首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Continental Shelf Research》2007,27(10-11):1379-1398
Water masses in Monterey Bay are determined from the CTD casts of the Monterey Ocean Observing System (MOOS) Upper-water-column Science Experiment (MUSE) August 2000 dataset. It is shown through cluster analysis that the MUSE 2000 CTD dataset contains 5 water masses. These five water masses are: bay surface water (BSW), bay warm water (BWW), bay intermediate water (BIW), sub arctic upper water (SUW) and North Pacific deep water (NPDW). The BWW is a new water mass that exists in one area and is attributed to the effects of solar heating. The volumes occupied by each of the water masses are obtained. The BIW water is the most dominant water mass and occupies 68.8% of the volume. The statistical means and standard deviations for each water parameter, including spiciness and oxygen concentration, are calculated during separate upwelling and relaxed periods.The water mass content and structure are analyzed and studied during upwelling and a relaxed period. During upwelling, along a CTD track off Pt. Ano Nuevo, the water mass T, S distribution tended to be organized along three branches. Off Pt. Ano Nuevo the innovative coastal observation network (ICON) model showed the formation of a cyclonic eddy during the analyzed upwelling period. In time the eddy moved southwest and became absorbed into the southerly flow during the initial phases of the following wind-relaxed period.  相似文献   

2.
The surface ocean circulation in the Caribbean Sea is characterized by the interaction between anticyclonic eddies and the Caribbean Upwelling System (CUS). These interactions lead to instabilities that modulate the transfer of kinetic energy up- or down-cascade. The interaction of North Brazil Current rings with the islands leads to the formation of submesoscale vorticity filaments leeward of the Lesser Antilles, thus transferring kinetic energy from large to small scales. Within the Caribbean, the upper ocean dynamic ranges from large-scale currents to coastal upwelling filaments and allow the vertical exchange of physical properties and supply KE to larger scales. In this study, we use a regional model with different spatial resolutions (6, 3, and 1 km), focusing on the Guajira Peninsula and the Lesser Antilles in the Caribbean Sea, in order to evaluate the impact of submesoscale processes on the regional KE energy cascade. Ageostrophic velocities emerge as the Rossby number becomes O(1). As model resolution is increased submesoscale motions are more energetic, as seen by the flatter KE spectra when compared to the lower resolution run. KE injection at the large scales is greater in the Guajira region than in the others regions, being more effectively transferred to smaller scales, thus showing that submesoscale dynamics is key in modulating eddy kinetic energy and the energy cascade within the Caribbean Sea.  相似文献   

3.
Some previous studies demonstrated that model bias has a strong impact on the quality of long-term prognostic model simulations of the sub-polar North Atlantic Ocean. Relatively strong bias of water mass characteristics is observed in both eddy-permitting and eddy-resolving simulations, suggesting that an increase of model resolution does not reduce significantly the model bias. This study is an attempt to quantify the impact of model bias on the simulated water mass and circulation characteristics in an eddy-permitting model of the sub-polar ocean. This is done through comparison of eddy-permitting prognostic model simulations with the results from two other runs in which the bias is constrained by using spectral nudging. In the first run, the temperature and salinity are nudged towards climatology in the whole column. In the second run, the spectral nudging is applied in the surface 30 m layer and at depths below 560 m only. The biases of the model characteristics of the unconstrained run are similar to those reported in previous eddy-permitting and eddy-resolving studies. The salinity in the surface and intermediate waters of the Labrador Sea waters increases with respect to the climatology, which reduces the stability of the water column. The deep convection in the unconstrained run is artificially intensified and the transport in the sub-polar gyre stronger than in the observations. In particular, the transport of relatively salty and warm Irminger waters into the Labrador Sea is unrealistically high. While the water mass temperature and salinity in the run with spectral nudging in the whole column are closest to the observations, the depth of the winter convection is underestimated in the model. The water mass characteristics and water transport in the run with spectral nudging in the surface and deep layers only are close to observations and at the same time represent well the deep convection in terms of its intensity and position. The source of the bias in the prognostic model run is discussed.  相似文献   

