首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Laboratory tests were conducted on a reddish-brown lateritic soil treated with up to 12 % bagasse ash to assess its suitability in waste containment barriers applications. Soil samples were prepared using four compaction energies (i.e. reduced Proctor, standard Proctor, West African Standard or ‘intermediate’ and modified Proctor) at ?2, 0, 2 and 4 % moulding water content of the optimum moisture content (OMC). Index properties, hydraulic conductivity (k), volumetric shrinkage and unconfined compressive strength (UCS) tests were performed. Overall acceptable zones under which the material is suitable as a barrier material were obtained. Results recorded showed improved index properties; hydraulic conductivity and UCS with bagasse ash treatment up to 8 % at the OMC. Volumetric shrinkage strain increased with higher bagasse ash treatment. Based on the overall acceptable zone obtained, an 8 % optimal bagasse ash treatment of the natural lateritic soil makes it suitable for use in waste containment barrier application.  相似文献   

2.
Foundry sand, an industrial waste, was treated with up to 12 % cement kiln dust content at comparative energy levels of British standard light, West African standard or “intermediate” (WAS) and British standard heavy (BSH) efforts at molding water contents ?2, 0, 2, 4 and 6 % of optimum moisture content. Samples were extruded from the compaction molds and allowed to air dry in the laboratory in order to assess the effect of desiccation-induced shrinkage on the material for use as a hydraulic barrier in waste containment application. Results recorded show that volumetric shrinkage strain (VSS) values were large within the first 5 days of drying; VSS values increased with higher molding water content, water content relative to the optimum moisture content. VSS generally increased with higher initial degree of saturation for all compactive efforts, irrespective of the level of cement kiln dust (CKD) treatment. A compaction plane of acceptable zones for VSS based on the regulatory value is ≤4 %. The influence of CKD treatment generally showed a decrease in the desiccation-induced volumetric shrinkage strain with increasing CKD content. This is largely due to the pozzolanic input of CKD. Finally, only the BSH compactive effort gave successful results of volumetric shrinkage strain at CKD treatment content of between 4 and 8 %, while 12 % CKD content produced successful volumetric shrinkage strain results at WAS and BSH compactive effort, respectively.  相似文献   

3.
废旧轮胎胶粉用于填埋场衬垫材料改性,是提高衬垫系统有效性和扩展废旧轮胎资源化利用途径的一种手段。以高岭土作为黏性土的代表,开展废旧轮胎胶粉-高岭土混合土的力学和水力学性质试验,重点探讨胶粉掺量及尺寸对混合土渗透性、压缩性和收缩性的影响规律。研究表明,废旧轮胎胶粉-高岭土混合土的渗透系数、压缩系数、回弹指数、固结系数和体缩率等均随胶粉掺入比的增加而增大。高岭土及混合土的无侧限抗压强度大于200kPa,50kPa和200kPa压力下渗透系数满足≤1.0×10-7cm·s-1的要求,均属于中压缩性土,且体缩率小于体积应变合格值4%。与30目胶粉相比,12目胶粉-高岭土混合土压缩性和回弹量较小、固结系数较大,胶粉尺寸对无侧限抗压强度、体缩率和渗透系数的影响不显著。在本文试验条件下,为提高黏土衬垫对有机污染物的吸附能力并满足渗透性、强度及变形的要求,12目25%胶粉改性黏土可作为填埋场黏土衬垫材料。  相似文献   

4.
In current geoenvironmental practice, design engineers usually require that soil liners in waste landfills be compacted within a specified range of water content and dry unit weight. This specification is based primarily on the need to achieve a minimum dry unit weight for factors controlling the performance of compacted soil liners most especially the hydraulic conductivity, k. In this study, lateritic soil treated with up to 10% bentonite, prepared at various compaction states (dry of optimum, optimum and wet of optimum moisture content) was compacted with four compactive efforts (i.e., the reduced British Standard Light, British Standard Light, West African Standard, and British Standard Heavy) to simulate the range of compaction energies expected in the field. Prepared soil mixtures were permeated with water and specimens that yielded the permissible limit of k????1?×?10?9?m/s were enclosed in an envelope (known as the acceptable zone) on the water content?Cdry unit weight curve. It was observed that compaction conditions resulting in moisture content slightly wet of optimum led to the lowest values of k and that the shapes and boundaries of the acceptable zones gradually increased in extent, shifting to wet side of optimum moisture content as the bentonite content increased to 10%. This approach provides good control over the quality of compacted soils and has great potential for field application.  相似文献   

