首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hyporheic interstitial provides habitat for many different organisms – from bacteria to burrowing invertebrates. Due to their burrowing and sediment reworking behaviour, these ecosystem engineers have the potential to affect hyporheic processes such as respiration and nutrient cycling. However, there is a lack of studies that characterize the interactions between bioturbators, physico-chemical habitat properties and microbial communities in freshwater substrates. In a standardized laboratory experiment, we investigated the effects of three functionally different bioturbators, duck mussels (Anodonta anatina, Linnaeus 1758), mayfly nymphs (Ephemera danica, Müller 1764) and tubificid worms (Tubifex tubifex, Müller 1774), on the physico-chemical conditions and bacterial communities in hyporheic substrates. We hypothesized that different invertebrates distinctly alter habitat conditions and thus microbial community composition, depending on the depth and the manner of burrowing. A. anatina and E. danica caused an increase in interstitial oxygen concentration, whereas strong declines in oxygen concentration and redox potential were detected in the T. tubifex treatment. These effects on physico-chemical habitat properties were even detectable in open water. Mussels and tubificid worms also significantly influenced the composition of bacterial communities in the hyporheic zone. A loss or replacement of bioturbators in stream ecosystems due to anthropogenic habitat alterations is expected to result in shifts in microbial community compositions, with effects on nutrient fluxes, pollutant degradation and benthic food webs. An understanding of the effects of functionally different native and invasive bioturbators is crucial to predict changes in stream ecosystem functioning.  相似文献   

2.
Phytoplankton diversity, primary and bacterial production, nutrients and metallic contaminants were measured during the wet season (July) and dry season (March) in the Bach Dang Estuary, a sub-estuary of the Red River system, Northern Vietnam. Using canonical correspondence analysis we show that phytoplankton community structure is potentially influenced by both organometallic species (Hg and Sn) and inorganic metal (Hg) concentrations. During March, dissolved methylmercury and inorganic mercury were important factors for determining phytoplankton community composition at most of the stations. In contrast, during July, low salinity phytoplankton community composition was associated with particulate methylmercury concentrations, whereas phytoplankton community composition in the higher salinity stations was more related to dissolved inorganic mercury and dissolved mono and tributyltin concentrations. These results highlight the importance of taking into account factors other than light and nutrients, such as eco-toxic heavy metals, in understanding phytoplankton diversity and activity in estuarine ecosystems.  相似文献   

3.
In this research we evaluate the effects of the method used for estimating the potential surface available for benthic macroinvertebrates in macrophyte and unvegetated habitats on several metrics and habitat preference of aquatic macroinvertebrates in the upper catchment of the Henares River (Guadalajara, Central Spain). Three sampling sites were selected: a well-preserved stream (site A), a stream with no wood riparian vegetation (site B), and a straightened and deforested reach (site C). Two habitats were selected in each site: unvegetated habitat (i.e., substrata without macrophytes) and macrophyte habitat (i.e., substrata covered by macrophytes). In each habitat, six macroinvertebrate samples (including all macrophytes or mineral particles) were collected using a Hess sampler. Diversity and density of major families were referred to the surface of the Hess sampler (=Hess surface method) and to the actual surface of either mineral particles or macrophytes (=actual surface method). In general, for the actual surface method, biomass, richness, dominance, and diversity metrics were higher in the mineral habitat than in the macrophyte habitat. This trend was different for the Hess surface method. In general, densities turned out to be higher in the unvegetated habitat than in the macrophyte habitat when using the actual surface method, but the reverse occurred when using the Hess surface method. This fact is relevant for river biomonitoring, especially when reaches with different dominant substrates (macrophytes vs mineral) are compared using just one of the methods. It is concluded that the macrobenthic metrics and density values are influenced by the method used to estimate the potential available surface for aquatic macroinvertebrates.  相似文献   

