首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Displacement‐based assessment procedures require as input reliable estimates of the deformation capacity of all structural elements. For unreinforced masonry (URM) walls, current design codes specify the in‐plane deformation capacity as empirical equations of interstory drift. National codes differ with regard to the parameters that are considered in these empirical drift capacity equations, but the inhomogeneity of datasets on URM wall tests renders it difficult to validate the hypotheses with the currently available experimental data. This paper contributes to the future development of such empirical relationships by investigating the sensitivity of the drift capacity to the shear span, the aspect ratio, the axial load ratio, and the size of the wall. For this purpose, finite element models of URM walls are developed in Abaqus/Explicit and validated against a set of experimental results. The results show that the axial load ratio, the shear span, and the wall size are among the factors that influence the drift capacity the most. Empirical equations are mainly derived from test results on small walls, and the numerical results suggest that this can lead to a significant overestimation of the drift capacity for larger walls.  相似文献   

2.
Code design of unreinforced masonry (URM) buildings is based on elastic analysis, which requires as input parameter the effective stiffness of URM walls. Eurocode estimates the effective stiffness as 50% of the gross sectional elastic stiffness, but comparisons with experimental results have shown that this may not yield accurate predictions. In this paper, 79 shear‐compression tests of modern URM walls of different masonry typologies from the literature are investigated. It shows that both the initial and the effective stiffness increase with increasing axial load ratio and that the effective‐to‐initial stiffness ratios are approximately 75% rather than the stipulated 50%. An empirical relationship that estimates the E‐modulus as a function of the axial load and the masonry compressive strength is proposed, yielding better estimates of the elastic modulus than the provision in Eurocode 6, which calculates the E‐modulus as a multiple of the compressive strength. For computing the ratio of the effective to initial stiffness, a mechanics‐based formulation is built on a recently developed analytical model for the force‐displacement response of URM walls. The model attributes the loss in stiffness to diagonal cracking and brick crushing, both of which are taken into account using mechanical considerations. The obtained results of the effective‐to‐initial stiffness ratio agree well with the test data. A sensitivity analysis using the validated model shows that the ratio of effective‐to‐initial stiffness is for most axial load ratios and wall geometries around 75%. Therefore, a modification of the fixed ratio of effective‐to‐initial stiffness from 50% to 75% is suggested.  相似文献   

3.
There are numerous studies on the behavior of Unreinforced Masonry (URM) walls in both in‐plane (IP) and out‐of‐plane (OP) directions; however, few aimed at understanding the simultaneous contribution of these intrinsic responses during earthquakes. Undoubtedly, even a strong URM wall shows weakened capacity in the OP direction because of minor cracks and other damages in the IP direction, and this capacity reduction has not yet been accounted for in seismic codes. In this study, performance of three URM walls is evaluated by several numerical analyses in terms of the OP capacity reduction because of IP displacements and failure modes. Several parameters influencing the OP