首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 625 毫秒
1.
地震作用下尾矿坝有液化失稳的危险,尾矿动孔压的演化规律可以间接体现其液化过程。为研究尾矿动孔压的演化规律,开展了一系列的动三轴试验。结果表明:尾矿动孔压演化具有明显的阶段性,在等压固结时可用S形反正弦函数曲线描述,在偏压固结时可用J形指数函数曲线描述;尾矿材料在等压固结条件下临界孔压接近于围压,在偏压固结条件下临界孔压小于围压,且随围压及固结应力比的增大而减小,随尾矿平均粒径的增大而增大。基于极限平衡理论推导了等压固结和偏压固结条件下的临界孔隙水压力方程,从理论上阐释了试验结果所揭示的动孔压演化规律,可以为地震区上游式尾矿坝的抗震设计提供参考。  相似文献   

2.
应用有效应力有限元法研究了老虎岩尾矿坝在不同坝高时的应力水平、变形和孔隙水压力分布,以及遭到Ⅶ度地震作用时的反应.分析结果表明:在当前坝高情况下,无地震作用时尾矿坝处于稳定状态.在受烈度为Ⅶ度的地震作用下,尾矿堆积坝坝外坡和沉积滩面的堆积尾矿砂土在局部已经发生液化破坏;在封库坝高情况下,无地震作用时尾矿坝处于极限状态.在受烈度为Ⅶ度的地震作用下,尾矿坝坝外坡和沉积滩面的堆积尾矿砂土已发生大面积液化破坏.在地震作用下,老虎岩尾矿坝堆积尾矿产生液化破坏的主要原因是堆积坝体内浸润线的埋深较浅.对老虎岩尾矿坝必须加强排渗措施,使坝体内浸润线下移.  相似文献   

3.
地震作用下土石坝液化易导致坝坡失稳滑移等严重后果,加密法是常用的抗液化手段之一。针对坝趾压重与坝壳翻压两种坝身加密加固方法,开展了离心机振动台试验,分析了不同加密型抗液化处理的小型土石坝坝坡地震响应规律。试验结果表明,由于高水头作用下坝坡底部土体软化,未处理坝坡加速度放大系数沿高程先减小后增大,而加密坝坡加速度放大系数沿高程逐渐增大,且坝坡表面处加速度存在表面放大现象。坝趾压重和坝壳翻压提高了坝身有效应力,降低地震产生的超静孔压比,有效防止土体液化。未处理坝坡在峰值加速度为0.24g地震作用下即发生坝趾液化现象,而加密坝坡在峰值加速度为0.24g和0.45g下均未发生液化。未处理坝坡整体侧向位移大,加密处理后,在峰值加速度为0.24g下坝坡整体表现为竖向位移。坝趾压重区坝趾水平位移明显减小,坝壳翻压区坡顶沉降减小了50%。试验结果验证了坝趾压重和坝壳翻压的抗液化效果,为小型土石坝抗震加固设计提供了参考。  相似文献   

4.
本文对米箭沟尾矿坝料的组成、结构特征和物理力学性质进行分析,运用振动三轴试验确定尾矿坝料的动力特性参数,分析研究动力特性指标模型,得出动应力、动模量、阻尼比、动剪切摸量随动应变的变化规律,以及动应力与破坏振次,孔压比与振次比的变化规律,并提出符合试验结果的孔压模型,对该尾矿坝的地震动力分析及抗震稳定性评价提供一定科学依据和技术指导。  相似文献   

5.
饱和击实黄土的动力特性研究   总被引:3,自引:0,他引:3  
陈存礼  杨鹏  何军芳 《岩土力学》2007,28(8):1551-1556
通过进行不同固结条件下饱和击实黄土的动三轴试验,研究了饱和击实黄土的动模量、阻尼比、动强度、动孔压及抗液化特性。研究结果表明:饱和击实黄土的动应力-应变关系符合双曲线模型,模型中参数起始动剪切模量和最大动应力与轴向固结应力间均有良好的幂函数关系,且可以对不同固结应力状态归一,固结围压和固结比对阻尼比的影响较小。动剪应力比随固结围压的增大而减小,随固结比的增大而增大。固结围压、固结比以及动应力皆对动孔压比( )与振次比关系有显著的影响,而动孔压与破坏时动孔压之比与振次比关系只受固结围压变化的影响,基本上不受固结比和动应力变化的影响,可以用幂函数关系来模拟;在均压固结条件下,当破坏振次小于等于30时,饱和击实黄土不会产生液化,而当破坏振次较大(动应力较小)时可以产生液化;在偏压固结条件下不会产生液化。  相似文献   

