首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Carbon dioxide flux techniques performed during GasEx-98   总被引:2,自引:0,他引:2  
A comprehensive study of air–sea interactions focused on improving the quantification of CO2 fluxes and gas transfer velocities was performed within a large open ocean CO2 sink region in the North Atlantic. This study, GasEx-98, included shipboard measurements of direct covariance CO2 fluxes, atmospheric CO2 profiles, atmospheric DMS profiles, water column mass balances of CO2, and measurements of deliberate SF63He tracers, along with air–sea momentum, heat, and water vapor fluxes. The large air–sea differences in partial pressure of CO2 caused by a springtime algal bloom provided high signals for accurate CO2 flux measurements. Measurements were performed over a wind speed range of 1–16 m s−1 during the three-week process study. This first comparison between the novel air-side and more conventional water column measurements of air–sea gas transfer show a general agreement between independent air–sea gas flux techniques. These new advances in open ocean air–sea gas flux measurements demonstrate the progress in the ability to quantify air–sea CO2 fluxes on short time scales. This capability will help improve the understanding of processes controlling the air–sea fluxes, which in turn will improve our ability to make regional and global CO2 flux estimates.  相似文献   

2.
The seasonal and interannual variability of the air–sea CO2 flux (F) in the Atlantic sector of the Barents Sea have been investigated. Data for seawater fugacity of CO2 (fCO2sw) acquired during five cruises in the region were used to identify and validate an empirical procedure to compute fCO2sw from phosphate (PO4), seawater temperature (T), and salinity (S). This procedure was then applied to time series data of T, S, and PO4 collected in the Barents Sea Opening during the period 1990–1999, and the resulting fCO2sw estimates were combined with data for the atmospheric mole fraction of CO2, sea level pressure, and wind speed to evaluate F.The results show that the Atlantic sector of the Barents Sea is an annual sink of atmospheric CO2. The monthly mean uptake increases nearly monotonically from 0.101 mol C m− 2 in midwinter to 0.656 mol C m− 2 in midfall before it gradually decreases to the winter value. Interannual variability in the monthly mean flux was evaluated for the winter, summer, and fall seasons and was found to be ± 0.071 mol C m− 2 month− 1. The variability is controlled mainly through combined variation of fCO2sw and wind speed. The annual mean uptake of atmospheric CO2 in the region was estimated to 4.27 ± 0.68 mol C m− 2.  相似文献   

3.
Diurnal changes in seawater temperature affect the amount of air–sea gas exchange taking place through changes in solubility and buoyancy-driven nocturnal convection, which enhances the gas transfer velocity. We use a combination of in situ and satellite derived radiometric measurements and a modified version of the General Ocean Turbulence Model (GOTM), which includes the National Oceanic and Atmospheric Administration Coupled-Ocean Atmospheric Response Experiment (NOAA-COARE) air–sea gas transfer parameterization, to investigate heat and carbon dioxide exchange over the diurnal cycle in the Tropical Atlantic. A new term based on a water-side convective velocity scale (w*w) is included, to improve parameterization of convectively driven gas transfer. Meteorological data from the PIRATA mooring located at 10°S10°W in the Tropical Atlantic are used, in conjunction with cloud cover estimates from Meteosat-7, to calculate fluxes of longwave, latent and sensible heat along with a heat budget and temperature profiles during February 2002. Twin model experiments, representing idealistic and realistic conditions, reveal that over daily time scales the additional contribution to gas exchange from convective overturning is important. Increases in transfer velocity of up to 20% are observed during times of strong insolation and low wind speeds (<6 m s−1); the greatest enhancement from w*w to the CO2 flux occurs when diurnal warming is large. Hence, air–sea fluxes of CO2 calculated using simple parameterizations underestimate the contribution from convective processes. The results support the need for parameterizations of gas transfer that are based on more than wind speed alone and include information about the heat budget.  相似文献   

