首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A representative collection of Upper Cretaceous rocks of Georgia (530 samples from 24 sites) is used for the study of magnetic properties of the rocks and the determination of the paleodirection and paleointensity (H an) of the geomagnetic field. Titanomagnetites with Curie points of 200–350°C are shown to be carriers of natural remanent magnetization (NRM) preserving primary paleomagnetic information during heatings to 300–350°C. The characteristic NRM component of the samples is identified in the interval 120–350°C. The Thellier and Thellier-Coe methods are used for the determination of H an meeting modern requirements on the reliability of such results. New paleointensity determinations are obtained and virtual dipole magnetic moment (VDM) values are calculated for four sites whose stratigraphic age is the Upper Cretaceous (Cenomanian-Campanian). It is shown that, in the interval 99.6–70.6 Ma, the VDM value was two or more times smaller than the present value, which agrees with the majority of H an data available for this time period. According to our results, the H an value did not change at the boundary of the Cretaceous normal superchron.  相似文献   

2.
The results of determining the paleointensity of the Siberian traps sampled from the Kotui sequence, Truba ravine, Onkuchak Suite, and dated to Permian-Triassic are presented. Most of the H anc values for separate lava flows are significantly lower than the values of the present geomagnetic field at the observation point (approximately 50 μT). This is consistent with the known conclusion that the intensity of the geomagnetic field at the Permian-Triassic boundary was lower by a factor of two to three lower than its present value. We carried out the comparative analysis of the behavior of H an and VDM for two trap sequences (Kotui (the Onkuchak Suite) and Norilsk) from the standpoint of the eruptive pulse hypothesis. In both sections, the average VDM values and their dispersion are similar. For comparison, similar analysis of the VDM behavior is conducted for the Brunhes epoch and Miocene in the interval of 5–10 Ma. It is hypothesized that during the three considered periods, namely, the eruption of the Siberian traps, in the Brunhes epoch, and in Miocene (in the interval of 5–10 Ma), the time behavior of the geomagnetic field was close to a stationary stochastic process.  相似文献   

3.
We present the results of analyzing a representative collection of the middle Miocene 12.4–10.0 Ma basalts that compose the volcanic cover of the Shufan and Sovgavan plateaus, namely the Nikolo-L’vovsk (NL) and Sovetskaya Gavan (SG) volcanic fields. Preliminary data are obtained about the relicts of some volcanic edifices within the West and East Sikhote-Alin volcanic belts, namely the Shishlovskii, Malyshevo, and Truzhenik objects. It is established that the volcanic rocks from these localities are characterized by similar petrologic and magnetic properties. Thermal cleaning of the samples is carried out, and the coordinates of the paleomagnetic pole are determined as Λ = 190.2°E, Φ = 71.3°N for basalts of the Nokolo-L’vovsk area and Λ = 180.4°E, Φ = 71.9°N for rocks from the Sovgavan locality. These values are consistent with the data for coeval volcanics from other regions of Eurasia. Reliable determinations of the paleointensity H pal for a representative collection of samples were obtained using the Thellier method. The corresponding values of the virtual dipole moment (VDM) are almost half its present-day value. The analysis of the Miocene VDM values available from the world database revealed a low average field 5.06 × 1022 Am2 characterized by high variance σ = 2.13 × 1022 Am2 at that time. The similarity of VDM values for the Miocene characterized by frequent inversions and for the Cretaceous Superchron supports the hypothesis of the lack of a correlation between the VDM values and the frequency of geomagnetic inversions.  相似文献   

4.
地球磁场多次发生南北(正负)磁极位置的变换和白垩纪超静磁带(CNS)的异常现象,这已为大家所公认.但造成这种异常现象的原因,则是迄今未能很好解答的一个难题. 应用非线性理论对地球磁极倒转和白垩纪超静磁带进行了分析, 认为超静磁带事件意味着地球核幔相互作用和外核流体运动可能处于能量最低的状态,地球磁场系统通过不断地与外界交换物质和能量,维持一种空间或时间的有序结构.在121~83Ma期间,无外星撞击地球引起地磁极性倒转,可能是白垩纪超静磁带出现的原因之一.地球磁场极性的随机倒转具有混沌运动的自逆转特性,混沌理论给地磁极性倒转提出了一个简明的动力机制解释.  相似文献   