4.
Spatial distribution of physical and chemical variables and macroinvertebrate composition, structure and functional aspects were investigated in five microhabitats available (Ranunculus acquatilis+Ranunculus sardous, Spirogyra sp., Juncus effusus, and unvegetated littoral sediments and central sediments) in a temporary pond near Rome during spring 2004. The central sediments were found to differ greatly from the other substrates. They were characterized by higher nutrient contents (total P, total N), organic matter and organic C, and silt and clay in the sediments, and lower dissolved oxygen content and lower pH in the water. Species richness and densities of total macrofauna showed the lowest values in central sediments and the highest ones in submerged macrophytes (Ranunculus spp.) and emergent vegetation (Juncus effusus). Oligochaeta Tubificidae, some Nematoda (Dorylaimus spp.), and Chironomidae Tanypodinae (Procladius sp. and Psectrotanypus varius) and Chironominae (Chironomus plumosus group) characterized the central sediments, whereas Ephemeroptera and most of the Odonata and Coleoptera species were commonly found in submerged macrophyte beds. Some species of Coleoptera and Hemiptera (Hygrobia hermanni, Helochares lividus, Berosus signaticollis and Gerris maculatus) were mainly found in the algal substratum, and some Nematoda species (Tobrilus spp. and Aporcelaimellus obtusicaudatus), Oligochaeta Enchytraeidae, young larvae of Sympetrum and Diptera Ceratopogonidae in littoral sediments. Juncus effusus appeared to be mainly colonized by Chironomidae Orthocladiinae (Psectrocladius sordidellus group and Corynoneura scutellata) and Tanytarsini (Paratanytarsus sp.). Central sediments also favoured high abundances of collector-gatherers, burrowers and drought resistant forms with passive dispersal, whereas Ranunculus spp. hosted mainly scrapers, shredders, swimmers+divers and active dispersal forms without any resistant stages to desiccation. Juncus plants were mostly colonized by collector-filterers and by organisms capable of both active dispersal and surviving desiccation. Littoral sediments and algae showed similar functional organization and intermediate features between central sediments and submerged macrophyte beds. All these results demonstrate that microhabitat characteristics play a crucial role in selecting macroinvertebrate taxa according to their environmental requirement, feeding mechanism, movement and resistance to drought. Moreover, our study confirms the role of submerged and emergent vegetation in maintaining high biodiversity and suggests that all microhabitats should be considered to provide both an exhaustive collection of species for pond management and conservation and basic insights into the functioning of pond communities.  相似文献   

5.
Although a large number of recent ecological studies have focused on freshwater bacterioplankton populations, knowledge of the primary factors influencing bacterial communities in urban rivers is limited. Bacterial community structure in three rivers located in Shanghai city was studied over a 1-year period using denaturing gradient gel electrophoresis (DGGE). Subsurface samples were collected every 2 months from two study sites in each river. Water was characterized when biological samples were collected by measuring temperature, pH, chloride ion, total dissolved solids (TDS), total N and total P. complex DGGE band patterns indicated high bacterial diversity in the rivers. Analysis of similarity (ANOSIM) showed that variation of the bacterial communities was higher between rivers than it was between samples from the same river. When evaluated using principal component analysis, samples collected during warmer months from any particular river tended to group together while cold-season samples generally clustered, suggesting significant seasonal impacts. Redundancy analysis was used to identify relationships between environmental factors and bacterial community composition in each individual river. Temperature, TDS, pH, TP and salt concentration were all identified as being related to bacterial community structure, with temperature being the most influential parameter in all three rivers. Our results indicated that bacterial community composition was different in the three different rivers. Even though the rivers were located in heavily disturbed urban ecosystems, temperature was the major driver of bacterial community composition, just as it is in natural systems.  相似文献   