capacity have been studied including aspect ratio, roof boundary condition, IP displacement and IP loading patterns. The results indicate that reduction in the OP capacity of URM walls varies from negligible to very high depending on boundary conditions, IP failure mode and IP damage severity. Moreover, IP loading pattern is more important in walls with higher aspect ratios because of their IP failure modes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Masonry buildings are often characterized by geometric irregularities. In many cases, such buildings meet global regularity requirements provided by seismic codes, but they are composed by irregular walls with openings. The latter are masonry walls characterized by (i) openings of different sizes, (ii) openings misaligned in the horizontal and/or vertical direction, or (iii) a variable number of openings per story. An irregular layout of openings can induce not only a nonuniform distribution of gravity loads among masonry piers but also unfavorable damage localizations resulting in a premature collapse of the wall and hence a higher seismic vulnerability. This paper is aimed at providing a simplified methodology to assess the effects of irregularities on the in‐plane seismic capacity of unreinforced masonry (URM) walls with openings. To this end, a macroelement method was developed and validated through experimental results available in the literature. The proposed methodology was based on the quantification of wall irregularities by means of geometric indices and their effects on seismic capacity of URM walls with openings through both sensitivity and regression analyses. Sensitivity analysis was based on a high number of static pushover analyses and allowed to assess variations in key seismic capacity parameters. Regression analysis let to describe each capacity parameter under varying irregularity index, providing empirical models for seismic assessment of irregular URM walls with openings. The in‐plane seismic capacity was found to be significantly affected by wall irregularities, especially in the case of openings with different heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, the efficiency of conventional shotcrete technique for strengthening of Un-Reinforced Masonry (URM) walls was shown using an experimental program. In addition, in this program the possible benefit of using anchors for connecting the shotcrete reinforcement layer to the R/C foundation was studied. The experimental program consisted of testing five full scale specimens with two different height-to-length aspect ratios and so different failure modes, under in-plane cyclic loading conditions. Two specimens were tested as reference and others were strengthened on a single-face using shotcrete layer. According to the results, strengthening of URM walls using traditional shotcrete approach created a completely stiff panel and prevented the formation of cracks. The failure mode in both reference and strengthened short length walls was rocking and the shotcrete layer could increase the strength capacity, energy dissipation, and stiffness of wall due to yielding and rupture of steel bars anchored to the foundation. On the other hand, in strengthened long length walls, shotcrete layer increased the shear sliding capacity with no or small increasing in their rocking capacity. Therefore, the failure mode of strengthened walls converted from shear sliding to rocking, even in the specimen with anchorage system. The distributed type of anchorage system could not improve the strength capacity of long length wall. Anchorage system was able to improve the out-of-plane performance of strengthened walls.  相似文献   

