首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Imaging spectroscopy of the Sun was carried out at the California State University Northridge San Fernando Observatory using an InGaAs near-IR video camera. Using the Sii 1082.71 nm and Hei 1083.03 nm lines the Evershed effect is measured simultaneously in the photosphere and the chromosphere for three sunspots; the speed of the Evershed flow is measured to be between 3 to 8 times greater in the Hei line than in the Sii line, and the direction is radially inward in the chromosphere and outward in the photosphere. Telluric absorption lines prevented a meaningful measurement of Oi 1128.7 nm limb emission, but an upper limit of 20×10–3 B is measured for chromospheric limb emission at Oi 1316.3 nm. Zeeman splitting in Fei 1564.9 nm was observed in six sunspot umbrae, and a linear relationship between magnetic field and umbral continuum intensity is confirmed.  相似文献   

2.
The profiles of six photospheric absorption spectral lines (Fei 5250 Å, Fei 5324 Å, Fei 5576 Å, Cai 5590 Å, Cai 6103 Å and Fei 6165 Å), measured in the kernel of a 2N solar flare and in a quiet-Sun area, were compared. The observations were carried out with an echelle spectrograph of the Crimean Astrophysical Observatory. It was shown that, compared to the quiet-Sun profiles, the flare profiles are shallower in the line core and are less steep in the wings. Therefore, measurements of the longitudinal magnetic field made with a magnetograph system which uses the Cai 6103 Å  spectral line, can be underestimated by 18–25% in areas of bright H ribbons of a moderate solar flare. Modeling of the solar photosphere performed by using a synthesis method showed that, in a solar flare, the enhanced core emission seems to be related to heating of the photosphere by the flare, whereas the decrease of the slope of the wings was presumably caused by the inhomogeneity of the photospheric magnetic field.  相似文献   

3.
The influence of electron non-Maxwellian distributions (power and -distribution) on the electron excitation rate in the solar corona is demonstrated. It is shown that the deviations in electron excitation rate are sufficient to affect intensities of spectral lines. As an example the diagnostics of a power-law distribution are demonstrated for a simplified calculation of the resonance lines of Fexxiv, Fexxv and Fexxvi. The results can be used in diagnosing solar flare plasmas, where the deviations of the electron distribution from a Maxwellian distribution can be large.  相似文献   

4.
Since 1986, we have made some improvements to the multichannel solar spectrograph at Purple Mountain Observatory (PMO) step by step, and now we have developed and added to it a multichannel infrared imaging solar spectrograph. The original spectrograph can be used to observe simultaneously solar activity at 9 wave bands including Caii H and K line, Mgi b line, Hei D3 line and H through H. The newly developed infrared imaging spectrograph can work in three wavelengths, i.e., Hei 10830 Å, Caii 8542 Å, and H. We replaced plates in the original system with CCDs and placed an image reducer before each CCD in order to match the CCD pixel size. The dispersions for Hei 10830 Å, Caii 8542 Å, and H of the new imaging solar spectrograph are 0.0693 Å, 0.0767 Å, and 0.0754 Å per CCD pixel respectively, and each vertical CCD pixel represents 0.34 arc sec of solar disk. We can obtain the line-center and off-band intensities of the three lines and the intensities of continua adjacent to these lines through the new instrument. We can also acquire velocity maps and line profiles. Therefore, it is specially suitable for two-dimensional (2D) spectroscopic observations of solar flares and active regions. We carry out scanning observation by rotating the second mirror of the coelostat system. In this paper, we introduce the improvements we made and the new imaging solar spectrograph. Some observation results are also presented in this article.  相似文献   