6.
A study of bacterial communities and some physico-chemical parameters of a subtropical mangrove habitat in the Arabian Gulf (Bahrain) was carried out in 1993-1994. Six stations at different parts of the tidal channel were selected for sampling. The mangrove habitat was found to harbor diverse bacterial communities, included among them anoxygenic phototrophs (AP), oxygenic phototrophs (OP), organotrophs (OT), total coliforms (TC), faecal coliforms (FC) and haloalkaliphiles (HA). Spatial and temporal variations in bacterial communities and environmental parameters were found. Each of the OT, AP, TC, and FC were dominant in the innermost stations (S1&S2) and gradually decreased seaward. The HA community on the other hand, was dominant at the seaward stations (S5&S6) and was most likely to have originated from the sea through the tidal flows. Both AP and OT were considered as part of the mangrove native flora, whereas TC and FC were alien and believed to have been introduced through partially treated sewage released at the upstream of the tidal channel. Closely monitoring of the mangrove water revealed succession pattern in bacterial communities. The AP community was predominant from November 1993 to March 1994, succeeded by dominance of OP from June 1994 to October 1994. Both bacterial blooms gave water a pinkish, purple, or green color, respectively. Although OT prevailed during Transitional period between AP and OP eutrophication, it remained comparatively constant (not less than 2 x 10(5)cfu/ml) through other periods. Frequent eutrophication phenomena of OP, which took place in summer and autumn, coincided with increases in water temperature, chlorophyll a, and nutrients (NO(3)(-) and PO(4)(-)). On the other hand, OT and AP were negatively correlated with temperature, salinity and chlorophyll a, but no specific pattern was observed in relation to NO(3)(-) and PO(4)(-). In comparison with seawater, nutrients such as NO(3)(-) and PO(4)(-) were consistently higher in the mangrove habitat. Partially treated sewage and farm drainage canals are proposed to form additional sources of nutrients. Although, the mangrove habitat has been demonstrated to possess self-cleaning properties, data obtained suggest that anthropogenic pollution has a deleterious effect.  相似文献   

7.
We investigated the diversity, composition, and assembly processes of sedimentary bacterial communities across Lake Taihu, China, a large, shallow, and eutrophic water body. Amplicon-based 16S rRNA gene high-throughput sequencing identified the composition and phylogenetic structure of the bacterial communities within the 28 collected samples. Diversity analysis revealed that sedimentary bacterial communities demonstrated significant trends with nutrient loading and habitat along latitude. We used network analysis to disentangle the role of keystone taxa in bacterial communities. Most identified keystone species were from the genus Nitrospira (affiliated with Nitrospirae), subphylum Deltaproteobacteria (affiliated with Proteobacteria), subphylum Gammaproteobacteria (affiliated with Proteobacteria), family Rhodocyclaceae (affiliated with Betaproteobacteria), phylum Bacteroidetes, genus Bacillus (affiliated with Firmicutes), and family Anaerolineaceae (affiliated with Chloroflexi) in order of abundance. These keystone taxa play fundamental roles in carbon and nitrogen cycling within Lake Taihu. Phylogenetic structure analysis indicated that the bacterial communities were more phylogenetically clustered than expected by chance and that deterministic processes dominated the assembly of bacterial communities across Lake Taihu. Niche selection was the crucial factor driving the assembly of bacterial communities. This study enhances the understanding of the distribution of sedimentary bacterial communities and their assembly mechanisms across Lake Taihu.  相似文献   

