首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifty scapolites have been analysed spectrographically for numerouselements. Average concentrations (p.p.m.) were as follows: B25, Be 9-3, Ga 33, Ti 82, Li 56, Cu 4-4, Zr 59, Mn 57, Sr 1,800,Pb 45, Ba 120, Rb 20. The following were seldom or never detected:Cr, Ni, Co, Mo, Sn, V, Sc, Ag, Y, La. The major elements Ca,Na, K were also determined. The distribution of the trace elementscan be explained by isomorphous substitution, but no detailedcorrelation of trace elements with each other or with majorelements was found. Refractive indices were determined and the relation betweenaverage index and per cent Me was examined: correlation waspoor, which may in part be attributed to analytical error. Examination of scapolite parageneses shows that scapolite characteristicallyoccurs in the upper amphibolite facies or the pyroxene hornfelsfacies: it is not restricted to these and may occur in any faciesfrom zeolitic to granulitic and in any hornfels facies. Theelements generally concentrated in scapolite include Ca, Na,C, Cl, S, H, B, Be, Li, Sr, Pb. The presence of C, Cl, S, Htestify to genesis in the presence of high partial pressureof CO2, Cl2, SO3, H2O (or related compounds), that is in pneumatolytic,pegmatitic, or hydrothermal environments. The concentrationof B, Be, Li can also be attributed to these conditions. The source of the elements concentrated in scapolite must inpart be common rocks. In a limited contact zone, the nearbymagma supplied some elements, but where regional scapolitizationhas taken place the presence of magma is less clear. Many commonrocks or rock series contain all the necessary constituents,but some particular conjunction of conditions is necessary forscapolite to form, or it would be more common.  相似文献   

2.
Widespread metasomatism affected the 100 km long and 25 km wide Proterozoic Bamble and Modum‐Kongsberg sectors, South Norway, resulting in the chemical and mineralogical transformation of wide segments of continental crust. Scapolitization was associated with veining, and was followed by albitization, transforming metagabbros pervasively over large areas. Fluids played an active role in these reactions, forming H2O‐, CO2‐ and Cl‐bearing phases at the expense of the primary volatile‐free minerals, causing depletion in Fe and infiltration of K, Mg, Na, B and P. The transformation of gabbro to scapolite metagabbro is observed as a fluid front replacing the primary magmatic mineral assemblage in three stages: during an incipient amphibolitization stage, the primary mafic minerals were replaced by anthophyllite or hastingsite, followed by pargasitic and edenitic Ca‐amphibole. Magnetite was dissolved, while rutile formed by the breakdown of ilmenite. Plagioclase was replaced by Cl‐rich scapolite (Me19‐42) reflecting Cl‐saturation, while K‐ and Mg‐saturation produced phlogopite, enstatite, sapphirine and rare corundum. The high modal contents of chlorapatite and tourmaline in the scapolite metagabbro imply infiltration of B and P. The albitites consist dominantly of albite (Ab95‐98) with varying, generally small, amounts of chlorite, calcite, rutile, epidote and pumpellyite. They formed from a H2O–CO2‐fluid rich in Na. The gabbro yields a zircon U–Pb age of 1149 ± 7 Ma and tonalite 1294 ± 38 Ma, whereas rutile from scapolite metagabbro and albitite has U–Pb ages of 1090–1084 Ma, and phlogopite produced during scapolitization Rb–Sr ages of 1070–1040 Ma. Temperature conditions for the scapolitization are inferred to have been 600–700 °C. The reported ages, combined with mineralogical and petrographic observations and inferred P–T conditions, indicate that the metasomatism was a part of the regional Sveconorwegian amphibolite facies metamorphic phase. Initial 87Sr/86Sr of the scapolite ranges from 0.704 to 0.709. The Sr‐signature, the Cl‐ and B‐rich environment and regional distribution of lithologies suggest that the fluid may have originated from evaporites that were mobilized during the regional metamorphism.  相似文献   

3.
长江中下游地区地下水中化学元素的背景特征及形成   总被引:46,自引:0,他引:46  
曾昭华 《地质学报》1996,70(3):262-269
本文论证了长江中下游地区地下水中钾、钠、钙、镁、硅、铁、锰、铬、镍、钒、钴、钛、钼、铜、铅、锌、砷、汞、镉、铍、锂、锶、硼、氟、氯、溴、碘的背景特征、形成及分布规律,探讨其与地下水的含水介质成分,上覆岩土性质、氧化还原环境、地下水的径流条件和矿化度以及地下水的酸碱度之间的关系。  相似文献   

