首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
准噶尔盆地地温分布特征   总被引:31,自引:2,他引:31  
据盆地大量的钻孔测温资料和实测岩石热导率、放射性生热率等岩石热物理性质参数,分析了准噶尔盆地的地温分布状况,表明盆地现今是一个相对较冷的盆地,平均地温梯度为22.6℃/km.由热传导理论计算了盆地深部和无钻井区的地温,并编制了盆地3 000~6 000 m深温度分布图和盆地东西、南北向的温度分布剖面图,分析了盆地深浅地温的关系.  相似文献   

2.
盆地的热体制研究对盆地构造演化与油气勘探意义重大。岩石放射性生热率是岩石重要的热物性参数,是研究盆地热体制的基础数据之一。不同于传统的分析测试方法,自然伽马(GR)—生热率(A)换算只需要GR测井就可以计算生热率。笔者利用塔里木盆地不同地区20口主要钻井的GR测井数据计算了沉积层共6094个生热率数据,建立了代表性钻井岩性测井—生热率对比图、塔里木盆地地层生热率柱,估算了盆地沉积层放射性生热对地表热流的贡献及对深部地层的增温效应。结果表明,塔里木盆地沉积层的平均生热率为1. 17±0. 336μW/m3,岩性是地层生热率的主控因素,泥岩生热率最高,为1. 96±0. 318μW/m3,砂岩次之,为0. 99±0. 264μW/m3,白云岩和灰岩生热率较低,分别为0. 44±0. 362μW/m3和0. 36±0. 408μW/m3。根据地层生热率,估算沉积层生热贡献的热流为9. 36mW/m2,约占地表总热流的21%,沉积层生热对地温梯度的贡献约为3. 3℃/km,放射性生热对属于“冷盆”的塔里木盆地的地温场具有不容忽视的影响。  相似文献   

3.
岩石热物性是盆地模拟和预测深部温度时不可或缺的参数。琼东南盆地是当前我国海洋油气资源勘探开发的重点区 块,揭示该盆地的热状态和烃源岩热演化历史均离不开真实可靠的岩石热物性参数。前人虽然对南海北部地区的岩石热物 性开展过相关研究,仍存在实测数据偏少、代表性不足和相互矛盾等问题,亟需新增一批新的实测数据来弥补该区基础地 热参数的不足。文章对采自琼东南盆地19口钻孔的32块岩心样品开展了热导率、生热率以及密度和孔隙度等物性参数测 试,揭示了它们的空间展布特征、相互关系及其主控因素,建立了琼东南盆地新生界地层平均热导率和生热率,据此估算 出盆地沉积物的放射性生热贡献约占地表热流的33%。这些实测的岩石热物性参数为南海北部海域沉积盆地的盆地模拟和 地热相关研究提供了坚实的基础数据。  相似文献   

4.
岩石热物性是盆地模拟和预测深部温度时不可或缺的参数。琼东南盆地是当前我国海洋油气资源勘探开发的重点区 块,揭示该盆地的热状态和烃源岩热演化历史均离不开真实可靠的岩石热物性参数。前人虽然对南海北部地区的岩石热物 性开展过相关研究,仍存在实测数据偏少、代表性不足和相互矛盾等问题,亟需新增一批新的实测数据来弥补该区基础地 热参数的不足。文章对采自琼东南盆地19口钻孔的32块岩心样品开展了热导率、生热率以及密度和孔隙度等物性参数测 试,揭示了它们的空间展布特征、相互关系及其主控因素,建立了琼东南盆地新生界地层平均热导率和生热率,据此估算 出盆地沉积物的放射性生热贡献约占地表热流的33%。这些实测的岩石热物性参数为南海北部海域沉积盆地的盆地模拟和 地热相关研究提供了坚实的基础数据。  相似文献   