8.
The majority of usable freshwater is stored as groundwater in the subsurface. Pristine groundwater ecosystems are characterised as oligotrophic environments which facilitate low energy yield, activity, growth, and reproduction for numerous and highly adapted organisms living in these environments. Degradation of groundwater quality and quantity are hence reflected in the structural changes of groundwater species communities. Despite an increasing awareness of this problem, current assessment methods for groundwater ecosystems are solely based on the analysis of abiotic parameters. However, this approach is insufficient to detect changes in microbial communities and their related metabolic functions. In recent years, the development of culture-independent molecular techniques to analyse microbes has vastly improved our knowledge concerning the diversity and composition of microbial communities in various environments. High-throughput sequencing (HTS) techniques enable the detection of single bacterial species in a sample and thus provide a high resolution of the composition and diversity of microbial communities in various environments. Furthermore, the taxonomic information obtained allows for the inference of metabolic functions of a given community. However, since the method is labour intensive and costly it is not necessarily the method of choice for analysing numerous samples. By comparison, DNA-fingerprinting is a less elaborate and inexpensive method that is able to detect changes in microbial communities, although identification of species present in a community is not possible, and therefore represents a valuable supplement to HTS. The present paper intends to render information about the applicability of this method as a monitoring tool against this background, by directly comparing results of DNA-fingerprinting with the results of HTS. Despite the fact that the analysis of bacterial communities using HTS captured significantly higher diversity estimates in our study, results of both methods were positively associated. And even though HTS produced more accurate and detailed results regarding composition and diversity of bacterial communities, patterns of community composition captured by DNA-fingerprinting were similar in comparison to HTS. We thus can suggest DNA-fingerprinting as a cost efficient alternative for community assessment and diversity estimation, specifically as a promising methodological approach in environmental assays.  相似文献   

9.
Total mercury (Hg) and methylmercury (MeHg) were analyzed in near surface sediments (0-2 cm) and biota (zooplankton, macro-invertebrates, finfish) collected from Narragansett Bay (Rhode Island/Massachusetts, USA) and adjacent embayments and tidal rivers. Spatial patterns in sediment contamination were governed by the high affinity of Hg for total organic carbon (TOC). Sediment MeHg and percent MeHg were also inversely related to summer bottom water dissolved oxygen (DO) concentrations, presumably due to the increased activity of methylating bacteria. For biota, Hg accumulation was influenced by inter-specific habitat preferences and trophic structure, and sediments with high TOC and percent silt-clay composition limited mercury bioavailability. Moreover, hypoxic bottom water limited Hg bioaccumulation, which is possibly mediated by a reduction in biotic foraging, and thus, dietary uptake of mercury. Finally, most biota demonstrated a significant positive relationship between tissue and TOC-normalized sediment Hg, but relationships were much weaker or absent for sediment MeHg. These results have important implications for the utility of estuarine biota as subjects for mercury monitoring programs.  相似文献   

10.
微生物是湖泊生态系统重要的有机组分。了解不同时期青藏高原湖泊细菌群落特征、环境驱动因子及其群落构建过程的差异,对高原湖泊水生态管理具有重要的指导意义。分别于2020年6和12月采集青藏高原东北部5个湖泊水样,基于高通量测序技术、统计分析和模型分析,解析高原湖泊群在非冰封期和冰封期细菌群落结构、环境驱动因子和中性过程、确定性过程以及随机性过程在细菌群落构建过程的贡献。结果表明:(1)非冰封期湖泊细菌群落的Chao1丰度指数、Simpson和Shannon多样性指数低于冰封期,Spearman相关性分析结果表明非冰封期细菌群落的Chao1丰度指数和多样性指数与水温和海拔显著相关,而冰封期细菌群落的Chao1指数和多样性指数与总氮显著相关;(2)水体细菌群落的优势门均为变形菌门(Proteobacteria),非冰封期细菌中拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)和厚壁菌门(Firmicutes)的平均相对丰度明显高于冰封期。另外,主坐标分析和相似性分析结果表明非冰封期和冰封期的细菌群落组成差异极显著;(3)冗余分析结果表明不同时期湖泊群细菌群落结构的...  相似文献   