4.
We report several biogeochemical parameters (dissolved inorganic carbon (DIC), total alkalinity (TA), dissolved oxygen (DO), phosphate (PO4), nitrate + nitrite (NO3 + NO2), silicate (Si(OH)4)) in a region off Otaru coast in Hokkaido, Japan on a “weekly” basis during the period of April 2002–May 2003. To better understand the long-term temporal variations of the main factors affecting CO2 flux in this coastal region and its role as a sink/source of atmospheric CO2, we constructed an algorithm of DIC and TA using other hydrographic properties. We estimated the CO2 flux across the air–sea interface by using the classical bulk method. During 1998–2003 in our study region, the estimated fCO2sea ranged about 185–335 μatm. The maximum of fCO2sea in the summer was primarily due to the change of water temperature. The minimum of fCO2sea in the early spring can be explained not only by the change of water temperature but also the change of nutrients and chlorophyll-a. To clarify the factors affecting fCO2sea (water temperature, salinity, and biological activity), we carried out a sensitivity analysis of these effects on the variation of fCO2sea. In spring, the biological effect had the largest effect for the minimum of fCO2sea (40%). In summer, the water temperature effect had the largest effect for the maximum of fCO2sea (25%). In fall, the water temperature effect had the largest effect for the minimum of fCO2sea (53%). In winter, the biological effect had the largest effect for the minimum of fCO2sea (35%).We found that our study region was a sink region of CO2 throughout a year (−0.78 mol/m2/yr). Furthermore, we estimated that the increase of fCO2sea was about 0.56 μatm/yr under equilibrium with the atmospheric CO2 content for the period 1998–2003, with the temporal changes in the variables (T, S, PO4) on fCO2sea, thus as the maximum trend of each variable on fCO2sea was 0.22 μatm/yr, and the trend of residual fCO2 including gas exchange was 0.34 μatm/yr. This result suggests that interaction among variables would affect gas exchange between air and sea effects on fCO2sea. We conclude that this study region as a representative coastal region of marginal seas of the North Pacific is special because it was measured, but there is no particular significance in comparison to any other area.  相似文献   

5.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

6.
Intense studies of upper and deep ocean processes were carried out in the Northwestern Indian Ocean (Arabian Sea) within the framework of JGOFS and related projects in order to improve our understanding of the marine carbon cycle and the ocean’s role as a reservoir for atmospheric CO2. The results show a pronounced monsoon-driven seasonality with enhanced organic carbon fluxes into the deep-sea during the SW Monsoon and during the early and late NE Monsoon north of 10°N. The productivity is mainly regulated by inputs of nutrients from subsurface waters into the euphotic zone via upwelling and mixed layer-deepening. Deep mixing introduces light limitation by carrying photoautotrophic organisms below the euphotic zone during the peak of the NE Monsoon. Nevertheless, deep mixing and strong upwelling during the SW Monsoon provide an ecological advantage for diatoms over other photoautotrophic organisms by increasing the silica concentrations in the euphotic zone. When silica concentrations fall below 2 μmol l−1, diatoms lose their dominance in the plankton community. During diatom-dominated blooms, the biological pathway of uptake of CO2 (the biological pump) appears to be more efficient than during blooms of other organisms, as indicated by organic carbon to carbonate carbon (rain) ratios. Due to the seasonal alternation of diatom and non-diatom dominated exports, spatial variations of the annual mean rain ratios are hardly discernible along the main JGOFS transect.Data-based estimates of the annual mean impact of the biological pump on the fCO2 in the surface water suggest that the biological pump reduces the increase of fCO2 in the surface water caused by intrusion of CO2-enriched subsurface water by 50–70%. The remaining 30 to 50% are attributed to CO2 emissions into the atmosphere. Rain ratios up to 60% higher in river-influenced areas off Pakistan and in the Bay of Bengal than in the open Arabian Sea imply that riverine silica inputs can further enhance the impact of the biological pump on the fCO2 in the surface water by supporting diatom blooms. Consequently, it is assumed that reduced river discharges caused by the damming of major rivers increase CO2 emission by lowering silica inputs to the Arabian Sea; this mechanism probably operates in other regions of the world ocean also.  相似文献   

