。  相似文献   

9.
We dynamically downscaled Japanese reanalysis data (JRA-25) for 60 regions of Japan using three regional climate models (RCMs): the Non-Hydrostatic Regional Climate Model (NHRCM), modified RAMS version 4.3 (NRAMS), and modified Weather Research and Forecasting model (TWRF). We validated their simulations of the precipitation climatology and interannual variations of summer and winter precipitation. We also validated precipitation for two multi-model ensemble means: the arithmetic ensemble mean (AEM) and an ensemble mean weighted according to model reliability. In the 60 regions NRAMS simulated both the winter and summer climatological precipitation better than JRA-25, and NHRCM simulated the wintertime precipitation better than JRA-25. TWRF, however, overestimated precipitation in the 60 regions in both the winter and summer, and NHRCM overestimated precipitation in the summer. The three RCMs simulated interannual variations, particularly summer precipitation, better than JRA-25. AEM simulated both climatological precipitation and interannual variations during the two seasons more realistically than JRA-25 and the three RCMs overall, but the best RCM was often superior to the AEM result. In contrast, the weighted ensemble mean skills were usually superior to those of the best RCM. Thus, both RCMs and multi-model ensemble means, especially multi-model ensemble means weighted according to model reliability, are powerful tools for simulating seasonal and interannual variability of precipitation in Japan under the current climate.  相似文献   

10.
中国土壤湿度的分布与变化 I. 多种资料间的比较   总被引:13,自引:2,他引:11  
土壤湿度是影响气候的重要因子之一, 但观测资料的欠缺制约着该领域研究工作的开展。本文汇总了目前国际上运用较为广泛的四套土壤湿度资料: ERA40和NCEP/NCAR再分析资料、全球土壤湿度计划资料(GSWP2)、以及NCAR最近完成的利用观测资料强迫“通用陆面模式”CLM所产生的土壤湿度资料。在此基础上, 利用中国区域观测的19年 (1981~1999年) 的土壤湿度和13年 (1992~2004年) 的土壤相对湿度资料, 对四套资料在中国区域的可靠性进行了分析和比较, 主要结论如下: 四套资料基本揭示出土壤湿度的空间分布, GSWP2揭示了四套资料最多的共性, 即东北、 华南湿, 华北、 西北干, 土壤湿度基本由西北向东北和东南呈梯度增加的特征; GSWP2较好地描述了土壤湿度的季节循环; ERA40土壤湿度的年际变化与观测相关最好; 观测资料和四套资料都表明前期降水会增加土壤湿度, 但土壤湿度异常对后期降水的影响则不显著; 气温与土壤湿度的关系较复杂, 不同的区域有不同的特征。  相似文献   

11.
本文通过多套观测与再分析降水资料的比较,分析了雅鲁藏布江流域夏季降水的特征,从水汽含量与水汽输送的角度检验了雅鲁藏布江水汽通道的特点,研究了流域夏季降水的年际变化及其原因。分析表明:(1)该流域夏季降水大值位于雅鲁藏布江出海口至大峡谷一带,观测中流域平均降水可达5.8 mm d-1。不同资料表现的降水空间分布一致,但再分析降水普遍强于观测,平均为观测的2倍左右。(2)该流域夏季的水汽主要来自印度洋和孟加拉湾的偏南暖湿水汽输送,自孟加拉湾出海口沿布拉马普特拉河上溯至大峡谷,即雅鲁藏布江水汽通道。水汽收支诊断表明,夏季流域南部(即水汽通道所在处)是水汽辐合中心,流域平均的辐合约9.5 mm d-1,主要来自风场辐合与地形坡度的贡献。(3)不同再分析资料表现的流域降水和水汽分布特征总体一致,但量值差异较大。NCEP(美国国家环境预报中心)气候预报系统再分析资料CFSR、日本气象厅再分析资料JRA-25较欧洲中期天气预报中心再分析ERA-Interim资料更适于研究该流域(青藏高原东南部)的水汽特征,因为后者给出的流域降水和水汽偏强。(4)近30年该流域夏季降水无显著趋势,以年际变率为主。年际异常的水汽辐合(约为气候态的35.4%)源自异常西南风导致的局地水汽辐合(纬向、经向辐合分别贡献了16.5%、83.5%),地形作用很小。流域夏季降水的年际变化是由印度夏季风活动导致的异常水汽输送造成的,其关键系统是印度季风区北部的异常气旋(反气旋)式水汽输送。  相似文献   