11.
水体和沉积物是湖泊生态系统中迥异但又紧密相连的两类生境,栖息在这两类生境中的细菌在维持生态系统平衡和驱动元素循环中起着关键性作用。为了探究湖泊水体和沉积物细菌群落的分布格局,本文对太湖四个湖区水体和沉积物中细菌群落进行调查,基于高通量测序技术和统计分析手段,分析这两类生境中的细菌群落组成和多样性水平、分布特征及其驱动因素。结果表明:放线菌门(Actinobacteria)、变形菌门(Proteobacteria)和蓝细菌门(Cyanobacteria)是水体细菌群落中最主要的细菌门,而沉积物中Proteobacteria占据优势地位。在两类生境中,太湖西部区域细菌群落丰富度和独特性(LCBD)相对较高,各区域群落结构表现出显著性差异。对水体而言,电导率、pH值、PC1(重金属组成)和沉积物孔隙度是驱动细菌丰富度的重要因子,PC1、水温及pH值是影响细菌群落LCBD的重要因子,而细菌网络复杂性随pH值的增加而增加,且在高pH环境中占主导地位;对沉积物而言,其丰富度和LCBD的重要影响因子均是沉积物中总磷和锂,细菌网络复杂性随金属元素施加的环境压力增大而降低,但随总磷、磷酸盐和铵态氮浓度的...  相似文献   

12.
入湖河口湿地四种植物群落类型的土壤氮素空间分布特征   总被引:1,自引:0,他引:1  
任奎晓  陈开宁  黄蔚  施娴 《湖泊科学》2012,24(6):849-857
对江苏省溧阳市大溪水库的洙漕河河口湿地中香蒲、水蓼、灯心草和芦苇四种植物生物量、氮含量及植物群落的土壤氮素分布特征进行研究,结果表明:四种植物地上生物量、地上组织氮含量、地下生物量、地下组织氮含量存在显著差异;土壤烧失量(LOI)、总氮(TN)、硝态氮(NO3--N)在垂直分布上表现为由表层向下减少的总体分布趋势,铵态氮(NH4+-N)浓度的剖面变化呈现先减少后增加的趋势;四种植物群落土壤氮浓度各不同,但均大于对照,以有机氮为主,说明湿地具有一定的储氮能力;不同的植物群落影响湿地氮素的分布.相关性分析显示,土壤LOI与TN、NO3--N和NH4+-N均存在极显著相关性,无机氮构成比例较小,仅为1.41%,表明土壤中的氮素主要以有机氮的形式存在;土壤氮浓度与植物生物量及组织氮含量相关性不大,说明土壤氮形态浓度不仅受到植物生长的影响,同时也可能受到植物根区环境、微生物数量与活性等的影响.  相似文献   

13.
With many environments worldwide experiencing at least some degree of anthropogenic modification, there is great urgency to identify sensitive indicators of ecosystem stress. Estuarine organisms are particularly vulnerable to anthropogenic contaminants. This study presents bacterial communities as sensitive indicators of contaminant stress. Sediments were collected from multiple sites within inner and outer zones of three heavily modified and three relatively unmodified estuaries. Bacterial communities were censused using Automated Ribosomal Intergenic Spacer Analysis and analysed for a suite of metal and PAH contaminants. Shifts in both bacterial community composition and diversity showed strong associations with sediment contaminant concentrations, particularly with metals. Importantly, these changes are discernable from environmental variation inherent to highly complex estuarine environments. Moreover, variation in bacterial communities within sites was limited. This allowed for differences between sites, zones and estuaries to be explained by variables of interest such as contaminants that vary between, but not within individual sites.  相似文献   