5.
A series of laboratory tests was conducted on a tropical residual soil, which is widespread and readily available over a considerable part of Peninsular Malaysia, to assess whether it could be compacted as hydraulic barriers in waste disposal landfills. Index properties, swelling potential, cation exchange capacity (CEC), compaction characteristics, and hydraulic conductivity of the soil indicate that it is inorganic, very plastic, inactive (activity <0.75), moderately expansive (modified free swell index is about 3.06), and of fair attenuation capacity (for inorganic contaminants). For hydraulic conductivity measurement, the soil was compacted in rigid-wall permeameter moulds at a variety of water contents and compactive efforts and then permeated with de-aired tap water. The results of hydraulic conductivity tests illustrate that hydraulic conductivity lower than 1×10–7 cm/s can be achieved using a broad range of water contents and compactive efforts, including water contents dry of optimum. Its shrinkage and strength properties show that it has minimal potential to shrinkage and has adequate strength to support the overburden pressure imposes by the waste body. These findings suggest that the residual soil can be potentially utilized as compacted soil liner material.  相似文献   

6.
An expansive soil (black cotton soil) treated with up to 10 % cement kiln dust (CKD), a waste obtained from the manufacture of cement, was evaluated for use as a flexible pavement construction material. Laboratory tests were carried out on specimens compacted with British Standard light, British Standard light or standard Proctor (relative compaction = 100 %) energy. Results obtained show that the index properties of the soil improved with CKD treatment. Peak unconfined compressive strength of 357.07 kN/m2 and California bearing ratio (CBR) of 7 % as well as resistance to loss in strength of 44 % were recorded at 10 % CKD treatment. Reduction in the particle sizes with curing period was observed when samples were viewed through the scanning electron microscope. The study showed that CKD can be beneficially used to improve the subgrade of lightly trafficked roads and as admixture in lime stabilization during construction of flexible pavements over expansive soil.  相似文献   

7.
A reddish brown lateritic soil treated with up to 15% blast furnace slag was compacted with three compactive efforts, (standard Proctor, West African Standard and modified Proctor) with moulding water contents ranging between 10 and 20% of weight of dry mixture. Compacted samples were extruded and allowed to dry in the laboratory for 30 days with measurements taken every 5 days to monitor volumetric changes due to drying. Four specimens compacted on the wet side of optimum using standard proctor effort; at the various slag treatments after 10 days of drying were subjected to four cycles of drying and three cycles of wetting. The results obtained showed that the changes in mass and volumetric shrinkage were rapid within the first 5 days of drying. These changes were proportional to the moulding water contents and were unaffected by the compactive effort. The volumetric shrinkage strain increased with increasing moulding water content and compactive efforts. As the water content relative to the optimum increased towards the wet side, the volumetric shrinkage strain increased and it decreased towards the dry side. For all compaction energies, the initial degree of saturation increased and regardless of the slag content, the volumetric shrinkage strain increased. As the slag content increased, the initial degree of saturation at which the permissible 4% volumetric shrinkage occurred increased. Slag content had marginal effects on the volumetric shrinkage strain as no clear trend was established. For each slag treatment the volumetric shrinkage strain did not vary significantly with increasing number of drying cycles.  相似文献   

8.
Laboratory investigations were carried out on reddish brown tropical soils from Moniya, Ibadan Southwestern Nigeria to determine the basic unconfined compressive strength of the soil samples which is an important factor to be considered when considering materials as liners in waste containment structure. Clay mineralogy, major element geochemical analyses were carried out by means of X-ray diffractometry and X-ray fluorescence spectrometry respectively. The engineering tests such as sieve size analyses, Atterberg limits, natural moisture contents, specific gravity and compaction using four different compactive efforts namely reduced proctor, standard proctor, West African standard and modified proctor. The tests were carried out in line with the procedures of the British standard 1377 of 1990 and Head of 1992. The soils were found to contain kaolinite as the major minerals with some mixtures of smectite, muscovite, halloysite, quartzite, biotite and aluminium phosphate. Values of the unconfined compressive strength obtained within 12.5 and 22.5% moulding water contents equal to or greater than 200 kN/m2 which is the minimum acceptable value required for containment facilities. The maximum dry density, Mg/m3 ranged between 1.68 and 1.98 while Optimum moisture content, % ranged between 12.3 and 21.2. Hence, unconfined compressive strength values were found to be greater than 200 kN/m2 at dry unit weight of 16.20 kN/m3 especially when WAS and modified proctor compactive efforts were used which met the minimum required unconfined compressive strength of 200 kN/m2 for hydraulic barriers in waste containment facilities.  相似文献   