4.
The Merouane Chott, located in arid southeastern Algeria, experiences annual cycles of filling from September through February followed by its complete evaporation from February through June. The concentration of 15 trace elements (Li, B, Ti; V, Cr, Mn, Co, Cu, Ni, Zn, As, Sr, Ba, Pb, Bi, and U) were measured in chott water samples collected from January through June 2003 during the complete evaporation of the lake. The corresponding concentrations of these trace elements in the major external inputs to this closed basin chott were also obtained. The trace metals show two distinct behaviors. Li, B, Cr, Co, and U tend to be conserved in the chott waters throughout its evaporation. Much of Cr, Co, and U originated from external sources. It is likely, therefore, that the concentration of these elements will increase in the chott waters in future years. In contrast, Ti, Sr, Ba, Zn, Ni, and Pb precipitate continuously during chott evaporation. Of these elements, most of the Sr, Ba, and Zn originated from outside the chott, and thus it is likely these elements will become increasingly concentrated in the chott bottom salts with time. V, As, and Cu exhibit intermediate behaviors. These contrasting behaviors are confirmed by analysis of chott bottom solids.  相似文献   

5.
The geochemistry of trace elements in the underground and open-pit mine of the Goze Delchev subbituminous coal deposit have been studied. The coals in both mines are highly enriched in W, Ge and Be, and at less extent in As, Mn and Y as compared with the world-wide Clarkes for subbituminous coals. Ni and Ti are also enhanced in the underground coals, and Zr, Cr and Mo in the open-pit mine coals.Characteristic for the trace element contents in the deposit is a regular variation with depth. The following patterns were distinguished for profile I: a — the element content decreases from the bottom to the top of the bed paralleling ash distribution (Fe, Co, As, Sb, V, Y, Mo, Cs, REE, Hf, Ta, Th, P and Au); b — Ge and W are enriched in the near-bottom and near-top coals; c — in the middle part of the bed the content of K and Rb is maximal, while that of U is slightly enriched; d — Ba content decreases from the top to the bottom of the bed. In profile II, W and Be contents decrease from the bottom to the top. The near-bottom, and especially the near-roof samples of profile IV are highly enriched in Ge, while for W the highest is the content of the near-bottom sample.Ge, Be, As, Mn, Cl and Br are mainly organically associated. The organic affiliation is still strong for Co, B, Sr, Ba, Sb, U, Th, Mo, La, Ce, Sm, Tb and Yb in the underground coals, and Fe, Co, Na, W, Sr, Y and Ag in the coals from the open-pit mine. K, Rb, Ti, Zr, Hf and Ta are of dominant inorganic affinity. The chalcophile and siderophile elements correlate positively with Fe and each other and may be bound partly with pyrite or other sulphides and iron containing minerals.Compared statistically by the t-criteria, the elements Na, Li, Cu, Zn, Pb, Cr, Ni, Co, Mo, Fe and Be are of higher content in the open-pit mine. Tungsten is the only element of higher concentration in the underground mine. The contents of Ge, As, Sr, V, Mn, Y, Zr and P are not statistically different in both mines.It was supposed that there were multiple sources of the trace elements in the deposit. The source of the highly enriched elements (W, Ge, Be, and As) most probably were the thermal waters in the source area. The contemporary mineral springs are of high content of these elements. Another source were the hosting Mesta volcanic rocks, which are enriched in Sb, Mo, Hf, U, Th, As, Li and Rb. Some of the volcanics were hydrothermally altered and enriched or depleted of many elements. Thus, the hydrothermal solutions were also suppliers of elements for the coals. It is obvious that the contents, distribution and paragenesis, of the trace elements in both Goze Delchev coals reflect the geochemical specialization of the source area, including rocks, paleo- and contemporary thermal waters.  相似文献   

6.
High-pressure metamorphic (HPM) rocks (derived from igneous protoliths) and their metasomatised rinds from the island of Syros (Greece) were analysed for their B and Cl whole-rock abundances and their H2O content by prompt-gamma neutron-activation analysis (PGNAA) and for their Li and Be whole-rock abundances by ICP-OES. In the HPM rocks, B?/Be and Cl?/Be ratios correlate with H2O contents and appear to be controlled by extraction of B and Cl during dehydration and prograde metamorphism. In contrast, samples of the metasomatised rinds show no such correlation. B?/Be ratios in the rinds are solely governed by the presence or absence of tourmaline, and Cl?/Be ratios vary significantly, possibly related to fluid inclusions. Li/Be ratios do not correlate with H2O contents in the HPM rocks, which may in part be explained by a conservative behaviour of Li during dehydration. However, Li abundances exceed the vast majority of published values for Li abundances in fresh, altered, or differentiated oceanic igneous rocks and presumably result from metasomatic enrichment of Li. High Li concentrations and highly elevated Li/Be ratios in most metasomatised samples demonstrate an enrichment of Li in the Syros HP mélange during fluid infiltration. This study suggests that B and Cl abundances of HPM meta-igneous rocks can be used to trace prograde dehydration, while Li concentrations seem to be more sensitive for retrograde metasomatic processes in such lithologies.  相似文献   