5.
Penn  M.J. 《Solar physics》2000,197(2):313-335
From 15:33 through 16:02 UT on 13 June 1998, observations of an erupting filament as it crossed solar disk center were obtained with the NSO/KPVT and SOHO/CDS instruments as part of the SOHO Joint Observing Program 70. Context observations show that this event was the eruption of the north-east section of a small active region filament associated with NOAA 8237, that the photospheric magnetic field was changing in this active region between 12–14 June 1998, and that a coronal Moreton-wave disk event occurred, as well as a white-light CME off the south-west solar limb. The NSO/KPVT imaging spectroscopy data covered 512 × 512 arc sec of the disk center and were spectrally centered at the Hei 1083 nm line and captured ±1.0 nm of surrounding solar spectrum. The Hei absorption line is seen blue-shifted to velocities of between 200 and 300 km s–1. The true solar trajectory of the eruption is obtained by using the projected solar coordinates and by integrating the Doppler velocity. The filament travels with a total velocity of about 300 km s–1 along a path inclined roughly 49 deg to the solar surface and rises to a height of just over 1.5 solar radii before it becomes too diffuse to follow. The filament also shows internal motions with multiple Doppler components shifted by ±25 km s–1. Finally, the KPVT data show no Stokes V profiles in the Doppler-shifted Hei 1083.03 nm absorption to a limit of roughly 3×10–3 times the continuum intensity. The SOHO/CDS scanned the center of the KPVT FOV using seven EUV lines; Doppler-shifted filament emission is seen in lines from Hei 58.4 nm, Heii 30.4 nm, Oiv 55.5 nm, Ov 63.0 nm, Nevi 56.3 nm, and Mgx 61.0 nm representing temperatures from about 2×104K through 1×106K. Bound-free continuum absorption from Hi, without confusion from foreground emission and line emission, is seen as the filament obscures underlying chromospheric emission. A fit to the wavelength dependence of the absorption from five lines between 55.5 to 63.0 nm yields a column density H I =4.8±2.5×1017 cm–2. Spatial maps show that this filament absorption is more confined than the regions which show emission.  相似文献   

6.
Altrock  Richard C. 《Solar physics》2003,213(1):23-37
Synoptic photoelectric observations of the coronal Fexiv and Fex emission lines at 530.3 nm and 637.4 nm, respectively, are analyzed to study the rotational behavior of the solar corona as a function of latitude, height, time and temperature between 1976 (1983 for Fex) and 2001. An earlier similar analysis of the Fexiv data at 1.15 R over only one 11-year solar activity cycle (Sime, Fisher, and Altrock, 1989, Astrophys. J. 336, 454) found suggestions of solar-cycle variations in the differential (latitude-dependent) rotation. These results are tested over the longer epoch now available. In addition, the new Fexiv 1.15 R results are compared with those at 1.25 R and with results from the Fex line. I find that for long-term averages, both ions show a weakly-differential rotation period that may peak near 80° latitude and then decrease to the poles. However, this high-latitude peak may be due to sensing low-latitude streamers at higher latitudes. There is an indication that the Fexiv rotation period may increase with height between 40° and 70° latitude. There is also some indication that Fex may be rotating slower than Fexiv in the mid-latitude range. This could indicate that structures with lower temperatures rotate at a slower rate. As found in the earlier study, there is very good evidence for solar-cycle-related variation in the rotation of Fexiv. At latitudes up to about 60°, the rotation varies from essentially rigid (latitude-independent) near solar minimum to differential in the rising phase of the cycle at both 1.15 R and 1.25 R . At latitudes above 60°, the rotation at 1.15 R appears to be nearly rigid in the rising phase and strongly differential near solar minimum, almost exactly out of phase with the low-latitude variation.  相似文献   

7.
Spectro-polarimetric observations of active regions were carried out in the spectral lines of Sii 10827.1 Å and Hei 10830 Å to study the three-dimensional magnetic field structure and associated plasma flow properties. Comparison of Sii and Hei magnetograms with the potential field model shows that a large fraction of the magnetic field is consistent with the potential field structure, by assuming that the height difference between the origin of the two lines is about 1200 km. The slope of the scatter plot between Sii and Hei magnetograms is 0.5, 0.76 in an emerging flux and a larger active region, respectively. These values are lower than the scatter plot slopes obtained from Kitt Peak photospheric and chromospheric magnetograms, in which case the corresponding values are 0.83 and 0.9, respectively. Considering the height difference between these two sets of chromospheric magnetograms, this implies that the magnetic field spreads out faster near the transition region heights. Dopplergrams obtained by determining the centroid of the asymmetric line profiles show that, in case of emerging flux region, the chromospheric upflow regions are located in the magnetic neutral line areas.  相似文献   