7.
Strong seasonal patterns in upper ocean total carbon dioxide (TCO2), alkalinity (TA) and calculated pCO2 were observed in a time series of water column measurements collected at the US Joint Global Ocean Flux Study (JGOFS) BATS site (31 °50′N, 64 °10′W) in the Sargasso Sea. TA distribution was a conservative function of salinity. However, in February 1992, a non-conservative decrease in TA was observed, with maximum depletion of 25–30 μmoles kg−1 occuring in the surface layer and at the depth of the chlorophyll maximum (˜ 80–100 m). Mixed-layer TCO2 also decreased, while surface pCO2 increased by 25–30 μatm. We suggest these changes in carbon dioxide species resulted from open-ocean calcification by carbonate-secreting organisms rather than physical processes. Coccolithophore calcification is the most likely cause of this event although calcification by foraminifera or pteropods cannot be ruled out. Due to the transient increase in surface pCO2, the net annual transfer of CO2 into the ocean at BATS was reduced. These observations demonstrate the potential importance of open-ocean calcification and biological community structure in the biogeochemical cycling of carbon.  相似文献   

8.
Nitrous oxide (N2O) is a trace gas that is increasing in the atmosphere. It contributes to the greenhouse effect and influences the global ozone distribution. Recent reports suggest that regions such as the Arabian Sea may be significant sources of atmospheric N2O.In the ocean, N2O is formed as a by-product of nitrification and as an intermediary of denitrification. In the latter process, N2O can be further reduced to N2. These processes, which operate on different source pools and have different magnitudes of isotopic fractionation, make separate contributions to the 15N and18O isotopic composition of N2O. In the case of nitrification in oxic waters, the isotopic composition of N2O appears to depend mainly on the 15N/14N ratio of NH+4 and the 18O/16O ratio of O2 and H2O. In suboxic waters, denitrification causes progressive 15N and 18O enrichment of N2O as a function of degree of depletion of nitrate and dissolved oxygen. Thus the isotopic signature of N2O should be a useful tool for studying the sources and sinks for N2O in the ocean and its impact on the atmosphere.We have made observations of N2O concentrations and of the dual stable isotopic composition of N2O in the eastern tropical North Pacific (ETNP) and the Arabian Sea. The stable isotopic composition of N2O was determined by a new method that required only 80–100 nmol of N2O per sample analysis. Our observations include determinations across the oxic/suboxic boundaries that occur in the water columns of the ETNP and Arabian Sea. In these suboxic waters, the values of δ15N and δ18O increased linearly with one another and with decreasing N2O concentrations, presumably reflecting the effects of denitrification. Our results suggest that the ocean could be an important source of isotopically enriched N2O to the atmosphere.  相似文献   

9.
The interannual variations of CO2 sources and sinks in the surface waters of the Antarctic Ocean (south of 50°S) were studied between 1986 and 1994. An existing, slightly modified one-dimensional model describing the mixed-layer carbon cycle was used for this study and forced by available satellite-derived and climatological data. Between 1986 and 1994, the mean Antarctic Ocean CO2 uptake was 0.53 Pg C year−1 with an interannual variability of 0.15 Pg C year−1.Interannual variation of the Antarctic Ocean CO2 uptake is related to the Antarctic Circumpolar Wave (ACW), which affects sea surface temperature (SST), wind-speed and sea-ice extent. The CO2 uptake in the Antarctic Ocean has increased from 1986 to 1994 by 0.32 Pg C. It was found that over the 9 years, the surface ocean carbon dioxide fugacity (fCO2) increase was half that of the atmospheric CO2 increase inducing an increase of the air–sea fCO2 gradient. This effect is responsible for 60% of the Antarctic Ocean CO2 uptake increase between 1986 and 1994, as the ACW effect cancels out over the 9 years investigated.  相似文献   

