首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The problem of the origin of the irregular satellites is solved readily in the context of a hypothesis involving explosion of the massive ice envelopes of the Galilean satellites saturated by electrolysis products. The thrown-off unexploded (primary) ice fragments of the outermost cold layers of the envelopes are also saturated by electrolysis products. In the course of explosive ejection their internal energy increases due to shock wave heating, as a result of which they will be able to detonate in subsequent sufficiently energetic collisions. The secondary fragments from new explosions may acquire additional velocity up to a few km s–1 without breakup into small pieces.Gravitational perturbations by the parent satellites can eject the primary fragments moving near their orbits into the periphery of or beyond Jupiter's sphere of action. If such a fragment explodes in the outer zone of the sphere, then secondary fragments may become irregular satellites resulting in the so-called internal capture (the possibilities of capture considered earlier involved only bodies entering the sphere of action from outside).The mass of the primary fragment responsible for the inner (direct) group of Jupiter's irregular satellites is estimated as 1019 kg, and the additional velocity acquired by secondary fragments as 1.3 km s–1; evaluation of the mass of the fragment responsible for the outer (retrograde) group yields 1018 kg, and that of the additional velocity of secondary fragments, 2 km s–1.The ice envelopes of the Galilean and similar moonlike satellites should contain impurities corresponding to the composition of type C1 carbonaceous chondrites; therefore after sublimation of water ice the irregular satellites (just as type C asteroids, the Trojans and comets) exhibit spectro-photometric properties similar to those of C-type objects.  相似文献   

2.
A number of Jupiter family comets such as Otermaand Gehrels 3make a rapid transition from heliocentric orbits outside the orbit of Jupiter to heliocentric orbits inside the orbit of Jupiter and vice versa. During this transition, the comet can be captured temporarily by Jupiter for one to several orbits around Jupiter. The interior heliocentric orbit is typically close to the 3:2 resonance while the exterior heliocentric orbit is near the 2:3 resonance. An important feature of the dynamics of these comets is that during the transition, the orbit passes close to the libration points L 1and L 2, two of the equilibrium points for the restricted three-body problem for the Sun-Jupiter system. Studying the libration point invariant manifold structures for L 1and L 2is a starting point for understanding the capture and resonance transition of these comets. For example, the recently discovered heteroclinic connection between pairs of unstable periodic orbits (one around the L 1and the other around L 2) implies a complicated dynamics for comets in a certain energy range. Furthermore, the stable and unstable invariant manifold tubes associated to libration point periodic orbits, of which the heteroclinic connections are a part, are phase space conduits transporting material to and from Jupiter and between the interior and exterior of Jupiter's orbit.  相似文献   

3.
Explosions of the electrolyzed ice envelopes of the Galilean satellites resulted in the appearance of a large number of ice fragments deep inside Jupiter's sphere of action. Gravitational perturbations by the Galilean satellites transferred these fragments from satellite orbits into the periphery of the sphere of action and beyond it. The fragments move initially in the direction of a satellite's motion tangentially to its orbit.The fragments have a small angular momentum since they come from deep inside Jupiter's sphere of action. On reaching the periphery of the sphere, the fragments can acquire retrograde motion (even in the sidereal frame) because of the Sun's action.If ejected from the zone of the Galilean satellites with a sufficient velocity, the fragments can leave Jupiter's sphere of action going both inside and outside its orbit, which leads to a substantial difference in the pattern of their subsequent motion in the vicinity of Jupiter's orbit.The results obtained may be used to shed light on the origin of the irregular satellites (Paper 1) and Trojans (Paper 2).  相似文献   

4.
The dissipation of tidal energy causes the ongoing silicate volcanism on Jupiter's satellite, Io, and cryovolcanism almost certainly has resurfaced parts of Saturn's satellite, Enceladus, at various epochs distributed over the latter's history. The maintenance of tidal dissipation in Io and the occurrence of the same on Enceladus depends crucially on the maintenance of the respective orbital eccentricities by the existence of mean motion resonances with nearby satellites. A formation of the resonances among the Galilean satellites by differential expansion of the satellite orbits from tides raised on Jupiter by the satellites means the onset of the volcanism on Io could be relatively recent. If, on the other hand, the resonances formed by differential migration from resonant interactions of the satellites with the disk of gas and particles from which they formed, Io would have been at least intermittently volcanically active throughout its history. Either means of assembling the Galilean satellite resonances lead to the same constraint on the dissipation function of Jupiter Q J 106, where the currently high heat flux from Io seems to favor episodic heating as Io's eccentricity periodically increases and decreases. Either of the two models might account for sufficient tidal dissipation in the icy satellite Enceladus to cause at least occasional cryovolcanism over much of its history. However, both models are assumption-dependent and not secure, so uncertainty remains on how tidal dissipation resurfaced Enceladus.  相似文献   