5.
中国大陆科学钻探(CCSD)主孔地区岩石圈热结构   总被引:11,自引:2,他引:11  
岩石圈热结构是指地球内部热量在壳幔的配分比例、温度以及热导率和生热率等热学参数在岩石圈中的分布特征。岩石圈的热结构直接影响着岩石的物理性质和流变学性质,同时还控制了化学反应的类型和速度,从而制约着岩石圈的发展和演化。本文在前人CCSD主孔岩石主、微量元素研究基础上,利用Rybach生热率公式计算了钻孔岩石的放射性生热率,并结合岩石热导率的测定研究了CCSD主孔100-2000m岩石的热结构和主孔榴辉岩在不同退变质程度下生热率、热导率的变化:钻孔中岩石的平均生热率为0.95μWm-3,平均热导率为2.96mWm-1K-1。,其中片麻岩生热率高迭1.01-1.7μWm-3,热导率为2.76-2.96mWm-1K-1;基性超基性岩石生热率最低(<0.21μWm-3),热导率则高达3.20mWm-1K-1以上;新鲜榴辉岩生热率、热导率居中,分剐为0.16-0.44μWm-3和3.31-3.85mWm-1K-1。钻孔中榴辉岩生热率、热导率变化主要受岩性控制:从新鲜榴辉岩到完全退变榴辉岩,热导率总体上降低,但从强退变榴辉岩到完全退变榴辉岩,岩石热导率升高;而在此过程中岩石生热率总体上升高,仅当从中等退变质榴辉岩退变为强退变质榴辉岩时,岩石生热率出现降低趋势。在综合研究的基础上预测CCSD主孔5000m深度处温度为139℃,温度范围为131-151℃。根据区域深部地球物理探测成果对CCSD主孔地区岩石圈热结构进行了研究:上地壳底部温度为256℃,中地壳底部温度为492℃,Moho面温度为683℃,岩石圈底部温度为1185℃,来自地幔的热流为44.1mWm-2,对地表热流的贡献率为58%。研究结果表明,由岩石物理方法获得的CCSD主孔地区岩石圈地温曲线与石榴石-二辉橄榄岩包体推断的中国东部地温曲线十分吻合,本文从实验岩石物理学角度为CCSD主孔地区岩石圈热结构研究提供了重要约束  相似文献   

6.
岩石古放射性生热率的校正及其地球化学意义   总被引:1,自引:0,他引:1  
岩石放射性生热率是研究油气沉积盆地地热及花岗岩体热演化史的一个重要参数,但由现今采样分析所测得的放射性元素含量计算得出的是当今的放射性生热率。因此,本文根据辐射衰变定律及U、Th和K的放射性生热参数,导出三种不同计量单位(μWm-3,μJg-1a-1,HGU)校正岩石古放射性生热率的公式。它们可应用于沉积盆地中古地层放射性生热率的计算和校正,也适用于铀矿床成矿古水热系统热源及花岗岩体热演化史的研究。  相似文献   

7.
大地热流值是表征地球热状态的重要参数,也是进行深部地温预测和评价一个地区地热资源的最基本数据。受钻孔测温的影响,盆地外的无钻孔测温地区缺少实测的大地热流值。目前的热流分布图都是依据相邻盆地的实测值进行插值绘制的,无钻孔区热流值可信度较低。由于岩石居里点与温度密切相关,可以通过居里面深度来研究地表热流值。本文依据东北地区现有的居里面深度分布图,结合实测的岩石热导率、岩石生热率数据和相应的地壳分层状况,计算了东北地区的大地热流值,重新绘制了中国东北地区精细的大地热流分布图。东北地区整体大地热流处于42.5~95 mW/m 2 之间,热流高值位于五大连池及敦化 密山断裂带海龙—牡丹江一带,松辽盆地内部、小兴安岭和长春 延吉缝合带也有局部的高热流值。热流高值与居里面隆起区域有较高的一致性,即居里面隆起处热流较高,而坳陷区热流较低。本次研究填补了中国东部地区热流实测值空白,为该区深部地温预测和地热资源评价提供了更加准确的参数。  相似文献   

