首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Accretion rates on to active galactic nuclei (AGNs) are likely to be extremely variable on short time-scales; much shorter than the typical cooling time of X-ray emitting gas in elliptical galaxies and galaxy clusters. Using the Langevin approach it is shown that, for a simple feedback system, this can induce variability in the AGN power output that is of much larger amplitude, and persists for longer time-scales, than the initial fluctuations. An implication of this is that rich galaxy clusters are expected to show the largest and longest-lived fluctuations. Stochastic variations in the accretion rate also mean that the AGN injects energy across a wide range of time-scales. This allows the AGN to maintain a much closer balance with its surroundings than if it was periodically activated. The possible non-linear correlation between Bondi accretion rate and jet power, found by Allen et al., can be explained if the instantaneous accretion rate, scaled by jet power, varies log-normally. This explanation also implies that the duty cycle of AGN activity increases with the radiative losses of the surroundings, in qualitative agreement with Best et al.  相似文献   

2.
Using two volume‐limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) above and below the value of M∗︁r, we have explored the environmental dependence of the AGN fraction. It is found that the fraction of AGNs declines substantially with increasing local density in the luminous volume‐limited sample, but in the faint volume‐limited sample this change is very weak. We also note that the presence of AGNs is not correlated with the stellar mass (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The Fabry-Perot scanning interferometer mounted on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences is used to study the distribution and kinematics of ionized gas in the peculiar galaxy Arp 212 (NGC 7625, IIIZw 102). Two kinematically distinct subsystems—the inner disk and outer emission filaments—are found within the optical radius of the galaxy. The first subsystem, at galactocentric distances r < 3.5 kpc, rotates in the plane of the stellar disk. The inner part of the ionized-gas disk (r<1.5–2 kpc) exactly coincides with the previously known disk consisting of molecular gas. The second subsystem of ionized gas is located at galactocentric distances 2–6 kpc. This subsystem rotates in a plane tilted by a significant angle to the stellar disk. The angle of orbital inclination in the outer disk increases with galactocentric distance and reaches 50° at r ≈ 6 kpc. The ionized fraction of the gaseous disk does not show up beyond this galactocentric distance, but we believe that the HI disk continues to warp and approaches the plane that is polar with respect to the inner disk of the galaxy. Hence Arp 212 can be classified as a galaxy with a polar ring (or a polar disk). The observed kinematics of the ionized and neutral gas can be explained assuming that the distribution of gravitational potential in the galaxy is not spherically symmetric. Most probably, the polar ring have formed via accretion of gas from the dwarf satellite galaxy UGC 12549.  相似文献   

4.
We study the feedback from an active galactic nucleus (AGN) on stellar formation within its host galaxy, mainly using one high-resolution numerical simulation of the jet propagation within the interstellar medium (ISM) of an early-type galaxy (ETG). In particular, we show that in a realistic simulation where the jet propagates into a two-phase ISM, star formation (SF) can initially be slightly enhanced and then, on time-scales of few million years, rapidly quenched, as a consequence both of the high temperatures attained and of the reduction of cloud mass (mainly due to Kelvin–Helmholtz instabilities). We then introduce a model of (prevalently) negative AGN feedback, where an exponentially declining star formation is quenched, on a very short time-scale, at a time t AGN, due to AGN feedback. Using the Bruzual and Charlot population synthesis model and our SF history, we predict galaxy colours from this model and match them to a sample of nearby ETGs showing signs of recent episodes of SF, see Kaviraj et al. We find that the quantity   t gal– t AGN  , where t gal is the galaxy age, is an excellent indicator of the presence of feedback processes, and peaks significantly around   t gal– t AGN≈ 0.85 Gyr  for our sample, consistent with feedback from recent energy injection by AGNs in relatively bright  ( M B≲−19)  and massive nearby ETGs. Galaxies that have experienced this recent feedback show an enhancement of 3 mag in  NUV ( GALEX ) − g   , with respect to the unperturbed, no-feedback evolution. Hence, they can be easily identified in large combined near UV-optical surveys.  相似文献   

5.
We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail by Croton et al. and De Lucia and Blaizot, introduces a 'radio mode' feedback from active galactic nuclei (AGN) at the centre of X-ray emitting atmospheres in galaxy groups and clusters. Thanks to this mechanism, the model can simultaneously explain: (i) the low observed mass dropout rate in cooling flows; (ii) the exponential cut-off in the bright end of the galaxy luminosity function and (iii) the bulge-dominated morphologies and old stellar ages of the most massive galaxies in clusters. This paper is the first of a series in which we investigate how well this model can also reproduce the physical properties of BHs and AGN. Here we analyse the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. Moreover, we extend the semi-analytic model to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. While we find for the most part a very good agreement between predicted and observed BH properties, the semi-analytic model underestimates the number density of luminous AGN at high redshifts, independently of the adopted Eddington factor and accretion efficiency. However, an agreement with the observations is possible within the framework of our model, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts.  相似文献   