10.
The ocean is an important sink for carbon and heat, yet high-resolution measurements of biogeochemical properties relevant to global climate change are being made only sporadically in the ocean at present. There is a growing need for automated, real-time, long-term measurements of CO2 in the ocean using a network of sensors, strategically placed on ships, moorings, free-drifting buoys and autonomous remotely operated vehicles. The ground-truthing of new sensor technologies is a vital component of present and future efforts to monitor changes in the ocean carbon cycle and air–sea exchange of CO2.A comparison of a moored Carbon Interface Ocean Atmosphere (CARIOCA) buoy and shipboard fugacity of CO2 (fCO2) measurements was conducted in the western North Atlantic during two extended periods (>1 month) in 1997. The CARIOCA buoy was deployed on the Bermuda Testbed Mooring (BTM), which is located 5 km north of the site of the US Joint Global Ocean Flux Study (JGOFS) Bermuda Atlantic Time-series Study (BATS). The high frequency of sampling revealed that temperature and fCO2 responded to physical forcing by the atmosphere on timescales from diurnal to 4–8 days. Concurrent with the deployments of the CARIOCA buoy, frequent measurements of surface fCO2 were made from the R/V Weatherbird II during opportunistic visits to the BTM and BATS sites, providing a direct calibration of the CARIOCA buoy fCO2 data. Although, the in situ ground-truthing of the CARIOCA buoy was complicated by diurnal processes, sub-mesoscale and fine-scale variability, the CARIOCA buoy fCO2 data was accurate within 3±6 μatm of shipboard fCO2 data for periods up to 50 days. Longer-term assessments were not possible due to the CARIOCA buoy breaking free of the BTM and drifting into waters with different fCO2-temperature properties. Strategies are put forward for future calibration of other in situ sensors.  相似文献   

11.
This article presents the results of long-term studies of the dynamics of carbonate parameters and air–sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from–2.4 to–22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.  相似文献   

12.
A 3D coupled biogeochemical–hydrodynamic model (MIRO-CO2&CO) is implemented in the English Channel (ECH) and the Southern Bight of the North Sea (SBNS) to estimate the present-day spatio-temporal distribution of air–sea CO2 fluxes, surface water partial pressure of CO2 (pCO2) and other components of the carbonate system (pH, saturation state of calcite (Ωca) and of aragonite (Ωar)), and the main drivers of their variability. Over the 1994–2004 period, air–sea CO2 fluxes show significant inter-annual variability, with oscillations between net annual CO2 sinks and sources. The inter-annual variability of air–sea CO2 fluxes simulated in the SBNS is controlled primarily by river loads and changes of biological activities (net autotrophy in spring and early summer, and net heterotrophy in winter and autumn), while in areas less influenced by river inputs such as the ECH, the inter-annual variations of air–sea CO2 fluxes are mainly due to changes in sea surface temperature and in near-surface wind strength and direction. In the ECH, the decrease of pH, of Ωca and of Ωar follows the one expected from the increase of atmospheric CO2 (ocean acidification), but the decrease of these quantities in the SBNS during the considered time period is faster than the one expected from ocean acidification alone. This seems to be related to a general pattern of decreasing nutrient river loads and net ecosystem production (NEP) in the SBNS. Annually, the combined effect of carbon and nutrient loads leads to an increase of the sink of CO2 in the ECH and the SBNS, but the impact of the river loads varies spatially and is stronger in river plumes and nearshore waters than in offshore waters. The impact of organic and inorganic carbon (C) inputs is mainly confined to the coast and generates a source of CO2 to the atmosphere and low pH, of Ωca and of Ωar values in estuarine plumes, while the impact of nutrient loads, highest than the effect of C inputs in coastal nearshore waters, also propagates offshore and, by stimulating primary production, drives a sink of atmospheric CO2 and higher values of pH, of Ωca and of Ωar.  相似文献   