5.
The extreme scarcity of data on the behavior of the paleointensity H an in the geological past from rocks older than 400 Ma significantly hinders the development of our ideas of the geomagnetic field evolution and the geological history of the Earth as a planet. This work presents H an determinations for the Early Proterozoic using the Thellier method and meeting modern requirements for their reliability. The data are obtained from 1850-Ma rocks of granite intrusions sampled in the south of the Siberian platform. The rocks are virtually unaltered granites and granitoids. The paleointensity was determined on 15 samples; results from 11 samples were found to be suitable for the calculation of H an, which is good for experiments of this type. The common feature in the behavior of the natural remanent magnetization (NRM) is a very narrow interval of blocking temperatures: destruction of (60–90)% NRM often took place between 500 and 550°C. Because of the large thickness of the sampled magmatic body, the paleointensity estimates were corrected for its slow cooling rate. With regard for this correction, the probable value of the virtual dipole moment (VDM) from the given collection amounts to 5 × 1022 A m2. Analysis of all published data obtained by the Thellier method for the Precambrian and satisfying the well-known minimal criteria of reliability showed that the average VDM value is about 2 × 1022 A m2, which is four times smaller than the VDM value of the last million years. This phenomenon can be interpreted in terms of the hypothesis that the solid inner core formed only in Proterozoic and, in its absence, the generation of the geomagnetic field was relatively weak, which yielded a small intensity value of the geomagnetic field at early stages of the Earth’s evolution.  相似文献   

6.
Summary A reconnaissance paleomagnetic study of Hispaniola shows that three igneous units in the Dominican Republic possess meaningful directions of magnetism. A Late Cretaceous tonalite, an Eocene pyroxene diorite and a Miocene andesite porphyry have been investigated. The rock material studied is fresh, and has not been affected by secondary oxidation except in the case of the andesite which is occasionally weathered and reveals some hydrothermal alteration. Alternating field and thermal demagnetization result in removal of viscous remanence in some samples, while others reveal a good stability of NRM and little change in direction. The results disclose directions of magnetization substantially different from that of the present earth's field in Hispaniola and from those obtained from contemporaneous rocks of North America. They yield paleomagnetic poles at 23.1° N, 144.9° W for the Cretaceous tonalite and at 17.4° N, 138.0° W for the Eocene diorite, the positions of which are not significantly different from each other, suggesting no change of geomagnetic field direction during the two epochs. These poles have generally similar positions to those obtained from Late Cretaceous rocks on Jamaica and Puerto Rico. The Miocene data fall into two groups, one having a direction corresponding to a pole closely coinciding with the Miocene North American pole and the other giving a paleomagnetic pole at 68.3° N, 151.9° W coinciding with the Miocene pole for Jamaica. Paleotectonic interpretation of the results suggests that like other Greater Antilles, Hispaniola has been subject to large anticlockwise rotation since Late Cretaceous.  相似文献   

7.
A large volume of data on the paleointensity H an obtained by A.S. Bol’shakov and G.M. Solodovnikov is ignored in modern reconstructions because the authors did not indicate whether they used the check-point procedure for the detection of chemical alterations in rocks associated with determination of H an. The paper presents new values of H an determined by the Thellier-Coe method with the use of the checkpoint procedure from samples of the Armenian collection of Cretaceous rocks used in published studies of Bol’shakov and Solodovnikov. The new results are close to the published ones and point to a small value of the geomagnetic field in the Cretaceous, thereby corroborating Bol’shakov-Solodovnikov’s hypothesis on a low paleofield in the Mesozoic. Our study of samples of the collection studied confirms the reliability of Bol’shakov-Solodovnikov’s determinations of H an.  相似文献   