14.
Temporal changes in the composition of soft bottom macrobenthic assemblages at Reunion Island (Southwest Indian Ocean) were studied in the context of a long-term environmental monitoring programme studying the impacts of effluents of industrial sugar cane refineries that are transferred to shallow and deep coastal environments by different pathways: surface discharge and deep underground injection. Seven stations (between 20 and 160 m depth) were surveyed between 1994 and 2003 on the industrial zone. One additional station was surveyed on a reference site. Spatio-temporal changes in the composition of macrobenthic communities were assessed using several diversity indices, ABC curves, MDS and associated ANOSIM tests and biotic indices. Among the 171 taxa recorded, polychaetes were dominant (89 species), followed by crustaceans and molluscs. The analysis of spatial changes in the composition of macrobenthos showed the existence of distinct benthic communities along the depth gradient. Temporal changes in macrobenthos composition were most prominent at the shallowest station. They mainly corresponded to the decline of several initially dominant taxa and the increase of the Eunicid polychaete Diopatra cuprea. This station further showed increasing macrofaunal abundance, biomass and sediment organic content over time, concomitant with decreasing sediment grain sizes. In deeper environments, temporal changes were much smaller. Macrofaunal abundance and species richness increased progressively, suggesting a moderate impact on benthic ecosystems resulting from slight enrichments due to effluents rich in organic matter. Our results highlight an original response to disturbance pattern involving opportunistic Eunicidae species (D. cuprea) not previously described. Moreover, they allow for the comparison of the impact on macrofauna caused by industrial effluents exported by two distinct and different pathways in a tropical coastal high-energy marine environment.  相似文献   

15.
Structure and composition of benthic macroinvertebrate assemblages were investigated during three consecutive years in six headwater streams that exhibit a high variation in environmental conditions, habitat structure and predatory pressure. We examined whether the abundance of functional feeding groups could be best predicted by the abundance of predators and some habitat and chemical variables. Mean density and biomass of macroinvertebrate functional feeding groups varied significantly throughout the study area. Stepwise multiple regression analyses revealed that both density and biomass of functional feeding groups was influenced primarily by chemical features of water. Shredder biomass and scraper density were also influenced by habitat features, the abundance of scrapers increasing in deeper localities at lower altitudes and with abundant macrophytes. The abundance of predatory invertebrates was related to the density and biomass of benthic prey. An influence of fish predation on invertebrate communities was not observed in the study streams. The finding that benthic communities in undisturbed headwater streams are mainly affected by water chemistry variables irrespective of fish predation and habitat features clearly highlight the sensitivity of functional feeding groups to changes in chemical features and their role as indicators for bioassessment.  相似文献   

16.
17.
Computer simulations of the topographic evolution of the proposed post‐mining rehabilitated landform for the ERA Ranger Mine, showed that for the unvegetated and unripped case, the landform at 1000 years would be dissected by localized erosion valleys (maximum depth = 7·6 m) with fans (maximum depth = 14·8 m) at the outlet of the valleys. Valley form simulated by SIBERIA has been recognized in nature. This indicates that SIBERIA models natural processes efficiently. For the vegetated and ripped case, reduced valley development (maximum 1000 year depth = 2·4m) and deposition (maximum 1000 year depth = 4·8m) occurred in similar locations as for the unvegetated and unripped case (i.e. on steep batter slopes and in the central depression areas of the landform). For the vegetated and ripped condition, simulated maximum valley depth in the capping over the tailings containment structure was c. 2·2 m. By modelling valley incision, decisions can be made on the depth of tailings cover required to prevent tailings from being exposed to the environment within a certain time frame. A reduction in thickness of 1 m of capping material over tailings equates to c. 1 000 000 Mm3 over a 1 km2 tailings dam area. This represents a saving of c. $1 500 000 in earthworks alone. Incorporation of SIBERIA simulations in the design process may result in cost reduction while improving confidence in environmental protection mechanisms. Copyright 2000 © Environmental Research Institute of the Supervising Scientist, Commonwealth of Australia.  相似文献   