7.
Summary The Habachtal emerald deposit, Hohe Tauern, is composed of blackwall sequences of the type: serpentinite — talc schist — ±chlorite schist or actinolite schist — biotite schist —albite gneiss and/or micaschist. 2 serpentinites, 33 blackwall rocks, 9 micaschists, 10 albite gneisses, and 5 aplitic gneisses were analyzed for major elements, and for Li, Be, Cr, Ni, Zn, Zr, Sn, in 36 samples also for Sc, Cu, Rb, Sr, Cs, Ba, W. The blackwall formation is due to a metasomatic exchange involving a transfer of Mg from the serpentinite to the silicic country rock, and of Si, Ca, K, and Al from the country rock to the serpentinite. Some of the trace elements were also mobile: Compared to serpentinite, Li and Be were enriched in all the blackwall rocks, and Sn and Cs in the actinolite, chlorite, and biotite schists; Sr was concentrated in the dolomite-bearing talc schists, and Zn, Rb, and Ba predominantly in the biotite schists.
Geochemie der Blackwall-Folgen in der Smaragd-Lagerstätte Habachtal, Hohe Tauern, Österreich. Teil 1: Darstellung der geochemischen Daten
Zusammenfassung Die Smaragd-Lagerstätte Habachtal, Hohe Tauern, besteht aus Blackwall-Folgen vom Typ: Serpentinit — Talkschiefer — ±Chloritschiefer oder Aktinolithschiefer — Biotitschiefer — Albitgneis und/oder Glimmerschiefer. Von 2 Serpentiniten, 33 Blackwall-Gesteinen, 9 Glimmerschiefern, 10 Albitgneisen und 5 Aplitgneisen wurden chemische Analysen der Hauptelemente und von Li, Be, Cr, Ni, Zn, Zr, Sn vorgelegt; 36 Proben wurden auch auf Sc, Cu, Rb, Sr, Cs, Ba und W analysiert. Die Blackwall-Bildung geht auf einen metasomatischen Austausch zurück, bei dem Mg aus dem Serpentinit ins Nebengestein, Si, Ca, K und Al aus dem Nebengestein in den Serpentinit transportiert wurden. Daneben waren auch einige Spurenelemente mobil: Im Vergleich zum Serpentinit wurden Li und Be in allen Blackwall-Gesteinen, Sn und Cs in den Aktinolith-, Chlorit- und Biotitschiefern angereichert; Sr wurde(n) in den dolomitführenden Talkschiefern, Zn, Rb und Ba hauptsächlich in den Biotitschiefern konzentriert.


With 5 Figures  相似文献   

8.
Scapolite and other halogen-rich minerals (phlogopite, amphibole,apatite, titanite and clinohumite) occur in some high-pressureamphibolite facies calc-silicates and orthopyroxene-bearingrocks at Sare Sang (Sar e Sang or Sar-e-Sang), NE Afghanistan.The calc-silicates are subdivided into two groups: garnet-bearingand garnet-free, phlogopite-bearing. Besides garnet and/or phlogopite,the amphibolite facies mineral assemblages in the calc-silicatesinclude clinopyroxene, calcite, quartz and one or more of theminerals scapolite, plagioclase, K-feldspar, titanite, apatiteand rarely olivine. Orthopyroxene-bearing rocks consist of clinopyroxene,garnet, plagioclase, scapolite, amphibole, quartz, calcite andaccessory dolomite and alumosilicate (kyanite?). Retrogradephases in the rocks are plagioclase, scapolite, calcite, amphibole,sodalite, haüyne, lazurite, biotite, apatite and dolomite.The clinopyroxene is mostly diopside and rarely also hedenbergite.Aegirine and omphacite with a maximum jadeite content of 29mol % were also found. Garnet from the calc-silicates is Grs45–95Py0–2and from the orthopyroxene-bearing rocks is Grs10–15Py36–43.Peak P–T metamorphic conditions, calculated using availableexchange thermobarometers and the TWQ program, are 750°Cand 1·3–1·4 GPa. Depending on the rock type,the scapolite exhibits a wide range of composition (from EqAn= 0·07, XCl =0·99 to EqAn = 0·61, XCl =0·07).Equilibria calculated for scapolite and coexisting phases atpeak metamorphic conditions yield XCO2 = 0·03–0·15.XNaCl (fluid), obtained for scapolite, ranges between 0·04and 0·99. Partitioning of F and Cl between coexistingphases was calculated for apatite–biotite and amphibole–biotite.Fluorapatite is present in calc-silicates, but orthopyroxene-bearingrocks contain chlorapatite. Cl preferentially partitions intoamphibole with respect to biotite. All these rocks have sufferedvarious degrees of retrogression, which resulted in removalof halogens, CO2 and S. Halogen- and S-bearing minerals formedduring retrogression and metasomatism are fluorapatite, sodalite,amphibole, scapolite, clinohumite, haüyne, pyrite, andlazurite, which either form veins or replace earlier formedphases. KEY WORDS: scapolite; fluid composition; high-pressure; amphibolite facies; Western Hindukush; Afghanistan  相似文献   