6.
Shaking table test results from a one‐story, two‐bay reinforced concrete frame sustaining shear and axial failures are compared with nonlinear dynamic analyses using models developed for the collapse assessment of older reinforced concrete buildings. The models provided reasonable estimates of the overall frame response and lateral strength degradation; however, the measured drifts were underestimated by the models. Selected model parameters were varied to investigate the sensitivity of the calculated response to changes in the drift at shear failure, rate of shear strength degradation, and drift at axial failure. For the selected ground motion, the drift at shear failure and rate of shear strength degradation did not have a significant impact on the calculated peak drift. By incorporating shear and axial‐load failure models, the analytical model is shown to be capable of predicting the axial‐load failure for a hypothetical frame with three nonductile columns. Improvements are needed in drift demand estimates from nonlinear dynamic analysis if such analyses are to be used in displacement‐based performance assessments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This article presents a new mechanical model for the non‐linear force–displacement response of unreinforced masonry (URM) walls developing a flexural rocking mode including their displacement capacity. The model is based on the plane‐section hypothesis and a constitutive law for the masonry with zero tensile strength and linear elastic behaviour in compression. It is assumed that only the compressed part of the wall contributes to the stiffness of the wall and therefore the model accounts for a softening of the response due the reduction of the effective area. Stress conditions for limit states are proposed that characterise the flexural failure. The new model allows therefore linking local performance levels to global displacement capacities. The limit states criteria describe the behaviour of modern URM walls with cement mortar of normal thickness and clay bricks. The model is validated through comparison of local and global engineering demand parameters with experimental results. It provides good prediction of the effective stiffness, the force capacity and the displacement capacity of URM walls at different limit states. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes the results of an experimental and numerical study that focused on multi‐directional behavior of unreinforced masonry walls and established the requisite of the related proposed design equations. The tests were conducted following several sets of multi‐directional loading combinations imposed on the top plane of the wall along with considering monotonic and cyclic quasi‐static loading protocols. Various boundary conditions, representing possible wall–roof connections, were also considered for different walls to investigate the influence of rotation of the top plane of the wall on the failure modes. The results of the tests were recorded with a host of high precision data acquisition systems, showing three‐dimensional displacements of a grid on the surface of the wall. Finite element models of the walls are developed using the commercial software package ABAQUS/Explicit compiled with a FORTRAN subroutine (VUMAT) written by the authors. The experimental results were then used to validate the finite element models and the developed user‐defined material models. With the utility of validated models, a parametric study was performed on a set of parameters with dominant influence on the behavior of the wall system under in‐plane and out‐of‐plane loading combinations. The experimental and numerical results are finally used to investigate the adequacy of ASCE 41 empirical equations, and some insights and recommendations are made. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The steel reinforced concrete (SRC) wall consists of structural steel embedded at the boundary elements of a reinforced concrete (RC) wall. The use of SRC walls has gained popularity in the construction of high‐rise buildings because of their superior performance over conventional RC walls. This paper presents a series of quasi‐static tests used to examine the behavior of SRC walls subjected to high axial force and lateral cyclic loading. The SRC wall specimens showed increased flexural strength and deformation capacity relative to their RC wall counterpart. The flexural strength of SRC walls was found to increase with increasing area ratio of embedded structural steel, while the section type of embedded steel did not affect the wall's strength. The SRC walls under high axial force ratio had an ultimate lateral drift ratio of approximately 1.4%. In addition, a multi‐layer shell element model was developed for the SRC walls and was implemented in the OpenSees program. The numerical model was validated through comparison with the test data. The model was able to predict the lateral stiffness, strength and deformation capacities of SRC walls with a reasonable level of accuracy. Finally, a number of issues for the design of SRC walls are discussed, along with a collection and analysis of the test data, including (1) evaluation of flexural strength, (2) calculation of effective flexural stiffness, and (3) inelastic deformation capacity of SRC walls. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
为研究网格间距对网格剪力墙抗震性能的影响,对两个竖肢中心距不同的小剪跨比网格剪力墙进行了拟静力试验及有限元分析。结果表明:横肢中心距相同、竖肢中心距分别为200 mm及300 mm的网格剪力墙破坏模式不同,竖肢中心距为200 mm的网格剪力墙下部和墙底角部混凝土破坏,破坏模式为剪压破坏;竖肢中心距为300 mm的网格剪力墙沿对角线主斜裂缝错动并产生滑移,破坏模式为剪拉破坏。两个试件的极限位移角均在1/100左右,竖肢中心距为300 mm的网格剪力墙刚度和承载力略大。有限元模拟结果与试验吻合良好,验证了模拟方法的有效性。提出了适用于不同间距网格墙的等效厚度计算方法,网格剪力墙可等效为实体剪力墙计算刚度和承载力。  相似文献   