8.
岩石热导率是地热理论和应用研究中十分重要的参数,对于地热资源评估、大地热流分析、深部热状态及岩石圈热结构等相关研究提供了基础数据支撑。本文从二连盆地白音查干凹陷和乌利亚斯太凹陷采集了98块基本覆盖白垩系各地层的钻井岩芯样品,在实验室条件下对它们进行了岩石热导率测试,并收集了前人对31个样品的测试结果,进而结合孔隙度、钻孔实测温度和深度数据,对实验室条件下的测试数据进行了饱水校正和温压校正。测试样品包括泥岩、砂岩、砾岩、片岩和玄武岩,孔隙度在2%~20%之间,采样深度在117.8~3159.5m范围内,对应的温度和压力范围分别为13.5~118.6℃、2.89~77.41MPa。实测结果表明5种不同岩性岩石样品的热导率变化范围为0.89~4.91W/(m·K)。经过饱水和温压校正后,泥岩、砂岩、砾岩、页岩和玄武岩的平均热导率分别为2.08±0.36W/(m·K)、2.28±0.50W/(m·K)、2.53±0.44W/(m·K)、4.16±0.76W/(m·K)、1.33±0.09W/(m·K)。5种岩性中片岩平均热导率值最大,玄武岩平均热导率值最小,沉积岩介于两者之间,总体上具有随深度增大而增加的趋势。饱水、温度和压力校正后的热导率比干样热导率高。结合研究区内各个地层砂岩和泥岩所占比计算得到白音查干凹陷和乌里雅斯太凹陷白垩系地层热导率分别为2.00W/(m·K)和2.17W/(m·K)。结合钻孔测温数据,计算得到二连盆地大地热流值介于74~85mW/m^2,明显高于中国大陆地区平均热流值61.5mW/m^2。本文的研究成果对二连盆地以及华北北缘的地热资源,深部热状态和岩石圈结构都有意义。  相似文献   

9.
中国东南地区岩石生热率分布特征   总被引:26,自引:0,他引:26  
赵平  罗定贵 《岩石学报》1995,11(3):292-305
基于500余块岩石样品的生热率实测值和前人的研究成果,本文系统地分析了中国东南地区不同时代、不同岩性和不同大地构造单元岩石生热率的分布特征,揭示出华南沉积区地层在晚元古代一寒武纪和侏罗纪出现两次生热率高峰,花岗岩具有异常高的生热率背景。岩石生热率以粤中-赣南为核心,向外扩展呈下降趋势;政和-大埔断裂带西侧生热率明显高于东侧火山岩出露区;扬子沉积区明显低于华南区。按区域岩石生热率分布可以划分为三个区:南区生热率背景值超过2.8μW/m3,东区介于2.1~2.8μW/m3,北区普遍低于2.1μW/m3。岩石生热率分布在一定程度上反映了区域基底生热元素的丰度和岩浆活动的强度。  相似文献   

10.
放射性生热率是岩石热物性参数之一,也是研究岩石圈热结构和构造热演化的重要参数。针对南海海盆区缺少岩石生热率资料的实际情况,本文通过整理和分析IODP349航次中的测井资料,测试钻井岩心样品的主要放射性生热元素,通过计算得出:玄武岩样品的生热率平均值为0.28±0.07μW/m~3,沉积碎屑岩样品的生热率为1.21±0.34μW/m~3,以及3个钻井的地热流值。获得以下认识:(1)本次研究的沉积碎屑岩样品生热率与中国东南沿海的同类岩石样品的生热率值相近,而洋壳中的基性火山岩生热率明显低于大陆碱性玄武岩。(2)用新资料计算南海西南次海盆段的岩石圈热结构得出其热岩石圈厚度约为39~42 km,平均壳幔热流比值为2.4%,说明西南次海盆岩石圈薄,海底热流主要受深部的地幔热源控制。(3)U1431D和U1433A钻井的热流密度值与附近探针热流密度值相近;而U1431C的热流密度值明显偏小,属于受地下水热循环影响所致。  相似文献   