9.
Volatile element, major and trace element compositions were measured in glass inclusions in olivine from samples across the Kamchatka arc. Glasses were analyzed in reheated melt inclusions by electron microprobe for major elements, S and Cl, trace elements and F were determined by SIMS. Volatile element–trace element ratios correlated with fluid-mobile elements (B, Li) suggesting successive changes and three distinct fluid compositions with increasing slab depth. The Eastern Volcanic arc Front (EVF) was dominated by fluid highly enriched in B, Cl and chalcophile elements and also LILE (U, Th, Ba, Pb), F, S and LREE (La, Ce). This arc-front fluid contributed less to magmas from the central volcanic zone and was not involved in back arc magmatism. The Central Kamchatka Depression (CKD) was dominated by a second fluid enriched in S and U, showing the highest S/K2O and U/Th ratios. Additionally this fluid was unusually enriched in 87Sr and 18O. In the back arc Sredinny Ridge (SR) a third fluid was observed, highly enriched in F, Li, and Be as well as LILE and LREE. We argue from the decoupling of B and Li that dehydration of different water-rich minerals at different depths explains the presence of different fluids across the Kamchatka arc. In the arc front, fluids were derived from amphibole and serpentine dehydration and probably were water-rich, low in silica and high in B, LILE, sulfur and chlorine. Large amounts of water produced high degrees of melting below the EVF and CKD. Fluids below the CKD were released at a depth between 100 and 200 km due to dehydration of lawsonite and phengite and probably were poorer in water and richer in silica. Fluids released at high pressure conditions below the back arc (SR) probably were much denser and dissolved significant amounts of silicate minerals, and potentially carried high amounts of LILE and HFSE. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Sediment mixing and recycling through a subduction zone canbe detected in lead isotopes and trace elements from basaltsand sediments from the Kermadec-Hikurangi Margin volcanic arcsystem and their coupled back-arc basins. Sr, Nd and Pb isotopesfrom the basalts delineate relatively simple, almost overlapping,arrays between back-arc basin basalts of the Havre Trough-NgatoroBasin (87Sr/86Sr = 0.70255; Nd=+9.3; 206Pb/204Pb = 18.52; 208Pb/204Pb= 38.18), island arc basalts from the Kermadec Arc togetherwith basalts from Taupo Volcanic Zone (87Sr/86Sr 0.7042; Nd= +5; 206Pb/204Pb= 18.81; 208Pb/204Pb = 38.61), and sedimentsderived from New Zealand's Mesozoic (Torlesse) basement (87Sr/86Sr 0.715; Nd —4; 206Pb/204Pb 18.86; 208Pb/204Pb 38.8).Basalts from the arc front volcanoes have high Cs, Rb, Ba, Th,U and K, and generally high but variable Ba/La, Ba/Nb ratios,characteristic of subduction-related magmas, relative to typicaloceanic basalts. These signatures are diluted in the back-arcbasins, which are more like mid-ocean ridge basalts. Strongchemical correlations in plots of SiO2 vs CaO and loss on ignitionfor the sediments (finegrained muds) are consistent with mixingbetween detrital and biogenic (carbonate-rich) components. Otherdata, such as Zr vs CaO, are consistent with the detrital componentcomprising a mixture of arc- and continent-derived fractions.In chondrite-normalized diagrams, most of the sediments havelight rare earth element enriched patterns, and all have negativeEu anomalies. The multielement diagrams have negative spikesat Nb, P and Ti and distinctive enrichments in the large ionlithophile elements and Pb relative to mantle. Isotopic measurementsof Pb, Sr and Nd reveal restricted fields of Pb isotopes butwide variation in Nd and Sr relative to other sediments fromthe Pacific Basin. Rare K-rich basalts from Clark Volcano towardthe southern end of the oceanic Kermadec Island Arc show unusualand primitive characteristics ( 2% K2O at 50% SiO2, Ba 600p.p.m., 9–10% MgO and Ni > 100 p.p.m.) but have highlyradiogenic Sr, Nd and Pb isotopes, similar to those of basaltsfrom the continental Taupo Volcanic Zone. These oceanic islandarc basalts cannot have inherited their isotope signatures throughcrustal contamination or assimilation—fractional crystallizationtype processes, and this leads us to conclude that source processesvia bulk sediment mixing, fluid and/or melt transfer or somecombination of these are responsible. Although our results showclear chemical gradients from oceanic island arc to continentalmargin arc settings (Kermadec Arc to Taupo Volcanic Zone), overlapbetween the data from the oceanic and continental sectors suggeststhat the lithospheric (crustal contamination) effect may beminimal relative to that of sediment subduction. Indeed, itis possible to account for the chemical changes by a decreasenorthward in the sediment flux into the zone of magma genesis.This model receives support from recent sediment dispersal studiesin the Southern Ocean which indicate that a strong bottom current(Deep Western Boundary Current) flows northward along the easterncontinental margin of New Zealand and sweeps continental derivedsediment into the sediment-starved oceanic trench system. Thetrace element and isotopic signatures of the continental derivedcomponent of this sediment are readily distinguished, but alsodiluted in a south to north direction along the plate boundary. KEY WORDS: subduction zone basalts; sediments; Sr-, Nd-, Pb-isotopes; trace elements *Present address: School of Earth Sciences, University of Melbourne, Parkville, Vic. 3052, Australia.  相似文献   