13.
This paper evaluates the simultaneous measurement of dissolved gases (CO2 and O2/Ar ratios) by membrane inlet mass spectrometry (MIMS) along the 180° meridian in the Southern Ocean. The calibration of pCO2 measurements by MIMS is reported for the first time using two independent methods of temperature correction. Multiple calibrations and method comparison exercises conducted in the Southern Ocean between New Zealand and the Ross Sea showed that the MIMS method provides pCO2 measurements that are consistent with those obtained by standard techniques (i.e. headspace equilibrator equipped with a Li–Cor NDIR analyser). The overall MIMS accuracy compared to Li–Cor measurements was 0.8 μatm. The O2/Ar ratio measurements were calibrated with air-equilibrated seawater standards stored at constant temperature (0 ± 1 °C). The reproducibility of the O2/Ar standards was better than 0.07% during the 9 days of transect between New Zealand and the Ross Sea.The high frequency, real-time measurements of dissolved gases with MIMS revealed significant small-scale heterogeneity in the distribution of pCO2 and biologically-induced O2 supersaturation (ΔO2/Ar). North of 65°S several prominent thermal fronts influenced CO2 concentrations, with biological factors also contributing to local variability. In contrast, the spatial variation of pCO2 in the Ross Sea gyre was almost entirely attributed to the biological utilization of CO2, with only small temperature effects. This high productivity region showed a strong inverse relationship between pCO2 and biologically-induced O2 disequilibria (r2 = 0.93). The daily sea air CO2 flux ranged from − 0.2 mmol/m2 in the Northern Sub-Antarctic Front to − 6.4 mmol/m2 on the Ross Sea shelves where the maximum CO2 influx reached values up to − 13.9 mmol/m2. This suggests that the Southern Ocean water (south of 58°S) acts as a seasonal sink for atmospheric CO2 at the time of our field study.  相似文献   

14.
Comprehensive sea surface surveys of the partial pressure of carbon dioxide (pCO2) have been made in the upwelling system of the coastal (0–200 km from shore) southeastern tropical Pacific since 2004. The shipboard data have been supplemented by mooring and drifter based observations. Air–sea flux estimates were made by combining satellite derived wind fields with the direct sea surface pCO2 measurements. While there was considerable spatial heterogeneity, there was a significant flux of CO2 from the ocean to the atmosphere during all survey periods in the region between 4° and 20° south latitude. During periods of strong upwelling the average flux out of the ocean exceeded 10 moles of CO2 per square meter per year. During periods of weaker upwelling and high productivity the CO2 evasion rate was near 2.5 mol/m2/yr. The average annual fluxes exceed 5 mol/m2/yr. These findings are in sharp contrast to results obtained in mid-latitude upwelling systems along the west coast of North America where the average air–sea CO2 flux is low and can often be from the atmosphere into the ocean. In the Peruvian upwelling system there are several likely factors that contribute to sea surface pCO2 levels that are well above those of the atmosphere in spite of elevated primary productivity: (1) the upwelling source waters contain little pre-formed nitrate and are affected by denitrification, (2) iron limitation of primary production enhanced by offshore upwelling driven by the curl of the wind stress and (3) rapid sea surface warming. The combined carbon, nutrient and oxygen dynamics of this region make it a candidate site for studies of global change.  相似文献   

15.
Monthly seawater pH and alkalinity measurements were collected between January 1996 and December 2000 at 10°30′N, 64°40′W as part of the CARIACO (CArbon Retention In A Colored Ocean) oceanographic time series. One key objective of CARIACO is to study temporal variability in Total CO2 (TCO2) concentrations and CO2 fugacity (fCO2) at this tropical coastal wind-driven upwelling site. Between 1996 and 2000, the difference between atmospheric and surface ocean CO2 concentrations ranged from about − 64.3 to + 62.3 μatm. Physical and biochemical factors, specifically upwelling, temperature, primary production, and TCO2 concentrations interacted to control temporal variations in fCO2. Air–sea CO2 fluxes were typically depressed (0 to + 10 mmol C m 2 day 1) in the first few months of the year during upwelling. Fluxes were higher during June–November (+ 10 to 20 mmol C m 2 day 1). Fluxes were generally independent of the slight changes in salinity normally seen at the station, but low positive flux values were seen in the second half of 1999 during a period of anomalously heavy rains and land-derived runoff. During the 5 years of monthly data examined, only two episodes of negative air–sea CO2 flux were observed. These occurred during short but intense upwelling events in March 1997 (−10 mmol C m 2 day 1) and March 1998 (− 50 mmol C m 2 day 1). Therefore, the Cariaco Basin generally acted as a source of CO2 to the atmosphere in spite of primary productivity in excess of between 300 and 600 g C m 2 year 1.  相似文献   