4.
《Continental Shelf Research》2005,25(9):1003-1022
The coastal upwelled waters of the Guajira coast, the most northerly peninsula of South America, were studied on the basis of historical data bases, remotely sensed data, and three oceanographic cruises. The Guajira Peninsula is the locus of particularly strong upwelling because it protrudes into the Caribbean Low-Level Wind Jet and its west coast parallels the direction of the strongest winds. The year-round upwelling varies with the wind forcing: strongest in December–March and July, and weakest in the October–November rainy season. The east–west temperature, salinity and density front that delimits the upwelling lies over the shelf edge in the east of the peninsula but separates from the south-westward trending topography to the west. A coastal westward surface jet geostrophically adjusted to the upwelling flows along the front, and an eastward sub-surface counterflow is trapped against the Guajira continental slope. The undercurrent shoals toward the western limit of the upwelling, Santa Marta, beyond which point it extends to the surface. Some of the westward jet re-circulates inshore with the counterflow but part continues directly west to form an upwelling filament. Much of the mesoscale variation is associated with upwelling filaments, which expel cooler, chlorophyll-rich coastal upwelling waters westward and northward into the Caribbean Sea. Freshwater plumes from the Magdalena and Orinoco rivers influence the area strongly, and outflow from Lake Maracaibo interacts directly with upwelled waters off Guajira. Another important factor is the Aeolian input of dust from the Guajira desert by episodes of offshore winds.  相似文献   

5.
6.
Recent observations of ocean temperature in several Greenland fjords suggest that ocean warming can cause large changes in the outlet glaciers in these fjords. We have observed the Helheim outlet-glacier front in the Sermilik Fjord over the last three decades using satellite images, and the vertical fjord temperature and salinity during three summer expeditions, 2008?C2010. We show that the subsurface water below 250 m depth is the warm saline Atlantic Water from the Irminger Sea penetrating into the fjord and exposing the lower part of the Helheim glacier to warm water up to 4°C. Lagged correlation analysis spanning the 30-year time series, using the subsurface Atlantic Water temperature off the coast as a proxy for the variability of the subsurface warm Atlantic Water in the fjord, indicates that 24% of the Helheim ice-front movement can be accounted for by ocean temperature. A strong correlation (?C0.75) between the ice-front position and the surface air temperature from a nearby meteorological station suggests that the higher air temperature causes melting and subsequent downward percolation of meltwater through crevasses leading to basal lubrication; the correlation accounts for 56% of the ice-front movement. The precise contribution of air temperature versus ocean temperature however, remains an open question, as more oceanographic and meteorological measurements are needed close to the glacier terminus.  相似文献   

7.
Recent radium measurements from the near-surface Caribbean Sea are presented. The surface horizontal and vertical distributions of226Ra are essentially the same as reported by Szabo et al. (1967) for the early 1960's. The226Ra activity at the surface is relatively uniform across the Caribbean, with an average of8.2±0.4dpm/100kg. The subsurface distribution to ~200 m averages7.8±0.4dpm/100kg and increases slowly below 200 m. reaching ~9.5 dpm/100 kg at 560 m. In contrast to226Ra, the surface concentration of228Ra was much more variable in both time and space. An average increase of 33% was found between 1968 and 1976 in the western Caribbean and during both years an anomalously high228Ra activity was found in the eastern Caribbean. These data support previous hypotheses that water entering the eastern Caribbean has been enriched in228Ra prior to entry and that variable mixing of the Atlantic water masses found to the northeast and southeast of the Lesser Antilles may produce temporal variations in the near-surface228Ra activity. Scatter plots of228Ra vs. salinity and sigma-t indicate that the near-surface vertical distribution of228Ra in the Caribbean Sea is predominantly influenced by advection. Thus228Ra cannot be used to study near-surface vertical mixing rates in this region.  相似文献   