6.
The disk surface density of the nearby spiral galaxy M33 is estimated assuming that it is marginally stable against gravitational perturbations. For this purpose we used the radial profile of line-of-sight velocity dispersion of the disk planetary nebulae obtained by Ciardullo et al. (2004). The surface density profile we obtained is characterized by the radial scalelength which is close to the photometrical one and is in a good agreement with the rotation curve of M33 and with the mass-to-light ratio which follows from the stellar population model. However at the galactocentric distance r > 7 kpc the dynamical overheating of the disk remains quite possible. The thickness of the stellar disk of M33 should increase outwards from the center. The dark halo to total mass ratio is estimated as a function of r. The effective oxygen yield obtained in the frame of instantaneous recycling approximation using the disk surface density and the observed gradient of O/H increases with radius. It may indicate that the role of accretion of metalpoor gas in the chemical evolution of interstellar medium decreases outwards.  相似文献   

7.
Binary or dual active galactic nuclei (DAGN) are expected from galaxy formation theories. However, confirmed DAGN are rare and finding these systems has proved to be challenging. Recent systematic searches for DAGN using double-peaked emission lines have yielded several new detections, as have the studies of samples of merging galaxies. In this paper, we present an updated list of DAGN compiled from published data. We also present preliminary results from our ongoing Expanded Very Large Array (EVLA) radio study of eight double-peaked emission-line AGN (DPAGN). One of the sample galaxy shows an S-shaped radio jet. Using new and archival data, we have successfully fitted a precessing jet model to this radio source. We find that the jet precession could be due to a binary AGN with a super-massive black-hole (SMBH) separation of \(\sim \) 0.02 pc or a single AGN with a tilted accretion disk. We have found that another sample galaxy, which is undergoing a merger, has two radio cores with a projected separation of 5.6 kpc. We discuss the preliminary results from our radio study.  相似文献   

8.
We use a combination of a cosmological N -body simulation of the concordance Λ cold dark matter paradigm and a semi-analytic model of galaxy formation to investigate the spin development of central supermassive black holes (BHs) and its relation to the BH host galaxy properties. In order to compute BH spins, we use the α model of Shakura & Sunyaev and consider the King et al. warped disc alignment criterion. The orientation of the accretion disc is inferred from the angular momentum of the source of accreted material, which bears a close relationship to the large-scale structure in the simulation. We find that the final BH spin depends almost exclusively on the accretion history and only weakly on the warped disc alignment. The main mechanisms of BH spin-up are found to be gas cooling processes and disc instabilities, a result that is only partially compatible with Monte Carlo models where the main spin-up mechanisms are major mergers and disc instabilities; the latter results are reproduced when implementing randomly oriented accretion discs in our model. Regarding the BH population, we find that more massive BHs, which are hosted by massive ellipticals, have higher spin values than less massive BHs, hosted by spiral galaxies. We analyse whether gas accretion rates and BH spins can be used as tracers of the radio loudness of active galactic nuclei (AGN). We find that the current observational indications of an increasing trend of radio-loud AGN fractions with stellar and BH mass can be easily obtained when placing lower limits on the BH spin, with a minimum influence from limits on the accretion rates; a model with random accretion disc orientations is unable to reproduce this trend. Our results favour a scenario where the BH spin is a key parameter to separate the radio-loud and radio-quiet galaxy populations.  相似文献   

9.
Summary. Recent papers dealing with the most controversial aspects of AGNs are reviewed. They suggest interesting conclusions: all Seyferts can be described by a single parameter, the X-ray column density; radio loud AGNs may host a rapidly spinning black hole and radio quiet AGNs a slowly spinning black hole; high-ionization AGNs (Seyfert galaxies and QSOs) contain an optically thick, geometrically thin accretion disk, while low-ionization AGNs (Liners) contain an optically thin, geometrically thick accretion disk; a number of blazars have been classified as BLLs on the basis of insufficient data; most objects with weak broad emission lines are in fact HPQs; many objects have been called Liners although they are not AGNs but rather the result of stellar activity; type 2 QSOs exist, but are quite inconspicuous if radio quiet. Received 16 November 1999 / Published online: 15 February 2000  相似文献   