12.
Through an Australia-China climate change bilateral project, we analyzed results of 51-year global offline simulations over China using the Australian community atmosphere biosphere land exchange (CABLE) model, focusing on integrated studies of its surface energy, water and carbon cycle at seasonal, interannual and longer time-scales. In addition to the similar features in surface climatology between the CABLE simulation and those derived from the global land-surface data assimilation system, comparison of surface fluxes at a CEOP reference site in northeast China also suggested that the seasonal cycles of surface evaporation and CO2 flux are reasonably simulated by the model. We further assessed temporal variations of model soil moisture with the observed variations at a number of locations in China. Observations show a soil moisture recharge–discharge mechanism on a seasonal time scale in central-east China, with soil moisture being recharged during its summer wet season, retained in its winter due to low evaporation demand, and depleted during early spring when the land warms up. Such a seasonal cycle is shown at both 50- and 100-cm soil depths in observations while the model only shows a similar feature in its lower soil layers with its upper layer soil moisture varying tightly with rainfall seasonal cycle. In the analysis of the model carbon cycle, the net primary productivity (NPP) has similar spatial patterns as the ones derived from an ecosystem model with remote sensing. The simulated interannual variations of NPP by CABLE are consistent with the results derived from remote sensing-based and process-based studies over the period of 1981–2000. Nevertheless an upward trend from observations is not presented in the model results. The model shows a downward trend primarily due to the constant CO2 concentration used in the experiment and a large increase of autotrophic respiration caused by an upward trend in surface temperature forcing data. Furthermore, we have compared river discharge data from the model experiments with observations in the Yangtze and Yellow River basins in China. In the Yangtze River basin, while the observed interannual variability is reasonably captured, the model significantly underestimates its river discharge, which is consist with its overestimation of evaporation in the region. In the Yellow River basin, the magnitudes of the river discharge is similar between modeled and observed but its variations are less skillfully captured as seen in the Yangtze River region.  相似文献   

13.
Summary An assessment is made of a regional climate model's skill in simulating the mean climatology and the interannual variability experienced in a specific region. To this end two ensembles comprising three realizations of month-long January and July simulations are undertaken with a limited are a operational NWP model. The modelling suite is driven at its lateral boundaries by analysed meteorological fields and the computational domain covers Europe and the North-western Atlantic with a horizontal resolution of 56 km.Validation is performed against both operational ECMWF analyses and objectively analysed precipitation fields from a network of ~ 1400 SYNOP rain gauge stations. Analysis of the simulated ensemble-mean climatology indicates that the model successfully reproduces both the winter and summer distributions of the primary dynamical and thermodynamical field, and also provides a reasonable representation of the measured precipitation over most of Europe. Typically the domain averaged model-biases are below 0.5 K for temperature and 0.1 g/kg for specific humidity. Analysis of the interannual variability reveals that the model captures the wintertime changes including that of the precipitation distribution, but in contrast the summertime precipitation totals for the individual years is not simulated satisfactorily and only partially reproduces the observed regional interannual variability.The latter shortcomings are related to the following factors. Firstly the model bias in the dynamical fields is somewhat larger for summer than winter, while at the same time summertime interannual variability is associated with weaker effects in the dynamical fields. Secondly the summertime precipitation distribution is more substantially affected by small-scale moist convection and surface hydrological processes. Together these two factors suggest that summertime precipitation over continental extratropical land masses might be intrinsically less predictable than wintertime synoptic scale precipitation.With 17 Figures  相似文献   