8.
The Eastern Weddell Ice Shelves (EWIS) are believed to modify the water masses of the coastal current and thus preconditions the water mass formation in the southern and western Weddell Sea. We apply various ocean warming scenarios to investigate the impact on the temperature–salinity distribution and the sub-ice shelf melting in the Eastern Weddell Sea. In our numerical experiments, the warming is imposed homogeneously along the open inflow boundaries of the model domain, leading to a warming of the warm deep water (WDW) further downstream. Our modelling results indicate a weak quadratic dependence of the melt rate at the ice shelf base on the imposed amount of warming, which is consistent with earlier studies. The total melt rate has a strong dependence on the applied ocean warming depth. If the warming is restricted to the upper ocean (above 1,000  m), the water column (aside from the mixed surface layer) in the vicinity of the ice shelves stabilises. Hence, reduced vertical mixing will reduce the potential of Antarctic Bottom Water formation further downstream with consequences on the global thermohaline circulation. If the warming extends to the abyss, the WDW core moves significantly closer to the continental shelf break. This sharpens the Antarctic Slope Front and leads to a reduced density stratification. In contrast to the narrow shelf bathymetry in the EWIS region, a wider continental shelf (like in the southern Weddell Sea) partly protects ice shelves from remote ocean warming. Hence, the freshwater production rate of, e.g., the Filchner–Ronne Ice Shelf increases much less compared with the EWIS for identical warming scenarios. Our study therefore indicates that the ice-ocean interaction has a significant impact on the temperature-salinity distribution and the water column stability in the vicinity of ice shelves located along a narrow continental shelf. The effects of ocean warming and the impact of increased freshwater fluxes on the circulation are of the same order of magnitude and superimposed. Therefore, a consideration of this interaction in large-scale climate studies is essential.  相似文献   

9.
The Nd isotopic composition of the aragonite skeleton of fossil deep-sea corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) located in the northeastern Atlantic at water depths between 635 and 1300 m was investigated to reconstruct changes in the Atlantic mid-depth gyre circulation during the past millennium. The coral εNd values varied systematically from ? 11.8 to ? 14.4 during the past 1500 years, reflecting variations in seawater εNd and thus water mass provenance. Low εNd values (εNd = ? 14) occurred during the warm Medieval Climatic Anomaly (MCA) (between 1000 AD and 1250 AD) and during the most recent period (1950 AD to 2000 AD), interrupted by a period of significantly higher εNd values (~?12.5) during the Little Ice Age (LIA) (between 1350 AD and 1850 AD). One long-lived branching coral even recorded an abrupt systematic rise from low to high εNd values around 1250 AD over the course of its 10-year growth period.These variations are interpreted to result from variable contributions of the subpolar and subtropical Atlantic intermediate water masses, which today are characterized by εNd values of ? 15 and ~?11, respectively. The low εNd values observed during the warm MCA and during recent times imply a strong eastward extension of the mid-depth subpolar gyre (SPG) induced by a dominant positive phase of the North Atlantic oscillation (NAO). During the LIA, water from the subtropical gyre (STG) and potentially from the Mediterranean Sea Water (MSW) propagated further northward, as indicated by the higher coral εNd values. This pattern suggests a negative mean state of the NAO during the LIA, with weaker and more southerly located Westerlies and a westward contraction of the SPG. Variations in the contributions of the two gyres imply changes in the heat and salt budgets at intermediate depths during the past millennia that may have contributed to changes in the properties of North Atlantic inflow into the Nordic Seas and thus deep-water formation.  相似文献   