10.
Recently, Sloan Digital Sky Survey successfully carried out the reverberation mapping of a sky area, aiming to test the R ? L relation that has been already widely used. Here, R is the responsivity-weighted radius of the broad line region, and L is the optical luminosity at 5100 Å. Two results have been obtained from the data in the first year: (1) The time lags of AGNs (Active Galactic Nuclei) with a high accretion rate are much shorter than that estimated from the R ? L relation, which confirmed the results of reverberation mapping observations made by the Lijiang 2.4 meter telescope. (2) Some AGNs with a lower accretion rate also have very short time lags. The shortening of the time lags of the AGNs with a low accretion rate is caused by the retrograde accretion of black holes. This result has verified from observations the theoretical prediction made by Wang et al. (2014). The discovery of the black holes with a retrograde accretion has important significance, it indicates that the cosmological evolution of the black holes in quasars is implemented via the inherently random accretion.  相似文献   

11.
《New Astronomy Reviews》2002,46(2-7):231-233
We present the results of the study of the orientation of the accretion disk relative to the host galaxy disk in Seyfert galaxies. We used a sample selected by a mostly isotropic property, the flux at 60 μm, with radio and optical data homogeneously observed and analyzed, to avoid selection effects. We found that the observed i and δ values, galaxy inclination and difference between the position angle of the jet and the galaxy major axis, respectively, are consistent with a random β-distribution, the angle between the jet and the galaxy plane axis. We also found that the previously suggested Zone of Avoidance disappears and was probably due to a selection effect. We suggest several explanations for the misalignment of the accretion disk relative to the galaxy disk.  相似文献   

12.
Active galactic nuclei (AGNs) in low surface brightness galaxies (LSBGs) have received little attention in previous studies. We present a detailed spectral analysis of 194 LSBGs from the Impey et al. (1996) APM LSBG sample which has been observed spec-troscopically by the Sloan Digital Sky Survey Data Release 5 (SDSS DR5). Our elaborate spectral analysis enables us to carry out, for the first time, reliable spectral classification of nuclear processes in LSBGs based on the standard emission line diagnostic diagrams in a rigorous way. Star-forming galaxies are common, as found in about 52% of LSBGs. We find that, contrary to some previous claims, the fraction of galaxies that contain AGNs is significantly lower than that found in nearby normal galaxies of high surface brightness. This is qualitatively in line with the finding of Impey et al. This result holds true even within each morphological type from Sa to Sc. LSBGs that have larger central stellar ve-locity dispersions or larger physical sizes tend to have a higher chance of harboring an AGN. For three AGNs with broad emission lines, the black hole masses estimated from the emission lines are broadly consistent with the well known M-σ* relation established for normal galaxies and AGNs.  相似文献   

13.
We constructed a grid of relativistic models for standard high-relative-luminosity accretion α-disks around supermassive Kerr black holes (BHs) and computed X-ray spectra for their hot, effectively optically thin inner parts by taking into account general-relativity effects. They are known to be heated to high (~106–109 K) temperatures and to cool down through the Comptonization of intrinsic thermal radiation. Their spectra are power laws with an exponential cutoff at high energies; i.e., they have the same shape as those observed in active galactic nuclei (AGNs). Fitting the observed X-ray spectra of AGNs with computed spectra allowed us to estimate the fundamental parameters of BHs (their mass and Kerr parameter) and accretion disks (luminosity and inclination to the line of sight) in 28 AGNs. We show that the Kerr parameter for BHs in AGNs is close to unity and that the disk inclination correlates with the Seyfert type of AGN, in accordance with the unification model of activity. The estimated BH masses Mx are compared with the masses Mrev determined by the reverberation mapping technique. For AGNs with luminosities close to the Eddington limit, these masses agree and the model under consideration may be valid for them. For low-relative-luminosity AGNs, the differences in masses increase with decreasing relative luminosity and their X-ray emission cannot be explained by this model.  相似文献   

14.
We develop the method that allows to estimate ultra high energy cosmic ray (UHECR) production in active galactic nuclei (AGNs). We used the model developed by Neronov et al. (New J. Phys. 11:065015, 2009) and estimated the magnetic field strength near the innermost stable orbit in an accretion disk and at the horizon radius of a supermassive black hole (SMBH) using the data of polarimetric observations of broad lines emission. It allows to estimate the kinetic power of the relativistic jet at the base of Blandford–Znajek mechanism. In a result we estimated the cosmic ray power for a number of AGNs with known values of SMBH spins.  相似文献   