8.
Cameron  R.  Hopkins  A. 《Solar physics》1998,183(2):263-276
We present a new method for measuring the solar magnetic meridional flow, and provide a comparison with other recent work. We have performed a least-squares fit to azimuthally averaged Mount Wilson Observatory synoptic data encompassing Carrington rotations 1722 to 1929 to produce an estimate of the solar meridional flow. A parametric fit to our results expresses the solar meridional flow as v() = 28.5 sin2.5 cos.  相似文献   

9.
Fredvik  T.  Maltby  P. 《Solar physics》1999,184(1):113-132
Based on EUV observations of eleven sunspot regions obtained with the Coronal Diagnostic Spectrometer, CDS, on SOHO we have studied the spatial distribution, temporal variation and wavelength shift of the Hei 584 line. We find a relatively high spatial correlation between the coronal line Fexvi 360 and the Hei 584 line. This points to coronal back-radiation as an important contributor to the formation of the Hei line in active regions. However, contribution to the line formation from another source is suggested by the following two findings: First, the red-shifted line profiles of both Hei 584 and the transition region lines tend to be more intense than blue-shifted profiles. Second, the Hei 584 emission changes significantly faster than the coronal line emission.  相似文献   

10.
A spectral analysis of the time series of daily values of 12 parameters, namely, ten solar radio emissions in the range 275–1755 MHz, 2800 MHz solar radio flux, and sunspot numbers for six continuous intervals of 132 values each during June 1997–July 1999 showed considerable differences from one interval to the next, indicating a nonstationary nature. A 27-day periodicity was noticed in Interval 2 (26.8 days), 3 (27.0 days), 5 (25.5 days), 6 (27.0 days). Other periodicities were near 11.4, 12.3, 13.3, 14.5, 15.5, 16.5, 35, 40, 50–70 days. Periodicities were very similar in a large vertical span of the coronal region corresponding to 670–1755 MHz. Above this region, the homogeneity disappeared. Below this region, there were complications and distortions due to localized solar surface phenomena.  相似文献   

11.
The general relativistic Lense—Thirring effect can be measured by inspecting a suitable combination of the orbital residuals of the nodes of LAGEOS and LAGEOS II and the perigee of LAGEOS II. The solid and ocean Earth tides affect the recovery of the parameter by means of which the gravitomagnetic signal is accounted for in the combined residuals. Thus an extensive analysis of the perturbations induced on these orbital elements by the solid and ocean Earth tides is carried out. It involves the l=2 terms for the solid tides and the l=2,3,4 terms for the ocean tides. The perigee of LAGEOS II turns out to be very sensitive to the l=3 part of the ocean tidal spectrum, contrary to the nodes of LAGEOS and LAGEOS II. The uncertainty in the solid tidal perturbations, mainly due to the Love number k 2, ranges from 0.4% to 1.5%, while the ocean tides are uncertain at 5–15% level. The obtained results are used in order to check in a preliminary way which tidal constituents the Lense-Thirring shift is sensitive to. In particular it is tested if the semisecular 18.6-year zonal tide really does not affect the combined residuals. It turns out that, if modeled at the level of accuracy worked out in the paper, the l=2,4 m=0 and also, to a lesser extent, the l=3, m=0 tidal perturbations cancel out.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

12.
The long-time series of daily means of cosmic-ray intensity observed by four neutron monitors at different cutoff rigidities (Calgary, Climax, Lomnický tít and Huancayo/Haleakala) were analyzed by means of the wavelet transform method in the period range 60 to 1000 days. The contributions of the time evolution of three quasi-periodic cosmic-ray signals (150 d, 1.3 yr and 1.7 yr) to the global one are obtained. While the 1.7-yr quasi-periodicity, the most remarkable one in the studied interval, strongly contributes to the cosmic ray intensity profile of solar cycle 21 (particularly in 1982), the 1.3-yr one, which is better correlated with the same periodicity of the interplanetary magnetic field strength, is present as a characteristic feature for the decreasing phases of the cycles 20 and 22. Transitions between these quasi-periodicities are seen in the wavelet power spectra plots. Obtained results support the claimed difference in the solar activity evolution during odd and even solar activity cycles.  相似文献   