10.
This study presents the distribution of dissolved inorganic carbon (DIC) along the Strait of Gibraltar, its tidal-induced variability, as well as the inorganic carbon exchange between the Atlantic Ocean and Mediterranean Sea. During November 2003, water column samples were collected at nine stations to measure total alkalinity (TA), pH, and dissolved oxygen (DO) for the spatial characterization of the carbonate system. At the same time, anchored samplings were carried out, above the Camarinal Sill and in the Eastern Section of the Strait, in order to assess the tidal mixing effects for oxygen and DIC distribution on the water column. Three distinct water masses can be discerned in this area: the Surface Atlantic Water (SAW), the Mediterranean Water (MW), and the less abundant North Atlantic Central Water (NACW). The observations show an increase in the DIC and a decrease in oxygen concentration with depth, related to the different physico-chemical features of each water mass. The results show the high time-dependence of the vertical distribution of DIC with the interface oscillation, affected by the intense mixing processes taking place in the Strait. Intense mixing episodes over the Camarinal Sill are responsible for an increase in the DIC concentrations in the upper layer of the Eastern Section of the Strait. Higher DIC concentrations in the Mediterranean than in the Atlantic waters are responsible for a net DIC transport of 1.47×1012 mol C yr−1 to the Atlantic Ocean. Nevertheless, the net exchange is highly sensitive to the interface definition, as well as to the estimate of water volume transport used.  相似文献   

11.
Surface and sub-surface currents along the ocean boundary of Western Australia were simulated using Regional Ocean Modelling System (ROMS) to examine the circulation within the Perth Canyon. Two major current systems influenced the circulation within the canyon: (1) The Leeuwin current interacted weakly with the canyon as the majority of the canyon was below the depth of the Leeuwin current and (2) Leeuwin undercurrent interacted strongly with the canyon, forming eddies within the canyon at depths of 400–800 m. The results indicated that within the canyon, the current patterns changed continuously although there were some repeated patterns. Recurrent eddies produced regions where upwelling or downwelling dominated during the model runs. Deep upwelling was stronger within the canyon than elsewhere on the shelf, but vertical transport in the upper ocean was strong everywhere when wind forcing was applied. Upwelling alone appeared to be insufficient to transport nutrients to the euphotic zone because the canyon rims were deep. Increased upwelling, combined with entrapment within eddies and strong upwelling-favourable winds, which could assist mixing, may account for the high productivity attributed to the canyon. The Leeuwin current is otherwise a strong barrier to the upwelling of nutrients.  相似文献   

12.
Measurements of 231Pa, 230Th and 232Th concentrations have been made on five water-column profiles along the western margin of the Madagascar and Mascarene Basins in the southern Indian Ocean. These measurements help to fill a significant gap in the global coverage of water-column 232Th, 230Th and 231Pa data. 232Th concentrations vary, but generally increase with depth, suggesting higher particle loading in deeper waters, and the presence of a significant dissolved fraction of 232Th. 230Th concentrations increase with depth, and profiles are similar to the average of existing data from other regions. 231Pa concentrations, on the other hand, show significant depth structure, apparently reflecting the various water masses sampled at this location. The modified remnants of North Atlantic Deep Water are found at a depth of ≈ 2000 m and exhibit elevated 231Pa concentrations exported from the South Atlantic. Antarctic Intermediate and Bottom Waters have lower 231Pa, probably due to scavenging onto opal particles during transit from the Southern Ocean. The differences between water masses raises a question: which water mass is important in controlling the 231Pa/230Th ratio in underlying sediments? A simple one-dimensional model is used to demonstrate that the 230Th and 231Pa exported to sea-floor sediments last equilibrates with waters close to the seafloor (within ≈ 1000 m), rather than averaging the whole water column. These findings suggest that 231Paxs/230Thxs in sediments provides information primarily about deep-water masses. In this region, sedimentary records will therefore provide information about the past flow of Antarctic Bottom Water into the Indian Ocean. Interpretation of data from other regions, such as the North Atlantic where this proxy has most successfully been applied, requires careful consideration of regional oceanography and knowledge of the composition of the water masses being investigated.  相似文献   