11.
为研究底部放置聚苯乙烯硬泡沫板的抗震性能,对3个剪跨比2.0的两端设置后浇段、底部放置聚苯乙烯硬泡沫板的预制剪力墙试件以及1个相同剪跨比的现浇剪力墙试件进行了拟静力试验。试验结果表明:预制剪力墙底部放置硬聚苯乙烯泡沫板的试件,破坏形态为后浇段与预制剪力墙脱开、后浇段受压破坏;底部放置聚苯板的预制剪力墙试件承载力小于现浇剪力墙试件,耗能能力接近或大于现浇剪力墙试件;各试件的极限位移角为1/98~1/81;预制剪力墙试件的屈服刚度及峰值刚度均比现浇剪力墙试件降低27%~75%,水平分布钢筋未伸入后浇段的试件比伸入后浇段的试件刚度降低更多,后浇段短的试件比后浇段长的试件刚度降低更多。预制试件轴压力主要由后浇段承担,名义屈服及峰值水平力时,钢筋应变分布不符合平截面假定。  相似文献   

12.
Steel plate shear walls (SPSWs) are used as lateral force‐resisting systems in new and retrofitted structures in high‐seismic regions. Various international codes recommend the design of SPSWs assuming the entire lateral load to be resisted by the infill plates. Such a design procedure results in significant overstrength leading to uneconomical and inefficient use of materials. This study is focused on the estimation of contribution of boundary elements in resisting the lateral force considering their interaction with the web plates of SPSW systems. Initially, the relative contribution of web plates and boundary frames is computed for a single‐bay single‐story frame with varying rigidity and end connections of boundary elements. Nonlinear static analyses are carried out for the analytical models in OpenSees platform to quantify this contribution. Later, this study is extended to the code‐based designed three‐story, six‐story, and nine‐story SPSWs of varying aspect ratios. Based on the results obtained, a new design procedure is proposed taking the lateral strengths of the boundary frames into account. Nonlinear time‐history analyses are conducted for 40 recorded ground motions representing the design basis earthquake and maximum considered earthquake hazard levels to compare the interstory and residual drift response and yield mechanisms of SPSWs designed as per current practice and the proposed methodology. Finally, an expression has been proposed to predict the lateral force contribution of the infill plate and the boundary frame of SPSWs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Seismic response of unreinforced masonry (URM) buildings is largely influenced by nonlinear behavior of spandrels, which provide coupling between piers under in‐plane lateral actions. Seismic codes do not appropriately address modeling and strength verification of spandrels, adapting procedures originally proposed for piers. Therefore, research on spandrels has received significant attention in some earthquake‐prone countries, such as Italy and New Zealand. In the last years, the authors of this paper have performed both monotonic and cyclic in‐plane lateral loading tests on full‐scale masonry walls with single opening and different spandrel types. Those tests were carried out in a static fashion and with displacement control. In this paper, experimental outcomes for two as‐built specimens are presented and compared with those obtained in the past for another as‐built specimen with a wooden lintel above the opening. In both newly tested specimens, the masonry above the opening was supported by a shallow masonry arch. In one of those specimens, a reinforced concrete (RC) bond beam was realized on top of the spandrel, resulting in a composite URM‐RC spandrel. Then, the influence of spandrel type is analyzed in terms of observed damage, force–drift curves, and their bilinear idealizations, which allowed to compare displacement ductility and overstrength of wall specimens. Furthermore, effects of rocking behavior of piers are identified, highlighting their relationship with hysteretic damping and residual drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The in‐plane cyclic behaviour of three types of unreinforced clay masonry was characterized by means of laboratory tests on full‐scale specimens. The masonry walls were assembled with various bonding arrangements (head joints made with mortar pockets, dry head joints with mechanical interlocking, thin‐layer mortar bed joints), which are not yet inserted in seismic codes. Experimental behaviour was modelled with an analytical hysteretic model able to predict lateral load–displacement curves in case of shear failure of the unreinforced walls. According to the experimental results and those of the selected analytical model, parametric study to evaluate the reduction in lateral strength demand produced by non‐linear behaviour in masonry walls, i.e. the load reduction factor was carried out by non‐linear dynamic analyses. The calculated values of the load reduction factor were modest. The differences in values found for the three masonry types, although consistent with them, were not great. This may indicate that, in the ultimate limit state, the type of masonry cannot significantly affect the behaviour of an entire building. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Many older unreinforced masonry (URM) buildings feature timber floors and solid brick masonry. Simple equivalent frame models can help predicting the expected failure mechanism and estimating the strength of a URM wall. When modelling a URM wall with an equivalent frame model rather than, for example, a more detailed simplified micro-model, the strengths of the piers and spandrels need to be estimated from mechanical or empirical models. Such models are readily available for URM piers, which have been tested in many different configurations. On the contrary, only few models for spandrel strength have been developed. This paper reviews these models, discusses their merits, faults and compares the predicted strength values to the results of recent experimental tests on masonry spandrels. Based on this assessment, the paper outlines recommendations for a new set of strength equations for masonry spandrels.  相似文献   