9.
The Use of Municipal Solid Waste Incinerator Ash to Stabilize Dune Sands   总被引:1,自引:0,他引:1  
Dune sands are problematic soils because they have low shear strength and are susceptible to collapse upon wetting. Dosages of municipal solid waste incinerator ash between 10 and 80?% were used to improve the engineering properties of dune sands. The soil-ash mixtures were allowed to cure for periods from 7 to 90?days. Laboratory tests such as compaction, unconfined compression, shear box and hydraulic conductivity tests were performed to measure the engineering characteristics of the stabilized material. The results showed that the maximum dry density remains approximately constant up to ash content of 30?% and then it decreases with the increase in ash content. The optimum water content increases with the increase in ash content. The unconfined compressive strength substantially increases with ash content up to 30?% and then decreases with the increase in ash content. The angle of friction follows similar trend to the unconfined compressive strength. However, the cohesion shows a steady increase with the ash content. The hydraulic conductivity of the stabilized material consistently decreases with the increase in the ash content. The effect of curing time on the hydraulic conductivity is minimal after 7?days of curing time. However, the unconfined compressive strength and the cohesion slightly increased with curing time up to 90?days.  相似文献   

10.
An expansive tropical black clay (also known as black cotton soil because the cotton plant thrives well on it) was treated with up to 15 % locust bean waste ash (LBWA) to assess its soil improvement potential. Samples were subjected to index, compaction using three energy levels (British Standard light, BSL, West African Standard, WAS or ‘Intermediate’ and British Standard heavy, BSH), shear strength (unconfined compressive strength, UCS), California bearing ratio, CBR and durability tests. Results obtained show that the natural soil is not suitable for road construction. The maximum dry density (MDD) and optimum moisture content (OMC) decreased and increased, respectively. Regardless of the compactive effort and curing period, strength and durability properties increased with higher LBWA content with the BSL effort recording the best improvement. However, based on durability results, the optimal 12.5 % LBWA treatment of black cotton soil did not satisfy criteria for its use in road construction as a stand alone additive. Also, significant improvement in soil properties was obtained using the BSL compactive effort, which is easily achieved in the field. The benefits of the application include reduction in the cost of soil improvement and the adverse environmental impact of locust bean waste.  相似文献   

11.
查甫生  刘松玉  杜延军 《岩土力学》2006,27(Z1):549-554
研究掺粉煤灰对合肥膨胀土的物理性质指标以及胀缩性指标等的影响,探讨利用粉煤灰改良膨胀土的措施与效果。试验研究结果表明,在膨胀土中掺入适量的粉煤灰可有效降低膨胀土的塑性指数、降低膨胀势、减小线缩率与降低活性。在膨胀土中掺入粉煤灰还可改变膨胀土的击实特性,一定击实功作用下,随着掺灰率的增加,土体的最优含水率与最大干密度均减小,膨胀土中掺入粉煤灰后,膨胀土可在较小的含水率下通过击实或压实达到稳定。掺灰膨胀土的膨胀量与膨胀力随养护龄期的增长而减小;没有经过养护的掺灰土,其无侧限抗压强度随掺灰率的变化几乎没有变化,经过7 d养护后,土的无侧限抗压强度有所增长,并且存在一个峰值点,合肥膨胀土的无侧限抗压强度所对应的最佳掺粉煤灰率约为15 %~20 %。  相似文献   

12.
The Portland cement manufacturing process produces considerable amount of cement kiln dust (CKD). While many facilities are able to reuse a significant portion of CKD in their production lines, a large percentage is removed as industrial waste and placed in landfills. Because of the large amount of material potentially available for use, and in an effort to cut disposal costs, alternative and beneficial uses for CKD need to be investigated. This study presents experimental results of the use of CKD in modification and stabilization of soils from the Aberdeen and Everett areas in the state of Washington. These soils are typically wet of the optimum water content and pose problems during geotechnical construction. CKD was added in percentages of 5, 10, 15, and 20% by dry weight of the soils. Laboratory tests, including drying rate of the soils, Atterberg limits, standard proctor and unconfined compressive strength were conducted. Results of the investigation showed significant improvement in drying rate and unconfined compressive strength of the CKD treated specimens as the percentage of CKD increased. It was also found that lower percentages of CKD can be used for modification purposes, whereas higher percentages of CKD can be used for both modification and stabilization purposes in geotechnical construction.  相似文献   