5.
We consider the dissipation of the gaseous component from the gas–dust accretion disk of Jupiter in which the Galilean satellites were formed. The thermal dissipation of hydrogen and helium is shown to be ineffective. It could ensure the loss of gas only for a low-mass disk and only if the rarefied outer layers of the disk are heated to 104 K. Such a high disk temperature is not reached through Jupiter's radiation in existing models of its formation, but it could be provided by UV radiation of the early Sun after the dissipation of the protoplanetary disk. The viscous dissipation (with a viscosity parameter 10–3 in the -disk model) related to disk accretion onto Jupiter could disperse a low-mass disk in 107 years. A magnetocentrifugal mechanism, which produced a disk wind during accretion capable of carrying away 0.1 of the accreted gas mass, was probably also involved in the dispersal of the Jovian disk. Differential dispersion, with the loss of only hydrogen and helium and the retention of water vapor and heavier gases in the disk, is possible only in a low-mass disk model. We conclude that the water contained in the Galilean satellites was brought in mainly by solid planetesimals captured into the disk during mutual inelastic collisions in Jupiter's sphere of influence.  相似文献   

6.
A theory for the origin and bulk chemical composition of the Galilean satellites is presented — to coincide with the start of the 2-year orbital tour of this satellite system by the Galileo Orbiter. The theory is based on the author's modern Laplacian theory of solar system origin (Prentice 1978a). The nub of the work reported here is that the Jupiter system is indeed a miniature planetary system that formed by much the same physical and chemical processes that were responsible for the condensation of the sun's own family of planets. In particular, a phenomenon of supersonic turbulent convection which I claim caused the proto-solar cloud to rid excess spin angular momentum, by shedding a concentric family of orbiting gas rings at the present planetary orbits, may also have operated with similar effect within the proto-Jovian cloud.Several predictions are made for the bulk chemical composition and physical structure of the icy Galilean satellites which, it is hoped, can be tested by the Galileo Orbiter. The mean density of Callisto is consistent with that of a chemically homogeneous body consisting of about 50% rock, 45% water ice, and 5% ammonia ice, incorporated as the hydrate NH3·H2O. Such a higher-than-solar mass abundance ratio of rock to ice arises naturally within the proto-Jovian cloud since (i) only 34% of the available H2O vapor within the gas ring shed by the proto-solar cloud at Jupiter's orbit was condensed in solid form, and (ii) gravitational sedimentation of solids onto the mean orbit of the proto-solar gas ring leads to an enhancement in the heavy element fraction of the captured primitive Jovian atmosphere. All in all, I predict Jupiter's primitive atmosphere to be enhanced by a factor en 2 in its rock mass fraction (including S) and by a factor 1.3 in its water content, relative to solar abundances. NH3 and CH44 are present in almost solar proportions.Initially, Ganymede consisted of a chemically uniform mixture of rock and water ice in the proportions 0.524 : 0.476. The observed mean density of this satellite, however, lies midway between the mean densities expected for homogeneous and fully differentiated rock/ice bodies. The calculations presented here suggest that this body is about half-differentiated. I predict that the Galileo Orbiter will find the mean axial moment-of-inertia factor of Ganymede to be 0.35 ± 0.01.The circum-Jovian gas ring from which Europa condensed had a temperature of 302 K and a mean orbit gas pressure of 2.8 bar. Initially, this satellite consisted of a uniform mix of hydrated rocks, of which brucite Mg(OH)2 was the principal constituent. The observed mean density of Europa coincides with that expected for this mix, provided that its 9.4% native H2O content is now fractionated from the rock and resides at the satellite surface, forming a frozen mantle some 155 km thick. Regretfully, the mean density of Io cannot be matched by the solid composition reported here. Perhaps this satellite has a molten interior.  相似文献   