14.
Processes acting at the interface between the land surface and the atmosphere have a strong impact on the European summer climate, particularly during extreme years. These processes are to a large extent associated with soil moisture (SM). This study investigates the role of soil moisture?Catmosphere coupling for the European summer climate over the period 1959?C2006 using simulations with a regional climate model. The focus of this study is set on temperature and precipitation extremes and trends. The analysis is based on simulations performed with the regional climate model CLM, driven with ECMWF reanalysis and operational analysis data. The set of experiments consists of a control simulation (CTL) with interactive SM, and sensitivity experiments with prescribed SM: a dry and a wet run to determine the impact of extreme values of SM, as well as experiments with lowpass-filtered SM from CTL to quantify the impact of the temporal variability of SM on different time scales. Soil moisture?Cclimate interactions are found to have significant effects on temperature extremes in the experiments, and impacts on precipitation extremes are also identified. Case studies of selected major summer heat waves reveal that the intraseasonal and interannual variability of SM account for 5?C30% and 10?C40% of the simulated heat wave anomaly, respectively. For extreme precipitation events on the other hand, only the wet-day frequency is impacted in the experiments with prescribed soil moisture. Simulated trends for the past decades, which appear consistent with projected changes for the 21st century, are identified to be at least partly linked to SM-atmosphere feedbacks.  相似文献   

15.
中国土壤湿度的分布与变化 II. 耦合模式模拟结果评估   总被引:5,自引:1,他引:5  
张文君  宇如聪  周天军 《大气科学》2008,32(5):1128-1146
利用中国区域土壤湿度观测资料,对目前世界上较具有代表性的14个全球海-陆-气耦合模式模拟的中国区域土壤湿度进行了评估,发现尽管几乎所有的耦合模式基本都能够再现实际的土壤湿度空间分布,但模拟的土壤湿度季节循环和年际变化,却与观测相差较大。除了少数模式中降水变化与土壤湿度变化的关系不明显外,大部分模式都揭示了前期降水对后期土壤湿度变化的显著影响,在部分模式中,前期降水对土壤湿度的影响偏强。耦合模式在土壤湿度模拟上的偏差,主要来自降水模拟上的偏差。在土壤湿度的年平均和夏季平均空间分布、年际变化方面,高分辨率模式(水平格距高于1.875°×1.875°)的结果,整体上要好于中(水平格距在1.875°×1.875°与3.75°×3.75°之间)、低(水平格距小于3.75°×3.75°)分辨率的模式;而中等分辨率模式结果相对于低分辨率而言则优势不明显。  相似文献   

16.
The regional climate model (RegCM4) is customized for 10-year climate simulation over Indian region through sensitivity studies on cumulus convection and land surface parameterization schemes. The model is configured over 30° E–120° E and 15° S–45° N at 30-km horizontal resolution with 23 vertical levels. Six 10-year (1991–2000) simulations are conducted with the combinations of two land surface schemes (BATS, CLM3.5) and three cumulus convection schemes (Kuo, Grell, MIT). The simulated annual and seasonal climatology of surface temperature and precipitation are compared with CRU observations. The interannual variability of these two parameters is also analyzed. The results indicate that the model simulated climatology is sensitive to the convection as well as land surface parameterization. The analysis of surface temperature (precipitation) climatology indicates that the model with CLM produces warmer (dryer) climatology, particularly over India. The warmer (dryer) climatology is due to the higher sensible heat flux (lower evapotranspiration) in CLM. The model with MIT convection scheme simulated wetter and warmer climatology (higher precipitation and temperature) with smaller Bowen ratio over southern India compared to that with the Grell and Kuo schemes. This indicates that a land surface scheme produces warmer but drier climatology with sensible heating contributing to warming where as a convection scheme warmer but wetter climatology with latent heat contributing to warming. The climatology of surface temperature over India is better simulated by the model with BATS land surface model in combination with MIT convection scheme while the precipitation climatology is better simulated with BATS land surface model in combination with Grell convection scheme. Overall, the modeling system with the combination of Grell convection and BATS land surface scheme provides better climate simulation over the Indian region.  相似文献   

17.
A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to “lock” the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate models.  相似文献   