6.
2008年汶川地震触发的大光包滑坡滑带形成背景是渗水层间错动带,该带强度变化是决定滑坡启动的主要因素,动孔压发展是土体材料强度劣化的根本原因,故基于系列室内动三轴试验研究该带材料孔压特性。结果表明,动载下层间错动带材料孔压快速增长,循环剪应力比越大,孔压增长越快,不同荷载条件下应变达到5%时动孔压比等于1,材料液化,根据动孔压比与振次比曲线的拟合关系提出幂函数应力模型。从能量角度描述层间错动带材料孔压增长特性,揭示出循环剪应力比对累积能量耗损与动孔压比曲线影响较小而围压对其影响较大,并进一步提出孔压增长的能量模型。  相似文献   

7.
地震荷载作用引起的粉土液化是路基抗震设计的重要问题。通过动三轴试验研究了不同围压、动剪应力条件下辽西地区饱和粉土的液化特性,并利用应变孔压模型对辽西饱和粉土路基进行了液化特性的数值模拟分析。结果表明:围压条件一定时,动剪应力与液化振次呈双曲线关系;抗震设防烈度为7度时,超越概率63.5%和10%的地震荷载不能使辽西饱和粉土发生液化,而超越概率2%时液化深度约为5 m左右,这为粉土路基抗震设计提供了一定的参考依据。  相似文献   

8.
尾矿砂的动力特性研究   总被引:2,自引:2,他引:2  
目前国内许多尾矿坝的初始坝本身不透水且无排渗设施,因而整个尾矿坝体浸润线很高,坝内大部分尾矿砂处于饱和状态。在动荷载的作用下,这些尾矿砂的动力特性对尾矿坝的安全稳定具有重要的意义。本文利用液压式振动三轴仪,研究了某尾矿坝内尾矿砂的动力特性,讨论了影响尾矿砂液化的因素。  相似文献   

9.
尾矿库用以堆存金属或非金属矿山排出的尾矿或工业废渣,一旦失事,容易造成重特大事故。尾矿库的安全已经成为一项重要研究内容。尾矿主要为细砂、粉砂等无黏性土,常处于饱和状态,在地震作用下容易发生液化并造成尾矿坝的破坏。以某尾矿库为例,采用动三轴的方法对尾矿砂的动力特性进行研究。对土样施加不同的围压,在振动循环条件下使土样达到破坏标准,以得到应力、应变、振动次数关系曲线;应用摩尔-库伦理论,便可以求出土在动力作用下的动黏聚力(c_d)与动内摩擦角(φ_d)的值。试验结果表明:土的动强度随振动次数的增加而降低,随围压的增加显著提高。通过试验得出的动强度参数,给出勘察指导结果,为下一步尾矿库设计提出理论依据。  相似文献   

10.
基于离心机振动台,分别针对典型软基尾黏土尾矿库及加高扩容后的尾矿库开展了动力离心模型试验,重点探究了加速度分布规律、软土及尾矿内部孔压变化规律以及“软基?库内尾矿?尾矿坝”系统的变形规律等内容。试验结果表明:软基对地震动的放大效应较为微弱,而坝体加速度沿高程逐渐放大,高层子坝加速度响应最为强烈,加高扩容后的现坝顶加速度响应可达原坝顶的2.2倍;地震作用下软土与库内尾矿内部均会产生一定的孔压增量,但未达到液化状态。地震动强度、软基及库内尾矿的固结状态对尾矿库的变形模式影响较大。当固结不充分时,在强震作用下易发生尾矿的水平滑移,进而造成坝顶及下游软土隆起。在固结较为充分且地震动强度较弱的情况下,变形模式以震陷为主。该试验成果将为此类尾矿库的动力稳定分析及抗震加固设计提供一定参考。  相似文献   