8.
The frequency distribution of intervals between Cenozoic geomagnetic reversals approximates a power law, while their occurrence over time shows temporal clustering of short and long intervals. Application of the Aggregate Variance and Absolute Value methods suggest long-range dependence in this time series, a possible indication that the geodynamo operates as a self-organised complex system. This hypothesis may allow the Cretaceous superchron to be considered as an integral part of the ordinary reversal regime attested in the Cenozoic record.  相似文献   

9.
Southwest Tarim (hereafter SW Tarim) is one of afew areas that well developed Cretaceous marinesedimentary rocks in China [1]. The Cretaceous marinesediments are stretched in front area along the Tian-shan and Kunlun Mountains. Toward the center ofTarim Basin, the Cretaceous sediments are buried bygreat thickness of Tertiary and Quaternary sedimentswith little exposure. Compared with the Cretaceousterrestrial strata of north Tarim, the Cretaceous marinestrata of SW Tarim continue and d…  相似文献   

10.
We present new Middle Miocene paleomagnetic data for the central Japan Arc, and discuss their implications for Miocene rotation. To obtain a refined paleodirection, we made magnetic measurements on basaltic to andesitic lavas and intrusive rocks from 12 sites in the Tsugu volcanic rocks (ca 15 Ma) in the northern part of the Shitara area, Japan. Significant secondary magnetizations in samples with strong magnetic intensities are interpreted as lightning‐induced components. Mean directions carried by magnetite and/or titanomagnetite were determined for all sites. An overall mean direction with a northerly declination was obtained from dual‐polarity site means for nine sites. This direction is indistinguishable from the mean direction for coeval parallel dikes in the northern part of the Shitara area, and also indistinguishable from the Miocene reference direction derived from the paleopole for the North China Block in the Asian continent. These comparisons suggest little or no rotation or latitudinal motion in the study area with respect to the North China Block since 15 Ma. We obtained a refined early Middle Miocene paleodirection (D = 9.7°, I = 52.5°, α95 = 4.8°; 30 sites) and paleopole (82.0°N, 230.8°E, A95 = 5.6°) for Shitara by combining data from the Tsugu volcanic rocks and a coeval dike swarm. An anomalous direction found at three sites could be a record of an extraordinary field during a geomagnetic polarity transition or excursion. Paleomagnetic data from Shitara suggest that: (i) the western wing of the Kanto Syntaxis, a prominent cuspate geologic structure in central Honshu, underwent a counterclockwise rotation with respect to the main part of the southwestern Japan Arc between ca 17.5 Ma and 15 Ma; (ii) collision between the Japan and Izu–Bonin (Ogasawara) Arcs began prior to 15 Ma; and (iii) clockwise rotation of the entire southwestern part of the Japan Arc had ceased by 15 Ma.  相似文献   

11.
The Nanling Mountains lying in the southern part of South China are an economically important gran-ite-related multi-metallogenic province. The Nanling Mountains granites can be described as: temporally spanning from Caledonian to Yanshanian and spatially distributed as three EW trending zones: the north one in Zhuguangshan-Qingzhangshan, the middle one in Dadongshan-Guidong, and the south one in Fogang-Xinfengjiang with two neighboring zones’ midline having an interval of ca. latitude …  相似文献   

12.
The geological evolution of the Mesozoic Troodos Ophiolite Complex in Cyprus, and the tectonic nature and timing of the palaeomagnetically indicated anticlockwise rotation of Cyprus of some 80° and ca. 15° northward translation, have been open for debate for some time. New palaeomagnetic data from 18 sites ( 180samples) in the post-ophiolite sediments, ranging in age from Upper Cretaceous to Upper Miocene, are presented. Most of the sites are of normal geomagnetic polarity, but indications of reversed polarity have been found in an older group of sediments (the Lefkara Formation of Upper Palaeocene age).Six sites from the older group of sediments (Upper Cretaceous to Eocene in age) give a site mean direction of the AF cleaned sediments of (D, I) = (323°, 29°) with α95 = 18°, while 5 sites from a younger group of sediments (Oligocene to Miocene in age) give a cleaned site mean direction of (D, I) = (334°, 58°) with α95 = 9°. These and published data suggest that an anticlockwise rotation of Cyprus of 60 ± 10° occurred early during the post-igneous evolution of the Cyprus oceanic crust between 90 and 50Ma, leaving only a minor anticlockwise rotation of 20 ± 10° to occur during the last 50 Ma. It is furthermore concluded that the northward translation of Cyprus of 15° mostly took place during the last 30Ma.It thus appears that a fairly rapid rotation of the Cyprus microplate first took place in the Late Cretaceous and Early Tertiary time with an average angular velocity of 1–2°/Ma, during which the northward translation was minor or negligible. In the latter half of the Tertiary, the sense of movement appears to have radically changed, the northward translation now being dominant with an average velocity of 5–6cm/yr. This temporal evolution is found to be in good agreement with the Mesozoic and Tertiary movements of the African lithospheric plate relative to Europe, as evidenced from the Atlantic sea-floor magnetic anomaly spreading history.  相似文献   