16.
The uptake of atmospheric carbon dioxide in the water transported over the Bering–Chukchi shelves has been assessed from the change in carbon-related chemical constituents. The calculated uptake of atmospheric CO2 from the time that the water enters the Bering Sea shelf until it reaches the northern Chukchi Sea shelf slope (1 year) was estimated to be 86±22 g C m−2 in the upper 100 m. Combining the average uptake per m3 with a volume flow of 0.83×106 m3 s−1 through the Bering Strait yields a flux of 22×1012 g C year−1. We have also estimated the relative contribution from cooling, biology, freshening, CaCO3 dissolution, and denitrification for the modification of the seawater pCO2 over the shelf. The latter three had negligible impact on pCO2 compared to biology and cooling. Biology was found to be almost twice as important as cooling for lowering the pCO2 in the water on the Bering–Chukchi shelves. Those results were compared with earlier surveys made in the Barents Sea, where the uptake of atmospheric CO2 was about half that estimated in the Bering–Chukchi Seas. Cooling and biology were of nearly equal significance in the Barents Sea in driving the flux of CO2 into the ocean. The differences between the two regions are discussed. The loss of inorganic carbon due to primary production was estimated from the change in phosphate concentration in the water column. A larger loss of nitrate relative to phosphate compared to the classical ΔN/ΔP ratio of 16 was found. This excess loss was about 30% of the initial nitrate concentration and could possibly be explained by denitrification in the sediment of the Bering and Chukchi Seas.  相似文献   

17.
We report here the non-conservative behaviour of DOC in the northwestern Indian Ocean by studying this parameter together with other carbon and nitrogen components. This contrasts with earlier reports of conservative behaviour. Concentrations of DOC, 3–4 times higher than those reported earlier, were found to decrease northward from the equator. Total carbon dioxide (TCO2) increases in proportion of the oxygen utilized, thus revealing the dominant biological role in the carbon turnover. The CO2 added through dissolution of biogenic debris is found to decrease southward, in general. Decomposition of organic material contributes at least 64% to the CO2 addition that increases southward, the rest being from dissolution of skeletal material. Evidence is provided for the utilization of oxygen and nitrate for DOC oxidative decomposition. Accumulation of DOC without its complete oxidation to CO2 could be the main reason for the TCO2 decrease in southern Arabian Sea. Relationships of DOC with nitrification and denitrification processes show that the microbial population plays a major role in regulating the DOC contents in the seawater of this region. Consumption/decomposition by denitrifying bacteria and other micro-organisms responsible for nitrogen cycling in the sea are found to be intimately related to the DOC dynamics and are responsible for decreased DOC concentrations in the north. DOC accumulation in the southern Arabian Sea seems to facilitate bacterio-particulate aggregate formation and consequent nitrification, which results in excess nitrate. Application of a one-dimensional advection-diffusion model to the present data set provides evidence for the non-conservative nature of DOC in the Arabian Sea.  相似文献   