11.
Macquarie Island is an exposure above sea-level of part of thecrest of the Macquarie Ridge. The ridge marks the Australia–Pacificplate boundary south of New Zealand, where the plate boundaryhas evolved progressively since Eocene times from an oceanicspreading system into a system of long transform faults linkedby short spreading segments, and currently into a right-lateralstrike-slip plate boundary. The rocks of Macquarie Island wereformed during spreading at this plate boundary in Miocene times,and include intrusive rocks (mantle and cumulate peridotites,gabbros, sheeted dolerite dyke complexes), volcanic rocks (N-to E-MORB pillow lavas, picrites, breccias, hyaloclastites),and associated sediments. A set of Macquarie Island basalticglasses has been analysed by electron microprobe for major elements,S, Cl and F; by Fourier transform infrared spectroscopy forH2O; by laser ablation–inductively coupled plasma massspectrometry for trace elements; and by secondary ion mass spectrometryfor Sr, Nd and Pb isotopes. An outstanding compositional featureof the data set (47·4–51·1 wt % SiO2, 5·65–8·75wt % MgO) is the broad range of K2O (0·1–1·8wt %) and the strong positive covariation of K2O with otherincompatible minor and trace elements (e.g. TiO2 0·97–2·1%;Na2O 2·4–4·3%; P2O5 0·08–0·7%;H2O 0·25–1·5%; La 4·3–46·6ppm). The extent of enrichment in incompatible elements in glassescorrelates positively with isotopic ratios of Sr (87Sr/86Sr= 0·70255–0·70275) and Pb (206Pb/204Pb =18·951–19·493; 207Pb/204Pb = 15·528–15·589;208Pb/204Pb = 38·523–38·979), and negativelywith Nd (143Nd/144Nd = 0·51310–0·51304).Macquarie Island basaltic glasses are divided into two compositionalgroups according to their mg-number–K2O relationships.Near-primitive basaltic glasses (Group I) have the highest mg-number(63–69), and high Al2O3 and CaO contents at a given K2Ocontent, and carry microphenocrysts of primitive olivine (Fo86–89·5).Their bulk compositions are used to calculate primary melt compositionsin equilibrium with the most magnesian Macquarie Island olivines(Fo90·5). Fractionated, Group II, basaltic glasses aresaturated with olivine + plagioclase ± clinopyroxene,and have lower mg-number (57–67), and relatively low Al2O3and CaO contents. Group I glasses define a seriate variationwithin the compositional spectrum of MORB, and extend the compositionalrange from N-MORB compositions to enriched compositions thatrepresent a new primitive enriched MORB end-member. Comparedwith N-MORB, this new end-member is characterized by relativelylow contents of MgO, FeO, SiO2 and CaO, coupled with high contentsof Al2O3, TiO2, Na2O, P2O5, K2O and incompatible trace elements,and has the most radiogenic Sr and Pb regional isotope composition.These unusual melt compositions could have been generated bylow-degree partial melting of an enriched mantle peridotitesource, and were erupted without significant mixing with commonN-MORB magmas. The mantle in the Macquarie Island region musthave been enriched and heterogeneous on a very fine scale. Wesuggest that the mantle enrichment implicated in this studyis more likely to be a regional signature that is shared bythe Balleny Islands magmatism than directly related to the hypotheticalBalleny plume itself. KEY WORDS: mid-ocean ridge basalts; Macquarie Island; glass; petrology; geochemistry  相似文献   