13.
Using distributions of benthic Foraminifera and bottom-water variables (depth, salinity, temperature, oxygen, suspended matter, organic matter, phosphate, silicate, nitrite, and nitrate), we investigated movements of water masses on the South Brazilian Shelf (27–30°S) and assessed the seasonality of continental runoff on the distribution of shelf water masses. The data were obtained from water and sediment samples collected in the austral winter of 2003 and austral summer of 2004 in three transects. The terrestrial nutrient input was significantly reduced at stations away from the coast, but high values of nutrients were maintained in subsurface waters due the presence of South Atlantic Central Water (SACW) at greater depths. At shallow sampling stations the influence of freshwater runoff was related to (1) the dominance of calcareous benthic Foraminifera, such as lagoon-related Pseudononion atlanticum, Hanzawaia boueana, Bulimina marginata, Bolivina striatula, Elphidium poeyanum, together with several agglutinated species, including Arenoparrella mexicana, Gaudryina exilis, and Trochammina spp., common in coastal environments subject to wide salinity fluctuations. In contrast, smaller forms and higher species diversity characterized the assemblage at offshore stations. In winter, the presence of Buccella peruviana and Uvigerina peregrina at Santa Marta Cape suggest the possible transport of those species of Subantarctic Shelf Waters (SASW) origin. Foraminifera associated to Subtropical Shelf Water (STSW) were dominated by Globocassidulina subglobosa in both seasons. In summer, the occurrence of U. peregrina in the shallower stations suggested the influence of SACW nutrients brought up by upwelling of deeper waters.  相似文献   

14.
Data from climatology (World Ocean Atlas) and two large scale operational ocean models (Forecasting Ocean Assimilation Model (FOAM), UK Met. Office and the Navy Coastal Ocean Model (NCOM), US Naval Research Laboratory) are used to give initial and open boundary conditions for a northeast Atlantic implementation of the Proudman Oceanographic Laboratory Coastal Ocean Model System (POLCOMS). We study the effects of using the different datasets on the temperature fields and the circulation. On the continental shelf, comparisons of POLCOMS output with Advanced Very High Resolution Radiometer sea surface temperature data suggest that the effect of using different ocean model initial and boundary conditions is small and that, after 15 months of model time, the impact of the different initial conditions is negligible. Stronger evidence of influence is seen in the deeper oceanic regions of the domain. Volume fluxes through sections governing flow into and out of the North Sea, through the Irish Sea and along the shelf edge show that the impact of the different boundary conditions is small on the shelf but significant elsewhere. These results are contrasted with the use of climatology to assess the value of these Global Ocean Data Assimilation Experiment ocean model products.  相似文献   

15.
The physical and biological environment of the Barents Sea is characterised by large variability on a wide range of scales. Results from a numerical ocean model, SINMOD, are presented showing that the physical variability is partly forced by changes in annual net ice import. The mean contribution from ice import in the simulation period (1979–2007) is about 40% of the total amount of ice melted each year. The annual ice import into the Barents Sea varies between 143 and 1,236 km3, and this causes a substantial variability in the amount of annual ice melt in the Barents Sea. This in turn impacts the freshwater content. The simulated freshwater contribution from ice is 0.02 Sv on average and 0.04 Sv at maximum. When mixed into a mean net Atlantic Water (AW) inflow of 1.1 Sv with a salinity of 35.1, this freshwater addition decreases the salinity of the modified AW to 34.4 and 33.9 for the mean and maximum freshwater fluxes, respectively. Ice import may thus be important for the Barents Sea production of Arctic Ocean halocline water which has salinity of about 34.5. The changes in the ice melt the following summer due to ice import also affect the formation of dense water in the Barents Sea by changing stratification, altering the vertical mixing rates and affecting heat loss from the warm AW. The model results thus indicate that ice import from the Arctic has a great impact on water mass modification in the Barents Sea which in turn impacts the ventilation of the Arctic Ocean.  相似文献   