7.
Graboske et al. (1973) have shown that Jupiter's luminosity was orders of magnitude larger during its initial contraction phase than it is today. As a result, during Jupiter's earliest contraction history, ices would have preferentially been prevented from condensing within the region containing the orbits of the inner satellites. The observed variation of the mean density of the Galilean satellites with distance from Jupiter implies that the satellite formation process was operative on a time scale of about five million years. Another consequence of the high luminosity phase is that water should be the only ice present in significant proportions in any of the Galilean satellites.  相似文献   

8.
O. Gomis  G. Strazzulla 《Icarus》2008,194(1):146-152
In this paper we present the results of new experiments of ion irradiation of water ice deposited on top of a solid sulfurous residue to study the potential formation of SO2 at the interface ice/refractory material and discuss the possibility that this mechanism accounts for the sulfur dioxide ice detected on the surfaces of the Galilean satellites. In situ infrared spectroscopy was the used experimental technique. We have irradiated a thin film of H2O frost on a sulfurous layer with 200 keV of He+ at 80 K. The used sulfurous residue was obtained by irradiation of frozen SO2 at 16 K and it is used as a template of sulfur bearing solid materials. We have not found evidences of the efficient formation of SO2 after irradiation of H2O ice on top of the sulfurous residue. An upper limit to the production yield of SO2, of interface area for each 100 eV of energy absorbed in 1 cm3 of ice-covered residue, has been estimated. These results have relevance in the context of the surfaces of the icy Galilean satellites in which SO2 was detected. Our results show that radiolysis of mixtures of water ice and refractory sulfurous materials is not the primary formation mechanism responsible for the SO2 present on the surfaces of the Galilean satellites.  相似文献   

9.
The hypothesis considering the Jupiter-Sun system as a limiting case of a close binary star implies the initial relative ice abundances in all the Galilean satellites to be essentially equal. The satellites move in the Jovian magnetosphere; thus the unipolar current flowing through their bodies subjected their ices to volumetric electrolysis. Explosions of the electrolysis products resulted in a loss of ices. While Callisto did not explode at all, Ganymede exploded once, Europa twice, and Io two or three times. An analysis of the magnetic field changes needed to create the modern ice abundances in the satellite shows:
  1. the initial field of Jupiter was ~102 times stronger when compared with the present-day field, and
  2. the field had to decrease exponentially with τ2| ≈ (0.6?1), which means its relic nature.
  相似文献   

10.
F. MarzariH. Scholl 《Icarus》2002,159(2):328-338
We have numerically explored the mechanisms that destabilize Jupiter's Trojan orbits outside the stability region defined by Levison et al. (1997, Nature385, 42-44). Different models have been exploited to test various possible sources of instability on timescales on the order of ∼108 years.In the restricted three-body model, only a few Trojan orbits become unstable within 108 years. This intrinsic instability contributes only marginally to the overall instability found by Levison et al.In a model where the orbital parameters of both Jupiter and Saturn are fixed, we have investigated the role of Saturn and its gravitational influence. We find that a large fraction of Trojan orbits become unstable because of the direct nonresonant perturbations by Saturn. By shifting its semimajor axis at constant intervals around its present value we find that the near 5:2 mean motion resonance between the two giant planets (the Great Inequality) is not responsible for the gross instability of Jupiter's Trojans since short-term perturbations by Saturn destabilize Trojans, even when the two planets are far out of the resonance.Secular resonances are an additional source of instability. In the full six-body model with the four major planets included in the numerical integration, we have analyzed the effects of secular resonances with the node of the planets. Trojan asteroids have relevant inclinations, and nodal secular resonances play an important role. When a Trojan orbit becomes unstable, in most cases the libration amplitude of the critical argument of the 1:1 mean motion resonance grows until the asteroid encounters the planet. Libration amplitude, eccentricity, and nodal rate are linked for Trojan orbits by an algebraic relation so that when one of the three parameters is perturbed, the other two are affected as well. There are numerous secular resonances with the nodal rate of Jupiter that fall inside the region of instability and contribute to destabilize Trojans, in particular the ν16. Indeed, in the full model the escape rate over 50 Myr is higher compared to the fixed model.Some secular resonances even cross the stability region delimited by Levison et al. and cause instability. This is the case of the 3:2 and 1:2 nodal resonances with Jupiter. In particular the 1:2 is responsible for the instability of some clones of the L4 Trojan (3540) Protesilaos.  相似文献   