13.
Feng  Guo  Weiming  Fan  Yuejun  Wang  Chaowen  Li 《Island Arc》2005,14(2):69-90
Abstract Early Cretaceous high‐K calc‐alkaline volcanism occurring in the Laiyang Basin north of the Sulu high‐pressure to ultrahigh‐pressure (HP‐UHP) Metamorphic Belt, eastern China, comprises a wide spectrum of rock types, ranging from trachybasalts to trachydacites. The basaltic–andesitic rocks erupted at 107–105 Ma, spanning an SiO2 range of 50.1–59.6% and an MgO range of 2.6–7.2%, and are characterized by large ion lithophile element (LILE; e.g. Ba and K) and light rare earth element (LREE) enrichment, high field strength element (HFSE) depletion and highly radiogenic Sr but non‐radiogenic Nd isotopic compositions (87Sr/86Sr(i) = 0.70750–0.70931; ?Nd(t) = ?17.9 ? ?15.6). The geochemical similarities between these rocks and the earlier Sulu Belt lamprophyres suggest that both types of mafic rocks were derived from similar mantle sources with LILE and LREE enrichment. Thus, the Wulian–Qingdao–Yantai Fault that separates the two terranes at the surface should not be considered as a lithospheric boundary between the North China and Yangtze blocks. The felsic lavas erupted at 93–91 Ma, spanning an SiO2 range of 61.6–67.0% and an MgO range of 1.1–2.6%, and show a trace element geochemistry similar to the basaltic rocks, but with higher radiogenic Sr and even lower Nd isotopic compositions (87Sr/86Sr(i) = 0.70957–0.71109; ?Nd(t) = ?19.1 ? ?17.5), similar to I‐type granitoids in the Sulu Belt. A crustal origin was proposed to explain their compositions (which are comparable to those of experimental slab melts), the >10 Ma eruption interval and the compositional gaps in some elements (e.g. P, Ti and Sr) between them and the older basaltic–andesitic rocks. These melts were derived from predominant metaigneous protoliths containing mafic accumulative counterparts of the basaltic–andesitic and/or lamprophyric magmas. The extensive extrusion of Early Cretaceous high‐K calc‐alkaline rocks in the Laiyang Basin favored an extensional regime in response to the progressive attenuation of the thickened lithosphere and orogenic collapse, as reflected in the development of the basin from a foreland basin (before the end of the Jurassic period) to a fault basin (since the Early Cretaceous period).  相似文献   

14.
Mantle plumes control magnetic reversal frequency   总被引:2,自引:0,他引:2  
Magnetic reversal frequency correlates inversely with mantle plume activity for the past 150 Ma, as measured by the volume production rate of oceanic plateaus, seamount chains, and continental flood basalts. This inverse correlation is especially striking during the long Cretaceous magnetic normal “superchron”, when mantle plume activity was at a maximum. We suggest that mantle plumes control magnetic reversal frequency by the following sequence of events. Mantle plumes rise from theD″ seismic layer just above the core/mantle boundary, thinningD″ to fuel the plumes. This increases core cooling by allowing heat to be conducted more rapidly across the core/mantle boundary. Outer core convective activity then increases to restore the abnormal heat loss, causing a decrease in magnetic reversal frequency in accord with model predictions for bothα2 andαω dynamos. When core convective activity increases above a critical level, a magnetic superchron results. The pulse of plume activity that caused the Cretaceous superchron resulted in a minimum increase in core heat loss of about 1200 GW over the present-day level, which corresponds to an increase in Joule heat production of about 120 GW within the core.  相似文献   