16.
Widely used damage indices, such as ductility and drift ratios, do not account for the influences of the duration of strong shaking, the cumulative inelastic deformation or energy dissipation in structures. In addition, the formulation and application of most damage indices have until now been based primarily on flexural modes of failure. However, evidence from earthquakes suggests that shear failure or combined shear‐flexure behavior is responsible for a large proportion of failures. Empirical considerations have been made in this paper for evaluating structural damage of low‐rise RC walls under earthquake ground motions by means of a new energy‐based low‐cycle fatigue damage index. The proposed empirical damage index is based on the results of an experimental program that comprised six shake table tests of RC solid walls and walls with openings; results of six companion walls tested under QS‐cyclic loading were used for comparison purposes. Variables studied were the wall geometry, type of concrete, web shear steel ratio, type of web shear reinforcement, and testing method. The index correlates the stiffness degradation and the destructiveness of the earthquake in terms of the duration and intensity of the ground motions. The stiffness degradation model considers simultaneously the increment of damage associated to the low‐cycle fatigue, energy dissipation, and the cumulative cyclic parameters, such as displacement demand and hysteretic energy dissipated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In modern unreinforced masonry buildings with stiff RC slabs, walls of the top floor are most susceptible to out‐of‐plane failure. The out‐of‐plane response depends not only on the acceleration demand and wall geometry but also on the static and kinematic boundary conditions of the walls. This paper discusses the influence of these boundary conditions on the out‐of‐plane response through evaluation of shake table test results and numerical modelling. As a novum, it shows that the in‐plane response of flanking elements, which are orthogonal to the wall whose out‐of‐plane response is studied, has a significant influence on the vertical restraint at the top of the walls. The most critical configuration exists if the flanking elements are unreinforced masonry walls that rock. In this case, the floor slabs can uplift, and the out‐of‐plane load‐bearing walls loose the vertical restraint at the top. Numerical modelling confirms this experimentally observed behaviour and shows that slab uplift and the difference in base and top excitation have a strong influence on the out‐of‐plane response of the walls analysed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Unstiffened steel plate shear walls (SPSWs) are used as lateral load‐resisting systems in building structures. The energy dissipation mechanism of SPSWs consists of the tension yielding of web plates and the formation of plastic hinges at the ends of horizontal boundary elements. However, vertical boundary elements (VBEs) of high‐rise SPSWs may experience high axial forces under lateral loading. This study explores the effectiveness of staggering of web plates on the reduction of VBE forces and drift response of SPSWs during an earthquake event. An analytical study has been conducted to determine the base shear reduction factor so as to match the overstrength of staggered systems with conventional SPSWs. A design methodology has been proposed for staggered SPSWs. Six‐, 9‐, and 20‐storey staggered and conventional SPSWs with varying aspect ratios are considered in this study to compare their seismic response. These study frames are modelled and analysed in OpenSEES platform. Nonlinear static and dynamic analyses are performed to compare the drift response, hinge mechanisms, and steel tonnage. Staggered SPSWs showed uniform drift distribution and reduction in interstorey drift and axial force demand on the VBEs.  相似文献   

19.

This study proposes an innovative precast shear wall system, called an EVE precast hollow shear wall structure (EVE-PHSW). Precast panels in EVE-PHSW are simultaneously precast with vertical and horizontal holes. Noncontact lap splices of rebars are used in vertical joints connecting adjacent precast panels for automated prefabrication and easy in situ erection. The seismic behavior of EVE walls was examined through a series of tests on six wall specimens with aspect ratios of 1.0∼1.3. Test results showed that EVE wall specimens with inside cast-in situ concrete achieved the desired “strong bending and weak shear” and failed in shear mode. Common main diagonal cracks and brittle shear failure in squat cast-in situ walls were prevented. Inside cast-in situ concrete could significantly improve the shear strength and stiffness of EVE walls. The details of boundary elements (cast-in situ or prefabricated) and vertical joints (contiguous or spaced) had little effect on the global behavior of EVE walls. Noncontact lap splices in vertical joints could enable EVE walls to exhibit stable load-carrying capacity through extensive deformations. Evaluation on design codes revealed that both JGJ 3-2010 and ACI 318-14 provide conservative estimation of shear strength of EVE walls, and EVE walls achieved shear strength reserves comparative to cast-in situ walls. The recommended effective stiffness for cast-in situ walls in ASCE 41–17 appeared to be appropriate for EVE walls.

  相似文献   

20.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号