18.
We report radiocarbon measurements of dissolved inorganic carbon (DIC) in surface water samples collected daily during cruises to the central North Pacific, the Sargasso Sea and the Southern Ocean. The ranges of Δ14C measurements for each cruise (11–30‰) were larger than the total uncertainty (7.8‰, 2-sigma) of the measurements. The variability is attributed to changes in the upper water mass that took place at each site over a two to four week period. These results indicate that variability of surface Δ14C values is larger than the analytical precision, because of patchiness that exists in the DIC Δ14C signature of the surface ocean. This additional variability can affect estimates of geochemical parameters such as the air–sea CO2 exchange rate using radiocarbon.  相似文献   

19.
The annual cycle of dissolved nutrients and the fugacity of CO2 (fCO2), calculated from the concentration of dissolved inorganic carbon (DIC) and pH, was studied over a 14-month long period (December 1993 to February 1995) at a site in Prydz Bay near Davis Station, Vestfold Hills, East Antarctica. Significant spring decreases in fCO2 began under the sea-ice in mid-October, when both water column and sea-ice algal activity resulted in the removal of nutrients and DIC and increased pH. Minimum fCO2 (<100 μatm) and lowest nutrient and DIC concentrations occurred in December and January. The low summer fCO2 values were clearly the result of biological activity. The seasonal depletion of dissolved nitrate reached 85% in mid-summer when chlorophyll-a concentrations exceeded 15 mg m−3. Oceanic uptake of carbon dioxide from the atmosphere, calculated from the fugacity difference and daily wind speeds, averaged more than 30 mmol m−2 day−1 during the summer ice-free period. This exchange replaced approximately half of the DIC consumed by biological activity. Apparent nutrient utilisation ratios (C/N/P) were close to Redfield values. In autumn fCO2 began to rise, continuing slowly well into winter, and reaching a maximum close to modern atmospheric values between July and September. This increase can be attributed to a combination of local remineralisation of organic carbon in the water column and the steady increase in the mixing depth of the water column. At first glance, this suggests that air–sea equilibration occurred in winter despite the sea-ice cover, perhaps by horizontal circulation from regions outside the pack ice, or through openings in the ice. However, the persistent 15 to 20% undersaturation of dissolved oxygen throughout the winter suggests an alternate explanation. The late winter fCO2 level may represent a characteristic established by global circulation, so that as a result of increasing atmospheric CO2 concentrations, these Antarctic waters are in transition from being a winter-time source of CO2 to the atmosphere to becoming a sink. Our fCO2 observations emphasize the need to address seasonal variations in assessing Antarctic contributions to the oceanic control of atmospheric CO2.  相似文献   

20.
The oceanic biogeochemical fluxes in the North Pacific, especially its northwestern part, are discussed to prove their importance on a global scale. First, the air-sea exchange processes of chemical substances are considered quantitatively. The topics discussed are sea salt particles transported to land, sporadic transport of soil dust to the ocean and its role in the marine ecosystem, the larger gas transfer velocity of CO2 indicating the effect of bubbles, and DMS and greenhouse gases other than CO2. Next, chemical tracers are utilized to reveal the water circulation systems in the region, which are the Pacific Deep Water including its vertical eddy diffusivity, the North Pacific Intermediate Water and the Japan Sea Deep Water. Thirdly, the particulate transport process of chemical substances through the water column is clarified by analyzing the distribution of insoluble radionuclides and the results obtained from sediment trap experiments. Fourthly, the northern North Pacific is characterized by stating the site decomposing organic matter and Si playing a key role in the marine ecosystem. Both are induced by the upwelled Pacific Deep Water. Fifthly, the oceanic CO2 system related to global warming is presented by clarifying the distribution of anthropogenic CO2 in the western North Pacific, and roles of the upwelled Pacific Deep Water and the continental shelf zone in the absorption of atmospheric CO2. Finally, Mn and other chemical substances in sediments are discussed as recorders of the early diagenesis and indicators of low biological productivity during glacial ages in the northwestern North Pacific. It is concluded that the western North Pacific is characterized mainly by the Pacific Deep Water bringing nutrients to the northern North Pacific, located at the exit of the global deep water circulation and, therefore, the region plays a key role in the global biogeochemical fluxes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号