11.
New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the vertical-critical orbits ( v = –1,c v ),c v=0) of the basic plane familiesi,g 1,g 2,h,a,m andl. Further the numerical procedure employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections.  相似文献   

12.
We study the equilibrium points and the zero-velocity curves of Chermnykh’s problem when the angular velocity ω varies continuously and the value of the mass parameter is fixed. The planar symmetric simple-periodic orbits are determined numerically and they are presented for three values of the parameter ω. The stability of the periodic orbits of all the families is computed. Particularly, we explore the network of the families when the angular velocity has the critical value ω = 2√2 at which the triangular equilibria disappear by coalescing with the collinear equilibrium point L1. The analytic determination of the initial conditions of the family which emanate from the Lagrangian libration point L1 in this case, is given. Non-periodic orbits, as points on a surface of section, providing an outlook of the stability regions, chaotic and escape motions as well as multiple-periodic orbits, are also computed. Non-linear stability zones of the triangular Lagrangian points are computed numerically for the Earth–Moon and Sun–Jupiter mass distribution when the angular velocity varies.  相似文献   

13.
The relationship between the k2/Q of the Galilean satellites and the k2J/QJ of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter's rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.  相似文献   

14.
15.
Statistical analysis has been carried out of the relations between period and the ageP–t c, and the inclination of magnetic to rotation axis to the age –t cof pulsars have been done.Up to characteristic agest c=3×107 years the period increases as expected for magneto-dipole radiation energy lossesP=P m (1–exp(–t/ B ))1/n–1. Best-fitting parameters of this approximation are the time-scale of the magnetic moment decay B =4×106 years and breaking indexn=3.6. Fort c>3×107 years theP–t cdependence is significantly different.The inclination of magnetic to rotation axis decreases versus age, showing a secular alignment of the axis. But this decrease continues also only up tot c=3×107 years. Thus bothP–t cand –t cdependencies indicate that most of the pulsars of agest c>3×107 years are not evolutionary continuations of more younger ones, but apparently represent another population of pulsars, which differ by their genetic history or physical processes. This population includes all known millisecond pulsars. We suggest, that this population is a so-called recycled pulsar. The list of candidates of recycled pulsars is presented.A new evaluation of the inclination of the magnetic to the rotation axis for 105 pulsars is presented.  相似文献   

16.
O. Gomis  G. Strazzulla 《Icarus》2005,177(2):570-576
In this work we report on new experiments of ion irradiation of water ice deposited on top of solid carbonaceous materials to study the production of CO2 at the interface ice/refractory material and discuss the possibility that this mechanism accounts for the quantity of CO2 ice detected on the surfaces of the Galilean satellites. The used experimental technique has been in situ infrared spectroscopy. We have irradiated thin films of H2O frost on carbonaceous layers with 200 keV of He+ and Ar+, and 30 keV of He+ at 16 and 80 K. The used carbonaceous layers have been asphaltite, a natural bitumen, and solid organic residues obtained by irradiation of frozen benzene. In both cases the results show that CO2 is produced very efficiently after irradiation obtaining a maximum quantity of the order of . These results are, also quantitatively similar, to those recently obtained for water ice deposited on amorphous carbon films [Mennella, V., Palumbo, M.E., Baratta, G.A., 2004. Formation of CO and CO2 molecules by ion irradiation of water ice covered hydrogenated carbon grains. Astrophys. J. 615, 1073-1080]. Thus we suggest that, whatever is the carbonaceous residue, CO2 will be produced efficiently by the studied process. These results have interest in the context of the surfaces of the icy Galilean satellites in which CO2 has been detected mainly trapped in the non-ice material, not in the pure water ice. We suggest that radiolysis of mixtures of water ice and refractory carbonaceous materials is the primary formation mechanism responsible for the CO2 formation on the surfaces of the Galilean satellites.  相似文献   