13.
Specimens prepared from three lateritic soil samples were subjected to drying under laboratory conditions. Volumetric shrinkage strains were measured at the end of the drying period. Results of this study indicate that, for the lateritic soils tested, volumetric shrinkage strains are influenced by soil composition and compaction conditions. Volumetric shrinkage strain increased with higher compaction water content. The influence of compaction water content on measured volumetric shrinkage strain was more pronounced in specimens with higher fines content. A regression equation was developed from the data to estimate volumetric shrinkage strain given the compaction water content relative to optimum, plasticity index, fines content and compactive effort.  相似文献   

14.
冻融条件TG固化剂石灰土基层性能研究   总被引:2,自引:2,他引:0  
杨林  朱金莲  焦厚滨 《冰川冻土》2015,37(4):1016-1022
为了进一步研究TG固化剂石灰土在冻融条件下的各项性能, 分别对TG固化剂石灰土进行冻融作用前后的无侧限抗压强度试验和劈裂试验以及干缩试验. 结果表明: 随着冻融循环次数的增加, 无侧限抗压强度以及劈裂强度逐渐减小, 经历8次冻融循环以后强度衰减达到最大值. 经过冻融循环作用后试件的无侧限抗压强度以及劈裂强度残留值随着含水率和压实度的增加而增加, 通过冻融试验得到的抗冻性能指标BDR值在51%以上, 与未饱水冻融循环得到的最终残留强度值保持一致. 经冻融循环作用后TG固化剂石灰土的干缩应变和干缩系数减小, 干缩性能有所提高. 冻融循环条件下TG固化剂石灰土抗冻性能良好, 可以应用于路面基层.  相似文献   

15.
This study evaluates the potential use of cement-kiln dust (CKD), a waste product from the cement industry, for enhancing the mechanical as well as the hydraulic properties of soils in arid lands. Stabilized products will play a major role in reducing slope failures, pavement damage and the design of containment barriers for hazardous waste in arid lands. Various tests to determine the different physical properties of the stabilized matrix were conducted and the optimum mixture that produces maximum internal energy and minimum hydraulic conductivity was selected. The effect of soaking and unsoaking of the treated specimens on the mechanical properties was also evaluated. The effect of metal ion concentration and conjugate anions on the resultant hydraulic conductivity was evaluated. The optimum percentage of CKD was calculated by using stress-strain data, Newton's divided difference and Simpson's integration technique. The analyses have shown that 6% by weight of CKD is the optimum mix design, which increases the shear strength and decreases the hydraulic conductivity to less than 10-9 m/s. Therefore, the treated soil could be used as a soil-based barrier layer for containment of hazardous waste.  相似文献   

16.
The present research work deals with an expansive high plastic clayey soil with cement kiln dust (CKD) and stabilizer (RBI Grade 81). The physical and engineering properties of soil are plasticity, compaction, unconfined compressive strength (UCS), consolidation and California bearing ratio (CBR) of the clayey soil and clay treated with CKD and stabilizer were determined. Soil chemistry was examined before and after treatment using scanning electron microscope (SEM) and elemental dispersive spectrometer. The clay mixed with CKD, CKD and RBI Grade 81 was found that optimum contents are 10 % (CKD), 15 % CKD with 4 % RBI Grade 81, respectively. The result indicates that CKD alone will decrease maximum dry density and increase optimum moisture content. CKD with RBI Grade 81 slightly increases maximum dry density and decreases optimum moisture content. UCS increased with CKD alone and CKD with RBI Grade 81 from 88.3 to 976 kN/m2, respectively. CBR values were increased by the addition of CKD, CKD with RBI Grade 81 from 1.65 to 21.7 %. With the curing time of 3, 14 and 28 days, UCS and CBR values were increased due to pozzolanic reaction from cementations material. The treated soil has considerable reduction in compression index. SEM images clearly indicate the formation of CSH and CAH gel.  相似文献   