15.
The mean palaeomagnetic pole position obtained from Upper Cretaceous rocks in west Sicily is at 21°N, 100°E (A95 = 15°), and at 38°N, 67°E (A95 = 31°) obtained from Middle Jurassic rocks. These pole positions are completely different from comparable pole positions for southeast Sicily and Africa and imply a clockwise rotation of west Sicily since the Upper Cretaceous of about 90° relative to southeast Sicily and Africa and also a clockwise rotation of about 60° relative to “stable” Europe. The sense of rotation of west Sicily is opposite to any known rotation of other crustal blocks in the central Mediterranean.  相似文献   

16.
Summary A statistical model of the geomagnetic field is derived, based on the assumption of an axial geocentric dipole field of strengthH e at the equator perturbed by randomly directed components of constant magnitudeh. The model fits the dispersions found from an analysis of the 1945 field, and the ratioh/H e obtained for this field and from the palaeomagnetic data both average to about 0.4. The model predicts that during reversal of the dipole field, the field intensity falls to between 0.2 and 0.4 of the steady field intensity, and this agrees with estimates made from the palaeomagnetic observations.  相似文献   

17.
Abstract The Ryoke Belt is one of the important terranes in the South‐west Japan Arc (SJA). It consists mainly of late Cretaceous granitoid rocks, meta‐sedimentary rocks (Jurassic accretionary complexes) and mafic rocks (gabbros, metadiabases; late Permian–early Jurassic). Initial ?Sr (+ 25– + 59) and ?Nd (? 2.1–?5.9) values of the metadiabases cannot be explained by crustal contamination but reflect the values of the source material. These values coincide with those of island arc basalt (IAB), active continental margin basalt (ACMB) and continental flood basalt (CFB). Spiderdiagrams and trace element chemistries of the metadiabases have CFB‐signature, rather than those of either IAB or ACMB. The Sr–Nd isotope data, trace element and rare earth element chemistries of the metadiabases indicate that they result from partial melting of continental‐type lithospheric mantle. Mafic granulite xenoliths in middle Miocene volcanic rocks distributed throughout the Ryoke Belt were probably derived from relatively deep crust. Their geochemical and Sr–Nd isotopic characteristics are similar to the metadiabases. This suggests that rocks, equivalent geochemically to the metadiabases, must be widely distributed at relatively deep crustal levels beneath a part of the Ryoke Belt. The geochemical and isotopic features of the metadiabases and mafic granulites from the Ryoke Belt are quite different from those of mafic rocks from other terranes in the SJA. These results imply that the Ryoke mafic rocks (metadiabase, mafic granulite) were not transported from other terranes by crustal movement but formed in situ. Sr–Nd isotopic features of late Cretaceous granitoid rocks occurring in the western part of the Japanese Islands are coincident with those of the Ryoke mafic rocks. Such an isotopic relation between these two rocks suggests that a continental‐type lithosphere is widely represented beneath the western part of the Japanese Islands.  相似文献   