13.
Zhang  Hongqi 《Solar physics》2000,197(2):235-251
In this paper, we analyse Stokes parameters I,Q,U of the Fei 5324.19Å line, calculated with radiative transfer equations in a solar model atmosphere with a magnetic field, and the influence of magneto-optical effects on the measurement of transverse magnetic field. It is found that the measurement of azimuthal angles of the transverse field is obviously disturbed by the magneto-optical effects. We compare with the observational Stokes images Q and U at different wavelengths from the center to the wing of the Fei 5324.19Å line obtained at Huairou Solar Observing Station of Beijing Astronomical Observatory to confirm azimuthal angles of the transverse field, because the insignificant influence of magneto-optical effects in the far wing of the line was found by the theoretical analysis. The accuracy of azimuthal angles of the transverse field measured near the Fei 5324.19Å line center has been estimated.  相似文献   

14.
The excitation equilibrium of Fexxv in the solar corona for electron power distributions is presented. A parametric form of the distribution function is used to demonstrate the changes in the excitation equilibrium due to the shape of the distribution. A pseudo-temperature is used for better understanding of the changes in the excitation equilibrium. The Fexxv line intensities depend on the shape of the electron distribution and unusual Fe line ratios can be observed for non-thermal distribution. The results can be used in specific applications in the solar corona, especially in diagnostics of the impulsive phase of solar flares, where the deviations from the Maxwellian distribution can be large.  相似文献   

15.
Doppler dimming of the Ovi resonance lines (1032 Å, 1037 Å) in an expanding corona is calculated including the pumping effect on the Ovi 1037.61 Å of both Cii lines at 1036.34 Å and 1037.02 Å, and the effect of the width of the absorption profiles of the coronal oxygen ions along the incident radiation. The pumping effect of the Cii line at 1036.34 Å allows us to extend to approximately 450 km s–1 the measurement of solar wind velocities with the Ovi line ratio technique. Since the emissivity ratio of the Ovi doublet depends on the width of the oxygen coronal absorbing profiles, this ratio can provide an accurate measurement of the solar wind velocity in the case that the width of the absorbing profile along the direction of the incident radiation is independently determined. However, if on the one hand the ratio of the emissivities of the Ovi doublet has limitations in probing the wind velocity, on the other hand it can be used as a diagnostics for inferring the velocity distribution of the coronal Ovi ions along the radial, and detecting possible velocity anisotropies. This diagnostics, applied to recent observational results, allows us to infer that the velocity distribution of the oxygen ions is much broader in the direction perpendicular to the magnetic field direction, and that the acceleration of the fast solar wind in the first 2 solar radii is high.  相似文献   

16.
We find the form of cantori surrounding an island of stable motion in the standard map for various values of the nonlinearity parameter K near the value K=5 (much larger than the critical value K cr=0.971635...). The asymptotic curves of unstable periodic orbits inside the cantorus cross it after a certain time and then escape to the large chaotic sea. For K=5 the crossing time (in appropriate units) is t=1 and the escape time is t=2. For K=4.998 the crossing time is t=7 and the escape time t=23000. This delay of escape is due to the existence of higher order cantori, with very small gaps. We found that, as K increases the noble torus [2,4,1,1,..] is destroyed before the destruction of the higher order tori [2,4,1,1,1,1,2,1,...] and [2,4,1,1,1,1,3,1,...]. Thus the torus with the simplest noble number is not the last KAM curve to be destroyed. Then we find that nearby orbits deviate considerably, but the average times spent near various resonance before escape are very similar.  相似文献   