18.
Partitioning beta diversity into its two components of spatial turnover and nestedness is a more robust method for checking spatial variability in biological communities than calculating the total beta diversity alone. The relative contribution of spatial turnover and nestedness has been used to test the effects of climatic, environmental, spatial and temporal variables on community composition. In this study, we tested the effects of environmental factors and microhabitat features on total beta diversity and its spatial turnover and nestedness components using a comprehensive dataset of aquatic Heteroptera collected from four types of permanent freshwater habitats (i.e. streams, ponds, rock tanks and reservoirs) in the Western Ghats of India. We observed that communities in all four types of habitats were predominantly shaped by dissimilarity caused due to spatial turnover (>85 %). Each type of habitat showed the presence of one or more species uniquely associated with it, which might contribute to the turnover between communities. The abiotic environment (climatic factors, topological factors, soil characteristics and microhabitat features) as well as assemblage structure differed significantly between habitat types. Communities in each type of habitat were affected by different environmental factors, such as precipitation and temperature patterns for streams, altitude and rocky substrate for rock tanks, and soil characteristics and the presence of aquatic macrophytes for ponds and reservoirs. Assemblages observed in the four types of permanent habitats are thus compositionally distinct due to species replacements between local communities, which in turn are strongly influenced by environmental variables. Similar to previous studies, our results show that spatial turnover largely measures the same phenomenon as total beta diversity on a regional scale.  相似文献   

19.
Linking the abiotic and biotic traits of ecosystems is a critical step towards understanding their structure and functioning. Here we attempt to determine the connections between the hydrodynamics, benthic landscape and the associated fish communities on the coastal continental shelf off the Balearic Islands (western Mediterranean). Specifically we investigate the role the hydrodynamics play in shaping the benthic landscape, and whether the hydrodynamics affect the composition and structure of demersal fish communities. A realistic numerical model was used to establish the hydrodynamic characteristics of the area. The study area showed high hydrodynamic variability on a medium spatial scale (tens of km) in terms of mean water velocity (ū). Principal component analysis was used to determine the main gradients of macro-epibenthic variability. Redundancy analysis (RDA) was used to model the effect of the hydrodynamics on macro-epibenthic species. RDA was also used to model the effect of the hydrodynamics and macro-epibenthos on the abundance of the associated fish fauna, and on its biomass at a community level using biomass spectra classes. The results showed that the hydrodynamics had a significant influence on the distribution of both macro-epibenthic species and the associated fish species. The latter was also influenced by the macro-epibenthos. Fish size appeared to be a key attribute for the distribution of species across gradients of ū and macro-epibenthic change. Our findings can be applied in ecosystem-based fisheries management, as they show that it is necessary to take into account both the biotic and abiotic traits of the habitats when the habitat use and requirements of the associated species are defined.  相似文献   

20.
Fish may affect macrobenthic communities through trophic interactions and modification of habitat conditions. We compared the density, diversity and taxonomic composition of larval chironomids under low vs high fish impact, created by stocking semi-natural ponds with either young/small common carp Cyprinus carpio at low biomass densities or with high biomass densities of older/large common carp, supplemented by other cyprinids and predatory fish species.Over the study season, May–August, total chironomid abundance was considerably lower in ponds with high fish biomass than in low fish biomass ponds. In July–August larval densities declined significantly, irrespective of the fish status of the ponds. The composition of larval communities diverged between ponds with different fish status. Chironomus riparius and C. plumosus accounted for most of the observed dissimilarity. C. plumosus densities were not affected by the fish status of the pond, constituting on average >38 % of chironomid specimens in both types of ponds. C. riparius was abundant in ponds with low fish biomass (on average 30 %), but rare in ponds with high fish biomass (4 %). Other common taxa were Glyptotendipes pallens (15 % and 13 %, respectively) and Procladius sp. (14 % in ponds with low fish impact). Canonical correspondence analysis showed that fish biomass was more important in determining chironomid community composition than environmental variables indicative of pond eutrophication (total N, P, chlorophyll a and conductivity).Despite adverse effects on total abundance, chironomid diversity was higher under apparently stronger trophic pressure by fish. Fish may have relieved some chironomid species from invertebrate predation and competition with dominant Chironomus larvae. Other important drivers of chironomid assemblage and diversity patterns may include species-specific feeding modes and prey size selectivity of fish, the ability of chironomid larvae to attain size- and depth-refuge from small fish but not larger fish, and differential vulnerability of free-living and tube-dwelling larvae relative to ontogenetic niche shifts of fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号