18.
The Early Cretaceous may be considered a key period for understanding the evolution of the Earth’s magnetic field. Some still unsolved problems are related to the mode of paleosecular variation (PSV) of the Earth’s magnetic field before and during the Cretaceous Normal Superchron. We report here a detailed rock-magnetic, paleomagnetic and paleointensity investigation from 28 lava flows (331 standard paleomagnetic cores) collected in the Argentinean part of the Parana Flood Basalts (Formation Posadas) in order to contribute to the study of PSV during the early Cretaceous and to obtain precise Cretaceous paleomagnetic pole positions for stable South America. The average paleofield direction is precisely determined from 26 sites, which show small within-site dispersion and high directional stability. Five sites show evidences for the self-reversal of thermoremanent magnetization. 23 sites yielded normal polarity magnetization and only 3 are reversely magnetized. Moving windows averages were used to analyze the sequential variation of virtual geomagnetic pole’s (VGP) axial positions. Interestingly, the axial average VGP path traces an almost complete cycle around the geographical pole and passes near the location of all previously published Paraná Magmatic Province poles. Both paleomagnetic poles and average VGP paths are significantly different from the pole position suggested by fixed hotspot reconstructions, which may be due to true polar wander or the hotspot motion itself. Only 15 samples from 5 individual basaltic lava flows, yielded acceptable paleointensity estimates. The site mean paleointensities range from 25.2 ± 2.2 to 44.0 ± 2.2 μT. The virtual dipole moments (VDMs) range from 4.8 to 9.9 × 1022 Am2. This correspond to a mean value of 7.7 ± 2.1 × 1022 Am2 which is 96% of the present day geomagnetic field strength. These intensities agree with the relatively high values already reported for Early Cretaceous, which are consistent with some inferences from computer simulations previously published.  相似文献   

19.
Adakitic rocks in continental settings are commonly considered to be formed by partial melting of thickened or delaminated lower crust. Investigations on this kind of rocks can provide important information about crustal evolution complementary to information from other rocks. This paper reports adakitic granodiorite of the Lingxi pluton in the interior of the Cathayisa Block. LA-ICP-MS zircon U-Pb dating shows that it was formed in the late Early Cretaceous(100±1 Ma). The granodiorite has geochemical features of adakitic rocks derived from partial melting of the thickened lower crust, e.g., high SiO2(mainly ranging from 64.4 to 68.9 wt.%) and Sr(624–894 ppm) contents, Sr/Y(49.9–60.8) and La/Yb(23.4–42.8) values, low Y(10.3–17.1 ppm), Ni(5.62–11.8 ppm) and MgO(mostly from 0.86 wt.% to 1.57 wt.%) contents and weak Eu anomaly. It has initial 87Sr/86 Sr ratios of 0.7086–0.7091, εNd(t) values of.6.2 to.5.9 and zircon εHf(t) values mostly of.10.1 to.7.6. Based on the geochemical characteristics and simple modelling, it is suggested that the most likely generation mechanism of the Lingxi granodiorite is partial melting of a thickened Proterozoic lower continental crust at a pressure ≥12 kbar(or crust thickness ≥40km), leaving a garnet-bearing amphibolite residue. Combining our results and previous studies of the tectonic evolution of the Cathaysia Block, we propose that the crust was thickened to over 40 km by a compressive event occurring during the late Early Cretaceous, which is supported by the observation that there is an angular unconformity between the Upper Cretaceous Series and the early Lower Cretaceous or the Jurassic rocks. After this event, the Cathaysia Block experienced a lithospheric extension and thinning probably driven by the high-angle paleo-Pacific subduction. With the attenuation of lithosphere, the lower crust was heated to partial melting by upwelling asthenospheric materials, resulting in generation of the Lingxi granodiorite and other coeval granitoids in the Cathaysia Block. This study provides new information on the crustal evolution of the Cathaysia Block during the Early Cretaceous.  相似文献   

20.
When re-heated to temperatures below the Curie temperature and subsequently cooled in a constant magnetic field (H T), rock samples which contain magnetic minerals can acquire an induced magnetic anisotropy (IMA). As the result of acquiring the IMA, a constriction develops in the hysteresis loop of the magnetization of these rocks at the values of the magnetizing field close or equal to the HT. Thus the IMA is capable of retaining the information on the palaeointensity of the geomagnetic field, i.e., if IMA was created in a rock in the geomagnetic field in a past geological epoch, it preserves the information on the intensity of that field. Investigations have shown, that when IMA is created in a rock under external stress, the stress has an impact on the magnetic memory. Here we also deal with the issue of how stress affects the magnetic memory of IMA. A mathematical model for the effect of stress on magnetic memory phenomena related to induced magnetic anisotropy in rocks containing multidomain magnetite and titanomagnetite grains is proposed herewith. The effect of temperature on the magnetic memory of rocks is discussed also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号