15.
We use a volume- and flux-limited sample of local  (0.03 ≤ z ≤ 0.1)  radio galaxies with optical counterparts to address the question of how long a typical galaxy spends in radio active and quiescent states. The length of the active phase has a strong dependence on the stellar mass of the host galaxy. Radio sources in the most massive hosts are also retriggered more frequently. The time spent in the active phase has the same dependence on stellar mass as does the gas cooling rate, suggesting the onset of the quiescent phase is due to fuel depletion. We find radio and emission-line active galactic nuclei (AGN) activity to be independent, consistent with these corresponding to different accretion states.  相似文献   

16.
It is now agreed that mergers play an essential role in the evolution of galaxies and therefore that mergers of supermassive black holes (SMBHs) must have been common. We see the consequences of past supermassive binary black holes (SMBs) in the light profiles of so-called ‘core ellipticals’ and a small number of SMBs have been detected. However, the evolution of SMBs is poorly understood. Theory predicts that SMBs should spend a substantial amount of time orbiting at velocities of a few thousand kilometers per second. If the SMBs are surrounded by gas observational effects might be expected from accretion onto one or both of the SMBHs. This could result in a binary Active Galactic Nucleus (AGN) system. Like a single AGN, such a system would emit a broad band electromagnetic spectrum and broad and narrow emission lines.The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emit very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate an SMB system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be.We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection.Some narrow lines (e.g., [O III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow Line Region (NLR), but may also indicate the presence of a kilo-parsec scale mergers. A few objects indicated as double-peaked narrow line emitters are confirmed as kpc-scale margers, but double-peaked narrow line profiles are mostly caused by the complex NLR geometry.We briefly discuss the expected line profile of broad Fe Kα that probably originated in the accretion disk(s) around SMBs. This line may also be very complex and indicate the complex disk geometry or/and an SMB presence.Finally we consider rare configurations where a SMB system might be gravitationally lensed by a foreground galaxy, and discuss the expected line profiles in these systems.  相似文献   

17.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters (n≥200) than the large stellar velocity dispersion subsample.  相似文献   

18.
The host galaxies of active galactic nuclei   总被引:2,自引:0,他引:2  
We examine the properties of the host galaxies of 22 623 narrow-line active galactic nuclei (AGN) with  0.02 < z < 0.3  selected from a complete sample of 122 808 galaxies from the Sloan Digital Sky Survey. We focus on the luminosity of the [O  iii ]λ5007 emission line as a tracer of the strength of activity in the nucleus. We study how AGN host properties compare with those of normal galaxies and how they depend on L [O  iii ]. We find that AGN of all luminosities reside almost exclusively in massive galaxies and have distributions of sizes, stellar surface mass densities and concentrations that are similar to those of ordinary early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high-luminosity AGN have much younger mean stellar ages. The young stars are not preferentially located near the nucleus of the galaxy, but are spread out over scales of at least several kiloparsecs. A significant fraction of high-luminosity AGN have strong Hδ absorption-line equivalent widths, indicating that they experienced a burst of star formation in the recent past. We have also examined the stellar populations of the host galaxies of a sample of broad-line AGN. We conclude that there is no significant difference in stellar content between type 2 Seyfert hosts and quasars (QSOs) with the same [O  iii ] luminosity and redshift. This establishes that a young stellar population is a general property of AGN with high [O  iii ] luminosities.  相似文献   

19.
The local face-on disk galaxies are selected as galaxy sample from the main galaxy sample of the Seventh Data Release of Sloan Digital Sky Survey (SDSS DR7). The correlations between the colors and sizes of disk galaxies with equivalent total stellar masses are statistically investigated and their realities are tested. It is found that for the disk galaxies with equivalent masses, the correlation between u-r color and size is very weak. However, there are anticorrelations between g-r, r-i, r-z colors and sizes, i.e., the larger are the sizes of galaxies, the bluer are their colors. This result means that the mass distribution of disk galaxies has a significant influence on their star formation history. The galaxies with more extended mass distributions evolve more slowly.  相似文献   

20.
We present the spatial distribution of the bright near-infrared emission lines, Br, H2, He I, [Fe II], and the CO band longwards of 2.3 m, for the luminous infrared galaxy NGC 1614. The morphology of the ionised gas is different from that of the stellar light, and possibly forms a circumnuclear ring. Our data imply that the stellar population is older and the extinction is lower in the nucleus relative to the surrounding circumnuclear ring. We suggest that NGC 1614 is a galaxy whose recent interaction triggered massive star formation in the nucleus, which in turn caused a radially outward progression of star formation thereby producing the circumnuclear ring we observe today. There is no evidence for a buried AGN, and it is difficult to reconcile our data with the simple evolutionary model of ultraluminous galaxies proposed by Sanders et al (1988).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号