18.
Land surface hydrology (LSH) is a potential source of long-range atmospheric predictability that has received less attention than sea surface temperature (SST). In this study, we carry out ensemble atmospheric simulations driven by observed or climatological SST in which the LSH is either interactive or nudged towards a global monthly re-analysis. The main objective is to evaluate the impact of soil moisture or snow mass anomalies on seasonal climate variability and predictability over the 1986–1995 period. We first analyse the annual cycle of zonal mean potential (perfect model approach) and effective (simulated vs. observed climate) predictability in order to identify the seasons and latitudes where land surface initialization is potentially relevant. Results highlight the influence of soil moisture boundary conditions in the summer mid-latitudes and the role of snow boundary conditions in the northern high latitudes. Then, we focus on the Eurasian continent and we contrast seasons with opposite land surface anomalies. In addition to the nudged experiments, we conduct ensembles of seasonal hindcasts in which the relaxation is switched off at the end of spring or winter in order to evaluate the impact of soil moisture or snow mass initialization. LSH appears as an effective source of surface air temperature and precipitation predictability over Eurasia (as well as North America), at least as important as SST in spring and summer. Cloud feedbacks and large-scale dynamics contribute to amplify the regional temperature response, which is however, mainly found at the lowest model levels and only represents a small fraction of the observed variability in the upper troposphere.  相似文献   

19.
Given observed initial conditions, how well do coupled atmosphere–ocean models predict precipitation climatology with 1-month lead forecast? And how do the models’ biases in climatology in turn affect prediction of seasonal anomalies? We address these questions based on analysis of 1-month lead retrospective predictions for 21 years of 1981–2001 made by 13 state-of-the-art coupled climate models and their multi-model ensemble (MME). The evaluation of the precipitation climatology is based on a newly designed metrics that consists of the annual mean, the solstitial mode and equinoctial asymmetric mode of the annual cycle, and the rainy season characteristics. We find that the 1-month lead seasonal prediction made by the 13-model ensemble has skills that are much higher than those in individual model ensemble predictions and approached to those in the ERA-40 and NCEP-2 reanalysis in terms of both the precipitation climatology and seasonal anomalies. We also demonstrate that the skill for individual coupled models in predicting seasonal precipitation anomalies is positively correlated with its performances on prediction of the annual mean and annual cycle of precipitation. In addition, the seasonal prediction skill for the tropical SST anomalies, which are the major predictability source of monsoon precipitation in the current coupled models, is closely link to the models’ ability in simulating the SST mean state. Correction of the inherent bias in the mean state is critical for improving the long-lead seasonal prediction. Most individual coupled models reproduce realistically the long-term annual mean precipitation and the first annual cycle (solstitial mode), but they have difficulty in capturing the second annual (equinoctial asymmetric) mode faithfully, especially over the Indian Ocean (IO) and Western North Pacific (WNP) where the seasonal cycle in SST has significant biases. The coupled models replicate the monsoon rain domains very well except in the East Asian subtropical monsoon and the tropical WNP summer monsoon regions. The models also capture the gross features of the seasonal march of the rainy season including onset and withdraw of the Asian–Australian monsoon system over four major sub-domains, but striking deficiencies in the coupled model predictions are observed over the South China Sea and WNP region, where considerable biases exist in both the amplitude and phase of the annual cycle and the summer precipitation amount and its interannual variability are underestimated.  相似文献   

20.
本文利用日本气象研究所(MRI)参加第五次国际耦合模式比较计划(CMIP5)的大气环流模式在高、中、低三种分辨率下的AMIP试验结果,评估了其对华南春雨气候态和年际变率的模拟能力,比较了不同分辨率的模拟结果。结果表明,三种不同水平分辨率(120 km、60 km和20 km)的模式均能再现北半球春季位于中国东南部的降水中心。相较于120 km模式,20 km模式能够更为合理地模拟出华南春雨位于南岭—武夷山脉的降水中心。水汽收支分析表明,60 km、20 km模式高估了水汽辐合,使得华南春雨的降水强度被高估。在年际变率方面,在三种分辨率下,模式均能较好地再现观测中El Ni?o衰减年春季的西北太平洋反气旋以及华南春雨降水正异常。较之120 km模式,60 km、20 km模式模拟的降水正异常的空间分布和强度更接近观测,原因是后者模拟的El Ni?o衰减年春季华南地区的水平水汽平流异常更接近观测。本研究表明,发展高分辨率气候模式是提高华南春雨的气候态和年际变率模拟水平的有效途径之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号