16.
A three-dimensional model based on the Princeton Ocean Model (POM) has been implemented to study the circulation of the west coast of India. The model uses a curvilinear orthogonal horizontal grid with higher resolution near the coast (3–9 km) and a terrain following sigma coordinate in the vertical. The model is able to simulate Lakshadweep High and Lakshadweep Low (LL) during the winter and summer monsoons, respectively. During winter, the downwelling processes noticed along the coast help in the formation of temperature inversions. The inversions can be seen even up to the depths of ~50 m, which agrees with the available ARGO data in the region. Model simulations show that coastal upwelling off Kerala is at its peak in July. The intensity of upwelling reduces along the coast towards north. During the existence of LL, there is a cyclonic eddy in the sub-surface waters over the South-Eastern Arabian Sea, with vertical extent up to the depths of 100–150 m and it is strengthened due to the presence of northward counter current in the shelf region. The southerly coastal jet formed along the southern coast as a result of upwelling is noticed a westward shift along with LL. The location of the eddy off Kerala is tilted towards the open ocean with depth and our experiments suggest that this flow can be understood as a first baroclinic mode.  相似文献   

17.
Downscaling a twentieth century global climate simulation to the North Sea   总被引:2,自引:1,他引:2  
The regional ocean model system (ROMS) is used to downscale a 26-year period of the twentieth century 20C3M experiment from the global coupled Bergen climate model (BCM) for the North Sea. Compared to an observational-based climatology, BCM have good results on the mean temperature, except for too low winter temperature. This is connected to a too weak inflow of Atlantic water. The downscaling gives added value to the BCM results by providing regional details, doubling the Atlantic inflow, and improving the mean winter temperature. For mean salinity, BCM has values very close to the climatology, whereas the downscaling becomes too fresh. The downscaling, however, improves the sea surface salinity, the vertical structure, and the Norwegian Coastal Current. It is concluded that the downscaling procedure as presented here is a suitable tool for assessing the future Atlantic inflow and sea temperature in the North Sea based on a global climate projection.  相似文献   

18.
A growing body of research suggests that the marine environments of south Florida provide a critical link between the tropical and high-latitude Atlantic. Changes in the characteristics of water masses off south Florida may therefore have important implications for our understanding of climatic and oceanographic variability over a broad spatial scale; however, the sources of variability within this oceanic corridor remain poorly understood. Measurements of ΔR, the local offset of the radiocarbon reservoir age, from shallow-water marine environments can serve as a powerful tracer of water-mass sources that can be used to reconstruct variability in local-to regional-scale oceanography and hydrology. We combined radiocarbon and U-series measurements of Holocene-aged corals from the shallow-water environments of the Florida Keys reef tract (FKRT) with robust statistical modeling to quantify the millennial-scale variability in ΔR at locations with (“nearshore”) and without (“open ocean”) substantial terrestrial influence. Our reconstructions demonstrate that there was significant spatial and temporal variability in ΔR on the FKRT during the Holocene. Whereas ΔR was similar throughout the region after ∼4000 years ago, nearshore ΔR was significantly higher than in the open ocean during the middle Holocene. We suggest that the elevated nearshore ΔR from ∼8000 to 5000 years ago was most likely the result of greater groundwater influence associated with lower sea level at this time. In the open ocean, which would have been isolated from the influence of groundwater, ΔR was lowest ∼7000 years ago, and was highest ∼3000 years ago. We evaluated our open-ocean model of ΔR variability against records of local-to regional-scale oceanography and conclude that local upwelling was not a significant driver of open-ocean radiocarbon variability in this region. Instead, the millennial-scale trends in open-ocean ΔR were more likely a result of broader-scale changes in western Atlantic circulation associated with an increase in the supply of equatorial South Atlantic water to the Caribbean and shifts in the character of South Atlantic waters resulting from variation in the intensity of upwelling off the southwest coast of Africa. Because accurate estimates of ΔR are critical to precise calibrations of radiocarbon dates from marine samples, we also developed models of nearshore and open-ocean ΔR versus conventional 14C ages that can be used for regional radiocarbon calibrations for the Holocene. Our study provides new insights into the patterns and drivers of oceanographic and hydrologic variability in the Straits of Florida and highlights the value of the paleoceanographic records from south Florida to our understanding of Holocene changes in climate and ocean circulation throughout the Atlantic.  相似文献   

