首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
渭南市人工增雨作业技术指标与判据   总被引:1,自引:0,他引:1  
利用渭南市1997—2006年10a 46次人工增雨过程的711雷达回波、天气形势、地面观测、实况等资料,结合近2a的多普勒雷达产品资料进行统计、对比、分析,得出渭南市高炮火箭人工增雨作业技术指标和判据。西风槽是主要影响天气系统;增雨时段2—9月,以3—7月为主;作业主要云系为层状云、对流云和混合云;首次分析出层状云0oC层亮带变化规律,强度20~35dB z,厚度0.3~0.5km,亮带高度随季节变化;根据不同云系的回波判据确定作业时机、部位、方式及用弹量;回波的移向移速也是确定作业时机的重要判据;得出多普勒雷达产品在人工增雨应用中的简易指标。  相似文献   

2.
火箭人工增雨作业中应注意的一些技术问题   总被引:1,自引:0,他引:1  
根据火箭增雨作业的原理对催化剂播撒量、成核率与火箭飞行速度和高度的关系进行分析;确定作业目标、时机和部位、作业火箭用量;对增雨效果、火箭播云对环境的影响进行评估。  相似文献   

3.
高炮、火箭人影催化作业云层高度的确定   总被引:3,自引:2,他引:1  
通过对碘化银的成核机理、高炮火箭撒播特点以及对不同类型云的特征分析,确定了使用高炮、火箭进行人影作业时云顶温度和人工增雨炮弹炸点及火箭播撒催化起点的温度:作业催化云层的云顶温度应处于-10~-24℃,最适宜为-15~-20℃;对层状云进行播撒催化,人工增雨炮弹炸点的高度应在-10~-15℃温度层,用火箭进行播撒作业时,起始播撒点的高度应确定在-10℃温度层;对积状云进行催化作业,人工增雨炮弹炸点的高度应选在-4~-10℃温度层,火箭起始播撒点的高度应确定在-4℃温度层.  相似文献   

4.
利用新一代多普勒天气雷达产品资料,结合人工影响天气原理,引用人工影响天气数值实验的人工冰核浓度等有关参数,将垂直累积液态含水量(VIL)及回波顶高度(ET)等导出产品合理地应用于火箭增雨防雹作业用弹量计算公式中,解决了以前人为或间接估计对流云作业区体积及其含水量的难题,提出客观定量计算人工增雨防雹作业用弹量的初步方案,并以其计算的用弹量为主要参数设计火箭作业参数指挥界面.经2005年一次增雨作业应用检验,证明结果切实可行,对节约人工影响天气成本,有效指导对流云火箭增雨防雹作业具有一定的意义.  相似文献   

5.
根据南阳气象观测站探空资料及AgI在云中成核率与温度的关系,确定了豫南BL-1型火箭人工增雨可播云体的判别标准、火箭发射仰角及火箭用弹量。  相似文献   

6.
根据南阳气象观测站探空资料及AgI在云中成核率与温度的关系,确定了豫南BL-1型火箭人工增雨可播云体的判别标准、火箭发射仰角及火箭用弹量。  相似文献   

7.
夏季对流云火箭增雨技术初步研究   总被引:11,自引:2,他引:11       下载免费PDF全文
该文着重讨论了利用具有射程远,播撒高度高,催化剂量大,成核率高等优点的增雨火箭,对对流云进行催化时目标云的选择、催化潜力判断、催化时机把握、催化部位的确定以及运用雷达来指挥作业等关键问题进行了研究。分析了当地地形气候特点、对流云雷达回波特征、作业工具特点等资料,并通过模式对催化剂量(火箭用弹量)进行模拟计算,以及充分考虑现有的人工影响天气技术水平、装备设施和通讯条件等,提出了包括客观作业指标、监测预警流程、作业参数生成、指挥通讯方式和效果观测收集等内容的火箭增雨作业技术方法。  相似文献   

8.
对WR系列增雨防雹火箭实施人工增雨作业的原理、作业时机、云层、射击点、射击部位的选择以及对WR增雨弹用弹量的选择进行综合分析。  相似文献   

9.
通过对火箭催化剂性能和撒播特点的分析、确定催化剂播撒最佳温度层和高度的方法、火箭防雹作业部位和火箭发射时的角度,提出火箭防雹作业用弹量的近似计算方法,尽可能地避免或减少损失,科学、高效地完成防雹减灾作业。  相似文献   

10.
对流云是湖北省西北部盛夏季节主要的降水来源,也是此时期抗旱人工增雨主要的作业对象,本文着重讨论了利用具体射程远,播散高度高,催化剂量大,成核率高等优点的增雨火箭,对对流云流行催化所涉及的目标云的选择,催化潜力判断,催化时机把握,催化部位的确定以及运用雷达来指挥作业等关键问题,通过对当地地形气侯特点,对流云雷达回波特征,作业工具特点等资料的分析,并通过模式对催化剂量(火箭用弹量)进行模拟计算,以及充分考虑现有的人影技术水平,装备设施和通讯条件等状况,初步提出了一套包括客观作用指标,监测预警流程,作业参数生成,指挥通讯方法和效果上集等内容的火箭增雨作用技术方法。  相似文献   

11.
雷达在确定火箭高炮发射角中的应用   总被引:8,自引:0,他引:8  
王斌  杨维军  唐仁茂 《气象》1999,25(6):39-41
通过对作业云体的回波强度、温度、含水量等物理量的观测,可定性定量的给出人工催化的云体部位,并可通过雷达、火箭、高炮、云体作业点三点组成的三角形直接计算出地面火力点的作业方位角,同时根据雷达测定的云的作业部位高度和火箭、高炮本身的弹道轨道,给出地面火力点的发射仰角。在人工影响天气作业中可减少靠目测指挥作业的盲目性。  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

14.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

15.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

16.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

17.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

18.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号