11.
Heat flow and thermal modeling of the Yinggehai Basin, South China Sea   总被引:9,自引:0,他引:9  
Geothermal gradients are estimated to vary from 31 to 43 °C/km in the Yinggehai Basin based on 99 temperature data sets compiled from oil well data. Thirty-seven thermal conductivity measurements on core samples were made and the effects of porosity and water saturation were corrected. Thermal conductivities of mudstone and sandstone range from 1.2 to 2.7 W/m K, with a mean of 2.0±0.5 W/m K after approximate correction. Heat flow at six sites in the Yinggehai Basin range from 69 to 86 mW/m2, with a mean value of 79±7 mW/m2. Thick sediments and high sedimentation rates resulted in a considerable radiogenic contribution, but also depressed the heat flow. Measurements indicate the radiogenic heat production in the sediment is 1.28 μW/m3, which contributes 20% to the surface heat flow. After subtracting radiogenic heat contribution of the sediment, and sedimentation correction, the average basal heat flow from basement is about 86 mW/m2.Three stages of extension are recognized in the subsidence history, and a kinematic model is used to study the thermal evolution of the basin since the Cenozoic era. Model results show that the peak value of basal heat flow was getting higher and higher through the Cenozoic. The maximum basal heat flow increased from 65 mW/m2 in the first stage to 75 mW/m2 in the second stage, and then 90 mW/m2 in the third stage. The present temperature field of the lithosphere of the Yinggehai Basin, which is still transient, is the result of the multistage extension, but was primarily associated with the Pliocene extension.  相似文献   

12.
Thermal data represent a valuable remote sensing aid in studying crustal evolution. Heat flow (Q) results from the heat loss by the cooling earth and from the heat production ( A ) of the radiogenic elements brought to the upper crust by magmatic intrusives. Heat flow is often observed to be linearly related to heat production. The slope of this relation, or thermal depth (D), has been used to infer a global upward enrichment in heat-producing elements. This thermal depth has been equated with the thickness of granites, but such an interpretation has not been confirmed everywhere. The depth to which granitic plutons are rooted can be computed from the inversion of gravity data. It averages 7±2 km and is much smaller than the thermal depth. Granulite facies rocks are assumed to be present in the lower crust on the basis of seismic and geochemical data. These rocks are generally depleted or initially poor in radiogenic elements (U, Th, K). It is suggested that the thermal depth reflects the depth to the depleted layer in continental regions and that it corresponds to the granulitic layer in most places. Worldwide thermal and seismic data support this relationship, although surface heterogeneities introduce complications. Thermal data can therefore be used to constrain the structure of the crust and its evolution through time.  相似文献   

13.
Hot dry rock (HDR) is an important geothermal resource and clean energy source that may play an increasingly important role in future energy management. High-temperature HDR resources were recently detected in deep regions of the Gonghe Basin on the northeastern edge of the Tibetan Plateau, which led to a significant breakthrough in HDR resource exploration in China. This research analyzes the deep temperature distribution, radiogenic heat production, heat flow, and crustal thermal structure in the Qiaboqia Valley, Guide Plain, and Zhacanggou area of the Gonghe Basin based on geothermal exploration borehole logging data, rock thermophysical properties, and regional geophysical exploration data. The results are applied to discuss the heat accumulation mechanism of the HDR resources in the Gonghe Basin. The findings suggest that a low-velocity layer in the thickened crust of the Tibetan Plateau provides the most important source of constant intracrustal heat for the formation of HDR resources in the Gonghe Basin, whereas crustal thickening redistributes the concentrated layer of radioactive elements, which compensates for the relatively low heat production of the basal granite and serves as an important supplement to the heat of the HDR resources. The negative effect is that the downward curvature of the lithospheric upper mantle caused by crustal thickening leads to a small mantle heat flow component. As a result, the heat flows in the Qiaboqia Valley and Guide Plain of the Gonghe Basin are 106.2 and 77.6 mW/m2, respectively, in which the crust-mantle heat flow ratio of the former is 3.12:1, indicating a notably anomalous intracrustal thermal structure. In contrast, the crust-mantle heat flow ratio in the Guide Plain is 1.84:1, which reflects a typical hot crust-cold mantle thermal structure. The Guide Plain and Zhacanggou area show the same increasing temperature trend with depth, which reflects that their geothermal backgrounds and deep high-temperature environments are similar. These results provide important insight on the heat source mechanism of HDR resource formation in the Tibetan Plateau and useful guidance for future HDR resource exploration projects and target sites selection in similar areas.  相似文献   