11.
石碑塬滑坡黄土液化特征及其影响因素研究   总被引:1,自引:0,他引:1  
石碑塬滑坡是1920年海原地震触发的大型黄土流滑,认识其破坏特征与发生机制对于黄土边坡长距离液化失稳机制的研究非常重要。对石碑塬黄土滑坡的调查和研究表明,饱和黄土或高含水率黄土具有很高的液化势和流态破坏势,在强震作用下,饱和黄土易发生液化或流滑。对石碑塬滑坡的7组原状黄土样品进行振动三轴剪切试验,并结合其微观特征分析,探讨了循环振动荷载作用下的饱和黄土孔隙水压力-应变增长模型,分析了振动液化过程中液化应力比与黄土粒度组成、土体微观结构参数及饱和度之间的关系。结果表明:黏粒含量越低,振动作用下饱和黄土孔隙水压力响应越快,液化应力比越低;黄土孔隙比越大,孔隙结构分形维数越大,液化应力比越低,振动液化后黄土孔隙分形维数降低,结构较液化之前更为致密;饱和度对黄土粒间胶结物质的赋存状态及黄土结构强度影响很大,同一土体饱和度越高,溶滤于孔隙水中的离子浓度越高,土体粒间接触点(或胶结点)越容易发生断裂,使得黄土结构强度降低,液化应力比降低。  相似文献   

12.
The paper provides a new analysis procedure for the assessment of the lateral response of isolated piles/drilled shafts in saturated sands as liquefaction and lateral soil spread develop in response to dynamic loading such as that generated by the earthquake shaking. The presented method accounts for: (1) the development of full liquefaction in the free-field soil that could trigger the lateral spread of the overlying crust layer; (2) the driving force exerted by the crust layer based on the interaction between the pile and the upper non-liquefied soil (crust) layer; and (3) the variation of the excess pore water pressure (i.e. post-liquefaction soil strength) in the near-field soil with the progressive pile deflection under lateral soil spread driving force. A constitutive model for fully liquefied sands under monotonic loading and undrained conditions is developed in order to predict the zone of post-liquefaction zero-strength of liquefied sand before it rebounds with the increasing soil strain in the near-field. The analytical and empirical concepts employed in the Strain Wedge (SW) model allow the modeling of such a sophisticated phenomenon of lateral soil spread that could accompany or follow the occurrence of seismic events without using modifying parameters or shape corrections to account for soil liquefaction.  相似文献   

13.
对某深厚黄土地基上土石坝的坝基黄土和筑坝黄土进行动三轴和共振柱等动力试验,求得其动强度、动应力-应变关系,以及用于计算动孔压的动孔压特性曲线及其他动参数。在静力分析的基础上对大坝连同地基进行了三维有效应力动力分析。计算表明,Ⅶ度地震下黄土坝基会出现液化,危及大坝安全。为此,建议了距上下游坝脚一定范围内对坝基进行填土压重的经济便利的大坝抗震措施,并对填土压重的抗液化效果进行了优化分析,最终得到经济合理的填土压重范围和压重厚度。  相似文献   