12.
The epidioritc and quartzite of the Malin Head district, (Ireland) are considered by Holmes and Reynolds [7] to be metasomatically transformed into skarn-rocks and mica-schist respectively. The trace element contents of these rocks were investigated using semi-quantitative methods in order to study the behaviour of the different trace elements during the metasomatic changes which have taken place. The elements which have been determined are Rb, Ba, Ag and Pb; Sr, Y and La; Li, Cr, Ni, Co, V, Cu, Sc, Sn and Mo; Ga; Zr, Be, Tl, Ge and In. The trace elements follow the major elements for which they can substitute in favourable crystal lattices, the substitution being in accord with Goldschmidts rules. Rb, Ba and probably Pb and Ag follow and substitute for K; Sr and Y for Ca and probably K; Li, Cr, Ni, Co, V, Cu, Sc, Sn and Mo for Mg, Fe2 and Fe3; and Ga for Al.  相似文献   

13.
Eclogite xenoliths from the Colorado Plateau, interpreted asfragments of the subducted Farallon plate, are used to constrainthe trace element and Sr–Nd–Pb isotopic compositionsof oceanic crust subducted into the upper mantle. The xenolithsconsist of almandine-rich garnet, Na-clinopyroxene, lawsoniteand zoisite with minor amounts of phengite, rutile, pyrite andzircon. They have essentially basaltic bulk-rock major elementcompositions; their Na2O contents are significantly elevated,but K2O contents are similar to those of unaltered mid-oceanridge basalt (MORB). These alkali element characteristics areexplained by spilitization or albitization processes on thesea floor and during subduction-zone metasomatism in the fore-arcregion. The whole-rock trace element abundances of the xenolithsare variable relative to sea-floor-altered MORB, except forthe restricted Zr/Hf ratios (36·9–37·6).Whole-rock mass balances for two Colorado Plateau eclogite xenolithsare examined for 22 trace elements, Rb, Cs, Sr, Ba, Y, rareearth elements, Pb, Th and U. Mass balance considerations andmineralogical observations indicate that the whole-rock chemistriesof the xenoliths were modified by near-surface processes afteremplacement and limited interaction with their host rock, aserpentinized ultramafic microbreccia. To avoid these secondaryeffects, the Sr, Nd and Pb isotopic compositions of mineralsseparated from the xenoliths were measured, yielding 0·70453–0·70590for 87Sr/86Sr, –3·1 to 0·5 for Nd and 18·928–19·063for 206Pb/204Pb. These isotopic compositions are distinctlymore radiogenic for Sr and Pb and less radiogenic for Nd thanthose of altered MORB. Our results suggest that the MORB-likeprotolith of the xenoliths was metasomatized by a fluid equilibratedwith sediment in the fore-arc region of a subduction zone andthat this metasomatic fluid produced continental crust-likeisotopic compositions of the xenoliths. KEY WORDS: Colorado Plateau; eclogite xenolith; geochemistry; subducted oceanic crust  相似文献   