19.
The consequences of a coastal upwelling event on physical and chemical patterns were studied in the central Gulf of Finland. Weekly mapping of hydrographical and -chemical fields were carried out across the Gulf between Tallinn and Helsinki in July–August 2006. In each survey, vertical profiles of temperature and salinity were recorded at 27 stations and water samples for chemical analyses (PO43−, NO2+NO3) were collected at 14 stations along the transect. An ordinary distribution of hydrophysical and -chemical variables with the seasonal thermocline at the depths of 10–20 m was observed in the beginning of the measurements in July. Nutrient concentrations in the upper mixed layer were below the detection limit and nutriclines were located just below or in the lower part of the thermocline. In the first half of August, a very intense upwelling event occurred near the southern coast of the Gulf when waters with low temperature and high salinity from the intermediate layer surfaced. High nutrient concentrations were measured in the upwelled water – 0.4 μmol l−1 of phosphates and 0.6 μmol l−1 of nitrates+nitrites. We estimated the amount of nutrients transported into the surface layer as 238–290 tons of phosphorus (P)-PO43− and 175–255 tons of N-NOx for a 12 m thick, 20 km wide and 100 km long coastal stretch. Taking into account a characteristic along-shore extension of the upwelling of 200 km, the phosphate-phosphorus amount is approximately equal to the average total monthly riverine load of phosphorus to the Gulf of Finland. It is shown that TS-characteristics of water masses and vertical distribution of nutrients along the study transect experienced drastic changes caused by the upwelling event in the entire studied water column. TS-analysis of profiles obtained before and during the upwelling event suggests that while welled up, the cold intermediate layer water was mixed with the water from the upper mixed layer with a share of 85% and 15%. We suggest that the coastal upwelling events contribute remarkably to the vertical mixing of waters in the Gulf of Finland. Intrusions of nutrient-rich waters along the inclined isopycnal surfaces in the vicinity of upwelling front were revealed. The upwelling event widened the separation of phosphocline and nitracline which in turn prevented surfacing of nitrate+nitrite-nitrogen during the next upwelling event observed a week after the upwelling relaxation. A suggestion is made that such widening of nutricline separation caused by similar upwelling events in early summer could create favourable conditions for late summer cyanobacterial blooms.  相似文献   

20.

During polar nights of 2012 and 2017, bioluminescence (BL) potential surveys demonstrated high emissions at depths around and below 100 m at offshore stations to the north of a Svalbard fjord (Rijpfjorden). We demonstrated that the highest bioluminescent emissions for offshore stations are located at depths below depths of modelled/ambient light intensities corresponding to the reported irradiance thresholds for the behavioral light sensitivity of krill and copepods, and suggest that behavioral light sensitivity is one of the reasons for high values of BL potential observed below 100 m at offshore stations. In order to understand sources of bioluminescent taxa responsible for the observed high values of BL potential in offshore waters, we have investigated the origin and pathways of water masses circulating to the north, offshore of the fjord Rijpfjorden by using a hydrodynamic model. For both 2012 and 2017, the model water masses mostly originate from the west, where the Atlantic water is flowing northward, then along the shelf and shelf slope of northern Svalbard, and to the offshore of the fjord. This indicates that the advection of zooplankton by North Atlantic Water is one possible source of bioluminescent organisms offshore of northern Svalbard. In 2012, water masses also originated from the inflow through Hinlopen trench and strait, while, in 2017, the offshore water was advected and upwelled into the fjord on time scales less than 10 days, and after that there was a recirculation back from the fjord to offshore on time scales larger than 10 days. This recirculation from the fjord might be another source of bioluminescent organisms in the offshore waters.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号