14.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   

15.
Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chagan sag in the YingenEjinaqi Basin were calculated by 193 system steady-state temperature measurements of 4 wells, and newly measuring 62 rock thermal conductivity and 20 heat production rate data on basis o f the original 107 rock thermal conductivity and 70 heat production data. The results show that the average thermal conductivity and heat production rate are 2.11 ±0.28 W/(m.K) and2.42±0.25 nW/m~3 in the Lower Cretaceous o f the Chagan sag. The average geothermal gradient from the Lower Suhongtu 2 Formation to the Suhongtu 1 Fonnation is 37.6 °C/km, and that o f the Bayingebi 2 Formation is 27.4 °C/km. Meanwhile, the average terrestrial heat flow in the Chagan sag is 70.6 mW/m~2. On the above results, it is clear that there is an obvious negative correlation between the thermal conductivity o f the stratum and its geothermal gradient. Moreover, it reveals that there is a geothermal state between tectonically stable and active areas. This work may provide geothermal parameters for further research o f lithospheric thermal structure and geodynamics in the Chagan sag.  相似文献   

16.
Geothermal data, collected from 929 wells drilled by oil companies in 20 Tertiary basins of Indonesia, have been related to the geology and tectonics of the area. It is found that the thermal conductivity increases with the depth of burial and degree of compaction in both transgressive and regressive sediments but decreases with increases in impurities and heterogeneous grain sizes. The temperature gradient is controlled mainly by the depth and temperature of a heat source beneath a basin. Very high heat-flow densities (> 125 mW m?2) found in central Sumatra, South Sumatra, Salawati Basin and Bintuni Basin may be caused by relatively shallow magmatic diapirism.  相似文献   

17.
: As a parameter that describes heat transmission properties of rocks, thermal conductivity is indispensable for studying the thermal regime of sedimentary basins, and retrieving high-quality data of thermal conductivity is the basis for geothermal related studies. The optical scanning method is used here to measure the thermal conductivity of 745 drill-core samples from the Tarim basin, the largest intermontane basin with abundant hydrocarbon potential in China, and water saturation correction is made for clastic rock samples that are of variable porosity. All the measured values, combined with previously published data in this area, are integrated to discuss the distribution characteristics and major controlling factors that affect the thermal conductivity of rocks in the basin. Our results show that the values of thermal conductivity of rocks generally range from 1.500 to 3.000 W/m·K with a mean of 2.304 W/m·K. Thermal conductivity differs considerably between lithological types: the value of a coal sample is found to be the lowest as being only 0.249 W/m·K, while the values for salt rock samples are the highest with a mean of 4.620 W/m·K. Additionally, it is also found that the thermal conductivity of the same or similar lithologic types shows considerable differences, suggesting that thermal conductivity cannot be used for distinguishing the rock types. The thermal conductivity values of mudstone and sandstone generally increase with increasing burial depth and geological age of the formation, reflecting the effect of porosity of rocks on thermal conductivity. In general, the mineral composition, fabric and porosity of rocks are the main factors that affect the thermal conductivity. The research also reveals that the obvious contrast in thermal conductivity of coal and salt rock with other common sedimentary rocks can induce subsurface temperature anomalies in the overlying and underlying formations, which can modify the thermal evolution and maturity of the source rocks concerned. This finding is very important for oil and gas resources assessment and exploration and needs further study in detail. The results reported here are representative of the latest and most complete dataset of thermal conductivity of rocks in the Tarim basin, and will provide a solid foundation for geothermal studies in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号