14.
Edipsos area, situated in northern Euboea, has been well known since ancient times for the existence of thermal springs. In order to assess the hydrogeochemical conditions, thermal and cold water samples were collected and analyzed by ICP method for major and trace elements. The results revealed the direct impact of seawater, a process which is strongly related to the major tectonic structures of the area. Seawater impact was confirmed by the Cl/Br and Na/Cl ionic ratios, as well as from statistical processing and graphical interpretation of the analytical results, which classified the sampled waters into three groups (two for cold waters and one for the thermal ones). Trace element ranges for thermal waters are: As (44–84 ppb), Pb (23–154 ppb), Ag (1–2 ppb), Mn (31–680 ppb), Cu (61–97 ppb), Cs (66–244 ppb), Se (0–76 ppb), Li (732–3269 ppb), Fe (0–1126 ppb), Sr (14000–34100 ppb), B (4300–9600 ppb). Compared with the chemical composition of other thermal springs from the Hellenic Volcanic Arc, Edipsos thermal waters are enriched in Ca2+, Na+, Cl?, SO4 2?, Li, B and K+, reflecting the influence from seawater. Cold waters are free of heavy metals compared with other natural waters and are characterized by good quality based on the major element chemistry. Finally, several geothermometers were applied in order to assess the reservoir temperatures, but none of them appear to be applicable, mainly due to the impact of seawater on the initial hydrogeochemistry of the geothermal fluids.  相似文献   

15.
The present study documents that the trace-element distribution in granitic quartz is highly sensitive to CAFC processes in granitic melts. Igneous quartz efficiently records both the origin and the evolution of the granitic pegmatites. Aluminium, P, Li, Ti, Ge and Na in that order of abundance, comprises >95% of the trace elements. Most samples feature >1 ppm of any of these elements. The remnant 5% includes K, Fe, Be, B, Ba and Sr whereas the other elements are present at concentrations lower than the detection limit. Potassium, Fe, Be and Ti are relatively compatible hence obtain the highest concentrations in early formed quartz. Phosphorous, Ge, Li and Al are relatively incompatible and generally obtain the highest concentrations in quartz that formed at lower temperatures from more evolved granitic melts. The Ge/Ti, the Ge/Be, the P/Ge and the P/Be ratios of quartz are strongly sensitive to the origin and evolution of the granitic melts and similarly the Rb/Sr and the Rb/K ratios of K-feldspars may be utilised in petrogenetic interpretations. However, the quartz trace element ratios are better at distinguishing similarities and differences in the origin and evolution of granitic melts. After evaluating the different trace element ratios, the Ge/Ti ratio appears to be most robust during subsolidus processes in the igneous systems, hence probably should be the preferred ratio for analysing and understanding petrogenetic processes in granitic igneous rocks.Editorial responsibility: J. Hoefs  相似文献   

16.
Spatial and temporal variations of Na, Mg, Si, K, Ca, SO42-, Cl-, HCO3-, Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ce, Cd, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Ge, Gd, Hf, Hg, Ho, I, La, Li, Mn, Mo, Nb, Nd, Ni, P, Pb, Pr, Rb, Sb, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, U, V, W, Y, Yb, Zn, and Zr were monitored through 37 sampling stations to determine the main aspects influencing the surface-water quality in the Salí River watershed (Tucumán Province, NW Argentina). The influence of the regional geological setting on water chemistry allows to distinguish three sub-basins. The interaction with sedimentary rocks was found to be dominant in the northern and central-eastern sub-basin as well as in the southern sub-basin, whereas the metamorphic-granitic basement of the Pampean Ranges was noted in the central sub-basin. In addition, anthropogenic activities affect the spatial variation of K, P, Mn, Rb, and Pb as well as dissolved oxygen concentrations and Eh. Temporal water-quality variation is related to the spatial distribution of precipitation and to the seasonal character of the main local industries (sugar cane, alcohol, citrus), increasing P and K concentrations and decreasing dissolved oxygen concentration and Eh in winter. Cl-, Na, SO42-, Al, As, B, Fe, Mn, Se and U concentrations exceed the regulated drinking-water thresholds at several sampling stations.  相似文献   

17.
The Kola River in the northern part of the Kola Peninsula, northwestern Russia, flows into the Barents Sea via the Kola Bay. The river is a unique place for reproduction of salmon and an important source of drinking water for more than 500,000 people in Murmansk and the surrounding municipalities. To evaluate the environmental status of the Kola River water, sampling of the dissolved (<0.22 μm) and suspended (>0.22 μm) phases was performed at 12 sites along the Kola River and its tributaries during 2001 and 2002. Major (Ca, K, Mg, Na, S, Si, HCO3 and Cl) and trace (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, Ti, and Zn) elements, total and particulate organic C (TOC and POC), N and P were analysed. Comparison with the boreal pristine Kalix River, Northern Sweden, shows that, except for Na, Cl, Al, Cu and Ni, which exceed the concentrations in the Kalix River by as much as 2–3 times, the levels of other major and trace elements are close to or even below the levels in the Kalix River. However, the results also demonstrate that pollutants from the three major sources: (1) the Cu–Ni smelter in Monchegorsk, (2) the open-pit Fe mine and ore concentration plant in Olenegorsk, and (3) the Varlamov, the Medveziy and the Zemlanoy creeks, draining the area of the large agricultural enterprises in the lower part of the watershed, have a major influence on the water quality of the Kola River.  相似文献   