17.
The origin of Jupiter and the Galilean satellite system is examinedin the light of the new data that has been obtained by the NASA Galileo Project. In particular, special attention is given to a theory of satellite origin which was put forward at the start of the Galileo Mission and on the basis of which several predictions have now been proven successful (Prentice, 1996a–c). These predictions concern the chemical composition of Jupiter's atmosphere and the physical structure of the satellites. According to the proposed theory of satellite origin, each of the Galilean satellites formed by chemical condensation and gravitational accumulation of solid grains within a concentricfamily of orbiting gas rings. These rings were cast off equatorially by the rotating proto-Jovian cloud (PJC) which contracted gravitationally to form Jupiter some 4 billion years ago. The PJC formed from the gas and grains left over from the gas ring that had been shed at Jupiter's orbit by the contracting proto-solar cloud (PSC). Supersonic turbulentconvection provides the means for shedding discrete gas rings.The temperatures Tn of the system of gas rings shed by the PSCand PJC vary with their respective mean orbital radii Rn (n = 0, 1, 2, Ϊ ) according as Tn ∝ Rn -0.9. If the planet Mercury condenses at 1640 K, so accounting for the high density ofthat planet via a process of chemical fractionation between iron and silicates, then Tn at Jupiter's orbit is 158 K. Only 35% of the water vapour condenses out. Thus fractionation between rock and ice, together with an enhancement in the abundance of solids relative to gas which takes place through gravitational sedimentation of solids onto the mean orbit of the gas ring, ensures nearly equal proportions of rock and ice in each of Ganymede and Callisto. Io and Europa condense above the H2O ice point and consist solely of hydrated rock (h-rock). The Ganymedan condensate consists of h-rock and H2O ice. For Callisto, NH3 ice makes up ∼5% of the condensate mass next to h-rock (∼50%) and H2O ice (∼45%). Detailed thermal and structural models for each of Europa, Ganymedeand Callisto are constructed on the basis of the above initial bulk chemicalcompositions. For Europa (E), a predicted 2-zone model consisting of a dehydrated rock core of mass 0.912ME and a 150 km thick frozen mantle of salty H2O yields a moment-of-inertiacoefficient which matches the Galileo Orbiter gravity measurement. For Ganymede (G), a 3-zone model possessing an inner core of solid FeS and mass ∼0.116MG, and an outer H2O ice mantle of mass ∼0.502MG is needed to explain the gravity data.Ganymede's native magnetic field was formed by thermoremanent magnetization of Fe3O4. A new Callisto (C) model is proposed consisting of a core of mass 0.826MC containing a uniform mixture of h-rock (60% by mass) and H2O and NH3 ices, and capped by a mantle of pure ice. This model may have the capacity to yield a thin layer of liquid NH3ċ2H2O at the core boundary, in line with Galileo's discovery of an induced magnetic field This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We consider a restricted six-body problem, consisting of Jupiter, the four Galilean satellites, and an orbiter. The Galilean satellites' orbits are circular and coplanar; Io, Europa, and Ganymede are in exact resonance; their mean longitudes obey the Laplace relation. We seek periodic orbits which avoid close approaches to any satellite; such orbits are of interest for mission planning. They are approximated as equilibrium points of sets of variational equations associated with time-averaged disturbing functions. Stability of the solutions is also determined. The orbits of greatest interest are:Planar: twice Callisto's period, eccentricity0.6Planar: four times Callisto's period, eccentricity0.75Slightly inclined: twice Callisto's period, eccentricity arbitraryPlanar: 4/5 or 5/4 Europa's period.  相似文献   

19.
New spectra of Jupiter in the region 0.93–1.63 are presented. Laboratory comparisons of spectra of NH3 and CH4 permit estimates of the absorbing pathlength for various bands of these two gases. Abundances in a single transmission through the Jupiter atmosphere, above the mean reflecting level, vary from 10 to 100 m-atm for CH4 and from 0.2–5 m-atm for NH3, depending on the bands considered. Upper limits for other gases are derived from new laboratory spectra and comparison with the Jupiter spectra presented herein. These are as follows: C2H2<2 m-atm, H2S<0.25 m-atm, HCN<0.05 m-atm, CH3NH2<0.02 m-atm. A table summarizing the chemical composition of Jupiter's atmosphere is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号