17.
Two successful sounding rocket flights were launched on 15 May 1997 and 2 November 1998 with an objective of providing inter-calibration with several of the instruments on board SOHO and TRACE. We will discuss here the results of the inter-calibration between the SwRI/LASP rocket imaging instruments and the Extreme-ultraviolet Imaging Telescope (EIT) on SOHO. The Multiple XUV Imager (MXUVI) sounding rocket instrument is a multi-layer mirror telescope equipped with an internal occulter and light trap to provide full-disk images of Feix/x 17.1 nm and off-limb observations of Heii 30.4 nm. The SOHO/EIT instrument is also a full-disk multi-layer imager with four channels, Fe ix/x 17.1 nm, Fexii 19.5 nm, Fexv 28.4 nm and Heii 30.4 nm. By comparison with the EIT observations taken at the same time, we provide new flat-field determinations for EIT which help quantify the sensitivity degradation of the EIT detector, as well as provide a measure of the off-limb stray-light characteristics of the two instruments. We find that the EIT stray-light function is strongly asymmetric, with greater stray light in the 17.1 and 19.5 nm quadrants than the 30.4 and 28.4 nm quadrants. Two possible causes of this asymmetry are the polishing processes of the EIT mirrors and the asymmetric support grid pattern in the foil mesh at the EIT pupil.  相似文献   

18.
As a part of a study of the cause of solar coronal heating, we searched for high-frequency (1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 11 August 1999 total solar eclipse from Râmnicu-Vâlcea, Romania, through clear skies. We discuss the image reduction and analysis through two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of about 140 s. One series of images was taken through a 3.6 Å filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. Previous observations, described in Pasachoff et al. (2000), showed no evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity. We describe several improvements made over the 1998 eclipse that led to increased image clarity and sensitivity. The corona was brighter in 1999 with the solar maximum, further improving the data. We use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. A Monte Carlo model of the data suggests the presence of enhanced power, particularly in the 0.75–1.0 Hz range, and we conclude that MHD waves remain a viable method for coronal heating.  相似文献   

19.
Skomorovsky  V.I.  Firstova  N.M.  Kashapova  L.K.  Kushtal  G.I.  Boulatov  A.V. 《Solar physics》2001,199(1):37-45
A new two-bandpass birefringent filter has been produced at ISTP, Irkutsk for the investigation of the fine structure of the chromosphere. One filter passband is centered on the Hei 10830 Å line, the second one is centered on H. The FWHM of the Hei 10830 Å passband is 0.46 Å and of the H passband is 0.3 Å. A large number of filtergrams were obtained with the filter at the Sayan observatory. At the same time, spectral observations with high spatial and spectral resolution were carried out by the large solar vacuum telescope at the Baikal Observatory. We selected 29 `dark point' spectra with sizes from 2 to 13, as well as `dark points' on the filtergrams. Comparison of spectrograms and filtergrams has shown a good agreement of their size and intensity in relation with the surrounding chromosphere as well as the absence of primary line-of-sight velocities in both observation types. From spectral observations, the depth of 10830 Å is over 30% for some `dark points', and the FWHM is more than 1 Å. Hei 10830 Å line profiles in `dark points' are more deep and wide than in quiet regions. The optical depth of the chromosphere in `dark points' is estimated. Comparison with the unperturbed chromosphere showed that `dark points' in Hei 10830 Å are more optically thin than the nearby chromosphere.  相似文献   

20.
Zhang  Mei  Zhang  Hongqi 《Solar physics》2000,194(1):19-28
Photospheric (Fei 5324.19 Å line) and chromospheric (H line) magnetic fields in quiet-Sun regions have been observed in the solar disk center by using the vector video magnetograph at Huairou Solar Observing Station of Beijing Astronomical Observatory. Observational results show that the quiet-Sun magnetic elements in the solar photosphere and chromosphere present similar magnetic structures. Photospheric and chromospheric magnetograms show corresponding time variations. This suggests that the magnetic fields in quiet-Sun regions present different 3-D magnetic configurations compared to those in solar active regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号