14.
Three identical model boxes were made from transparent plexiglass and angle iron. Using the method of sinking water and according to the sedimentary rhythm of saturated calcium carbonate(lime-mud) intercalated with cohesive soil,calcites with particle sizes diameters of ≤ 5 μm,10–15 μm and 23–30 μm as well as cohesive soil were sunk alternatively in water of three boxes to build three test models,each of which has a specific size of calcite. Pore water pressure gauges were buried in lime-mud layers at different depths in each model,and connected with a computer system to collect pore water pressures. By means of soil tests,physical property parameters and plasticity indices(Ip) were obtained for various grain-sized saturated lime-muds. The lime-muds with Ip ranging from 6.3 to 8.5(lower than 10) are similar to liquid saturated silt in the physical nature,indicating that saturated silt can be liquefied once induced by a strong earthquake. One model cart was pushed quickly along the length direction of the model so that its rigid wheels collided violently with the stone stair,thus generating an artificial earthquake with seismic wave magnitude greater than VI degree. When unidirectional cyclic seismic load of horizontal compression-tension-shear was imposed on the soil layers in the model,enough great pore water pressure has been accumulated within pores of lime-mud,resulting in liquefaction of lime-mud layers. Meanwhile,micro-fractures formed in each soil layer provided channels for liquefaction dewatering,resulting in formation of macroscopic liquefaction deformation,such as liquefied lime-mud volcanoes,liquefied diapir structures,vein-like liquefied structures and liquefied curls,etc. Splendid liquefied lime-mud eruption lasted for two to three hours,which is similar to the sand volcano eruption induced by strong earthquake. However,under the same artificial seismic conditions,development of macroscopic liquefied structures in three experimental models varied in shape,depth and quantity,indicating that excess pore water pressure ratios at initial liquefaction stage and complete liquefaction varied with depth. With size increasing of calcite particle in lime-mud,liquefied depth and deformation extent increase accordingly. The simulation test verifies for the first time that strong earthquakes may cause violent liquefaction of saturated lime-mud composed of micron-size calcite particles,uncovering the puzzled issue whether seafloor lime-mud can be liquefied under strong earthquake. This study not only provides the latest simulation data for explaining the earthquake-induced liquefied deformations of saturated lime-mud and seismic sedimentary events,but also is of great significance for analysis of foundation stability in marine engineering built on the soft calcium carbonate layers in neritic environment.  相似文献   

15.
The increasing importance of performance-based earthquake engineering analysis points out the necessity to assess quantitatively the risk of liquefaction of embankment-type structures. In this extreme scenario of soil liquefaction, devastating consequences are observed, e.g., excessive settlements, lateral spreading and slope instability. The present work discusses the global dynamic response and interaction of an earth structure-foundation system, so as to determine quantitatively the collapse mechanism due to foundation’s soil liquefaction. A levee-foundation system is simulated, and the influence of characteristics of input ground motion, as well as of the position of liquefied layer on the liquefaction-induced failure, is evaluated. For the current levee model, its induced damage level (i.e., induced crest settlements) is strongly related to both liquefaction apparition and dissipation of excess pore water pressure on the foundation. The respective role of input ground motion characteristics is a key component for soil liquefaction apparition, as long duration of mainshock can lead to important nonlinearity and extended soil liquefaction. A circular collapse surface is generated inside the liquefied region and extends toward the crest in both sides of the levee. Even so, when the liquefied layer is situated in depth, no significant effect on the levee response is found. This research work provides a reference case study for seismic assessment of embankment-type structures subjected to earthquake and proposes a high-performance computational framework accessible to engineers.  相似文献   

16.
根据安阳电厂灰坝岩土工程性质及其动力学特性,建立了适合灰坝工程的动力分析模型并采用有限元法进行了动力分析.在此基础上,在不同工况条件下对灰坝进行了抗液化安全评价及抗震稳定性分析.研究表明,在不设碎石桩、无排渗体条件下,粉煤灰子坝的抗液化安全系数Ks<1.25,将发生液化;在设碎石桩、有排渗体条件下,粉煤灰子坝的抗液化安全系数明显提高,Ks≥1.25,不会发生液化.抗震稳定性分析表明,在上述两种工况条件下灰坝是稳定的.  相似文献   

17.
方火浪  张轶群  郭婧  银鸽 《岩土力学》2013,34(11):3197-3204
由于可液化砂质土应力-应变特性模拟的复杂性及数值计算的不稳定性,深厚砂质覆盖层土坝的弹塑性地震反应分析是土坝抗震研究中的一个尚未完全解决的课题。采用u-p完全耦合的饱和多孔介质有限元分析方法和砂土多重机构弹塑性模型,对遭受M6.7级地震的国外某深厚砂质覆盖层土坝进行弹塑性地震反应分析,研究了坝体和地基的动力反应特性及其超静孔隙水压力产生、扩散和消散的变化规律。结果表明:计算得到的坝体加速度和永久变形与实测值存在一定的差异,但基本上反映了坝体加速度与永久变形的实际分布情况,从而说明采用的本构模型和计算方法具有一定的精度;由于坝体和坝基的超静孔隙水压力较小,且坝体永久变形不大,可以不对坝体和坝基进行加固处理;坝趾附近浅层地基的超静孔隙水压力较大,有可能发生液化,因此,须采取相应的抗液化加固措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号