18.
Analyses by inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and cold vapour atomic absorption (for Hg, CVAA) of a wide range of elements in some 300 surface water samples from the Salar de Uyuni and Salar de Coipasa catchments of the Bolivian Altiplano have been undertaken. Comparison of analyses of acidified aliquots of unfiltered sample water with water filtered at 0.45 μm reveals that the following elements are not affected significantly by filtration in this high-pH environment: B, Ca, Li, Mg, K, Si, Na, Sr, S. The following elements appear to experience significantly elevated concentrations in unfiltered samples, relative to filtered: Al, (As to a minor extent), Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, P, Ag, Tl, Ti, V. The effect appears to be related to the presence, and subsequent dissolution in acid preservative, of Fe-, Al-or Mn-oxyhydroxide flocs (or coatings on silicate particles) in unfiltered samples, and their retention or precipitation on filters.  相似文献   

19.
Calcium- and aluminum-rich inclusions (CAIs), occurring in chondritic meteorites and considered the oldest materials in the solar system, can provide critical information about the environment and time scale of creation of planetary materials. However, interpretation of the trace element and isotope compositions of CAIs, particularly the light elements Li, Be, and B, is hampered by the lack of constraint on melilite-melt and spinel-melt partition coefficients. We determined melilite-melt and spinel-melt partition coefficients for 21 elements by performing controlled cooling rate (2 °C/h) experiments at 1 atmosphere pressure in sealed platinum capsules using a synthetic type B CAI melt. Trace element concentrations were measured by secondary ion mass spectrometry (SIMS) and/or laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Melilites vary only slightly in composition, ranging from Åk31-43. Results for the partitioning of trace elements between melilite and melt in three experiments and between spinel and melt in two experiments show that partition coefficients are independent of trace element concentration, are in good agreement for different analytical techniques (SIMS and LA-ICP-MS), and are in agreement with previous measurements in the literature. Partition coefficients between intermediate composition melilites and CAI melt are the following: Li, 0.5; Be, 1.0; B, 0.22; Rb, 0.012; Sr, 0.68; Zr, 0.004; Nb, 0.003; Cs, 0.002; Ba, 0.018; La, 0.056; Nd, 0.065; Sm, 0.073; Eu, 0.67; Er, 0.037; Yb, 0.018; Hf, 0.001; Ta, 0.003; Pb, 0.15; U, 0.001; Th, 0.002. Site size energetics analysis is used to assess isovalent partitioning into the different cation sites. The Young’s modulus deduced from +2 cations partitioning into the melilite X site agrees well with the bulk modulus of melilite based on X-ray diffraction methods. The changes in light element partitioning as melilite composition varies are predicted and used in several models of fractional crystallization to evaluate if the observed Li, Be, and B systematics in Allende CAI 3529-41 are consistent with crystallization from a melt. Models of crystallization agree reasonably well with observed light element variations in areas previously interpreted to be unperturbed by secondary processes [Chaussidon, M., Robert, F., McKeegan, K.D., 2006. Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochim. Cosmochim. Acta70, 224-245], indicating that the trends of light elements could reflect fractional crystallization of a melt. In contrast, areas interpreted to have been affected by alteration processes are not consistent with crystallization models.  相似文献   

20.
基于贵州水城小牛井田晚二叠世煤样的全硫分、微量元素、常量元素等测试数据,探讨了煤中元素富集特征及其与陆源碎屑的关系,重点是全硫分、微量元素对古海平面变化的反演。结果表明,小牛井田煤中常量元素Si、Ca、Mg、Ti、K含量高于中国煤均值,Al、Fe、Na含量低于中国煤均值;与地壳克拉克值相比,煤中微量元素只有B和Mo相对富集;煤中微量元素的富集在一定程度上受控于陆源碎屑,常量元素对陆源碎屑也有一定的继承性。煤中全硫分及微量元素B、Co、Cr、Cu、Ga、Ge、Mo、Ni、Pb、Sr、V、Zn的纵向变化规律可以用来反演古海平面变化,海退时形成的煤层全硫分及微量元素含量较低,海侵时形成的煤层全硫分及微量元素含量较高。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号