17.
Large quantities of leachate-contaminated lateritic soil results from dump yards in the southwest coast of India. These dump yards receive large quantities of municipal solid waste which includes chemical, industrial and biomedical wastes. Large areas of land are currently being used for this purpose. An extensive laboratory testing program was carried out to determine the compaction characteristics and hydraulic conductivity of clean and contaminated lateritic soil. Batch tests were used to study the immediate effect of leachate contamination on the properties of lateritic soil. Contaminated specimens were prepared by mixing the lateritic soil with leachate in the amount of 5%, 10% and 20% by weight to vary the degree of contamination. The results indicated a small reduction in maximum dry density and an increase in hydraulic conductivity due to leachate-contamination. The change induced by chemical reaction in the microstructure of the soil was studied by scanning electron microscope before and after contamination of soil with leachate. The structure of the leachate contaminated soil sample appeared to be aggregated in scanning electron microscope analysis. The aggregated structure increases the effective pore space and thus increases the hydraulic conductivity. Fifty percent increase in hydraulic conductivity was observed for specimens prepared at standard Proctor density and mixed with 20% leachate. Compaction characteristics did not change much with the presence of leachate up to 10%. With 20% leachate the maximum dry density decreased slightly indicating excess leachate in the soil. However the changes are not significant.  相似文献   

18.
In this paper, marble waste is evaluated as a secondary material to be utilized as potential stabilizer to improve the volume change and strength characteristics of sand-amended expansive soil, proposed as a possible landfill, pavement or sub-base material in a semi-arid climate. An experimental program was conducted on sand-expansive soil enhanced with marble waste, abundantly found as a by-product of construction industry, obtained from two different sources with different gradations, denoted as marble powder (MP) and marble dust (MD). One-dimensional swell, volumetric shrinkage, consolidation, unconfined compressive and flexural strength tests were conducted on expansive soil–sand mixtures with 5, 10 and 20% waste marble inclusions over curing periods of 7, 28 and 90 days. Test results showed that 10% marble powder and 5% marble dust by dry mass were the optimum amounts for mitigating the swell–shrink potential and compression index as well as yielding the highest unconfined compressive and flexural strength values. Moreover, the rate of reduction in swell potential versus the flexural strength over the curing periods studied is highest in 10% MP- and 5% MD-included specimens, the latter being more insensitive to this change. The soil mixtures displayed brittle behavior after marble addition, hence its utilization as a secondary additive to sand-amended expansive soil is recommended for soils exposed to lower flexural loads such as light traffic.  相似文献   

19.
张亭亭  李江山  王平  黄茜  薛强 《岩土力学》2016,37(Z2):279-286
采用磷酸镁水泥(MPC)对铅污染土进行固化/稳定化处理。基于无侧限抗压强度试验和渗透试验,研究了MPC添加量、水土比对固化污染土强度及渗透特性的影响规律。结果表明,固化土的强度随MPC添加量增加而增大,渗透系数减小;水土比对固化土的强度及渗透特性的影响均存在临界值,为0.45。低于临界值时,固化土的强度随着水土比的增加而增加,渗透系数随着水土比的增加而减小。压汞试验(MTP)结果表明,随MPC添加量的增大,固化土孔隙体积减小,水土比不超过临界值时,固化土孔隙体积随着水土比的增大而减小。扫描电镜试验结果表明,随着MPC添加量的增加,土颗粒团聚化越明显,胶结程度加强;水土比不超过临界值时,土颗粒团聚体增多。镁钾磷酸盐晶体(MKP)主要通过减少孔径大于1 ?m的孔隙体积来影响固化土的强度和渗透特性。  相似文献   

20.
ABSTRACT

This paper presents the effectiveness of xanthan gum (XG) biopolymer in stabilising the expansive soil. The XG biopolymer is mixed with expansive soil in different proportions such as 0%, 0.2%, 0.5%, 0.8% and 1.0% by weight of the dry soil mass. The plasticity, compaction, swelling, compressibility, hydraulic conductivity, strength and durability characteristics of the treated and un-treated expansive soil are examined. Results show that the plasticity index of the treated soil mass initially increases but beyond 0.5% biopolymer addition it decreases sharply. The optimum moisture content and maximum dry density of treated soil, found out from light and heavy compaction tests, do not follow any definite trend. It is also found that increasing XG content increases compressibility slightly but, it reduces swelling pressure, differential free swelling value and hydraulic conductivity remarkably. On the other hand, time-dependent compressive strength and resistance to mass loss increases with increasing XG content. Microscopic examination confirms the formation of gel-like linkage, which brings about the modifications in the treated expansive soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号