首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fox Creek is a small tributary of the Saddle River, a tributary of the Peace River in northwestern Alberta. It has several dormant landslides with degraded scarps and grabens. A new, reactivated landslide on the north bank of the Fox Creek occurred on 5 May 2007. The landslide formed two major sliding blocks. A rapid translational block slide, it mobilized 47 Mm3 of displaced materials, blocked the creek, and made a natural dam with a maximum height of 19 m at the tips of the displaced blocks. The rupture surfaces of the 2007 landslide were within the advance phase glaciolacustrine sediments. The residual friction angles are about 10° similar to those of the previous landslides in the Peace River Lowland. Precipitation and snow melt prior to the landslide are likely triggers of the 2007 Fox Creek landslide. The farmlands on the crest of the river valley and timber resources were impacted. The current landslide dam in Fox Creek does not have any evidence of seepage downstream; it may last for many years. Eventually, the creek will overtop and erode the dam. The same cycle of actions, landsliding, damming, and erosion will continue in the foreseeable future.  相似文献   

2.
Earthquake-triggered landslides are a major geological hazard in Central Asia. In July 1949, the M7.4 Khait earthquake triggered many hundreds of landslides in a mountainous region near the southern limit of the Tien Shan Mountains, central Tajikistan. These landslides involved widespread rock-slope failure as well as large numbers of flowslides in loess that mantles the steep slopes of the region. In the Yasman valley hundreds of loess landslides coalesced to form a massive loess flow (est. vol. 245 Mm3) that travelled up to 20 km on a slope of only 2°. In an adjacent valley, the Khait landslide involved transformation of an earthquake-triggered rockslide into a very rapid flow by the entrainment of saturated loess into its movement. It travelled 7.41 km over a vertical distance of 1421 m with an estimated average velocity of ~30 m/s. We estimate its volume as 75 Mm3, an order of magnitude less that previously published estimates. The Khait landslide was simulated using DAN. The number of casualties due to earthquake-triggered landslides in the epicentral region was considerable. Approximately 4000 people were killed in the Yasman valley loess flow as 20 villages (kishlaks) were overwhelmed. In the Khait landslide alone we estimate ca. 800 people lost their lives when the villages of Khait and Khisorak were overrun by rapidly moving debris. Our data indicates that a total of approximately 7200 people were killed by earthquake-triggered landslides in the epicentral region of the Khait earthquake and that, in terms of loss of life, the 1949 Yasman valley loess flow was one of the most destructive landslides in recent history.  相似文献   

3.
The Sea to Sky Corridor has experienced hundreds of historic and prehistoric landslides. The most common types of historical landslides are rock falls and debris flows, which are relatively small in volume but can be damaging. These types of failures are more common in the southern part of the corridor, between Horseshoe Bay and Porteau, where infrastructure has been built in close proximity to steep slopes. Farther north, fewer landslides have been reported historically, but those that have been recorded are usually large and date to prehistoric time (e.g., Cheekye fan and Mystery Creek rock avalanche). As part of a Geological Survey of Canada surficial geology and landslide inventory mapping study, Mystery Creek rock avalanche, near Whistler, British Columbia, was sampled for 36Cl dating. Samples were collected from three large flat boulders of quartz diorite in the rock avalanche deposit to test a correlation with the previously reported radiocarbon age of 800 ± 100 years BP on charcoal. One sample revealed a mean age of 2,400 years and the other two, 4,300 and 4,800 years, respectively. These new results point to four possible interpretations: (1) Mystery Creek landslide is about 800 years old; (2) Based on the overlapping 2σ uncertainties, the rock avalanche took place between 2,200 and 3,600 years ago; (3) The rock avalanche deposit is 2,400 years old and the other two blocks are too old; and (4) The rock avalanche is between 4,300 and 4,800 years old. Although there is strength in numbers and it is likely that the age varies between 4,300 and 4,800 years, we favor the second interpretation where the age range is broader and statistically significant for all three samples. Moreover, at this time, we favor discounting the radiocarbon age based on a greater number of samples analyzed for 36Cl analysis and lack of detailed information on the charcoal sampling. The causes and triggers of the Mystery Creek rock avalanche remain unknown, but direct glacial debuttressing can be ruled out. Some of the causes are likely a combination of the regional tectonic setting which produced preferential planes of weakness reflected in the trend of major faults, headscarp, and reverse scarps. Yearly cycles of freezing and thawing are considered a plausible cause based on present-day climate records. Finally, a large earthquake still remains a possible trigger because of the active tectonic setting and the presence of potentially contemporaneous landslides in the same area. Mystery Creek rock avalanche and other historic and pre-historic landslides contributed to validation of a heuristic rock fall/rock slide/rock avalanche susceptibility mapping study, in which their headscarps correlated well with medium-high to high susceptibility zones. In terms of hazard assessment, Mystery Creek rock avalanche, although pre-historic in age, occurred in present-day climatic and geological conditions. This poses a threat to infrastructure such as the Sea to Sky Highway, railway, and power line.  相似文献   

4.
At 6:10 p.m. on September 23, 1991, a catastrophic rock avalanche occurred in Zhaotong, Yunnan, southwestern China. Over 216 people were killed when the Touzhai village was overwhelmed directly in the path of the landslide. The landslide involved the failure of about 12 Mm3 of jointed basaltic rock mass from the source area. The displaced materials ran out a horizontal distance of 3650 m over a vertical distance of 960 m, equivalent to a Fahrböschung of 14.7°, and covered an area of 1.38 km2. To provide information for hazard zonation of similar type of potential landslides in the same area, we used a dynamic model (DAN-W) with three alternative rheological models to simulate the runout behaviour of the displaced landslide materials and found that a combination of the frictional model and Voellmy model could provide the best performance in simulating this landslide. The simulated results indicated that the duration of the movement is estimated at about 175 s for a mean velocity 21 m/s.  相似文献   

5.
Earthquakes in mountainous areas may produce many landslides that involve abundant snow, but few observations have been made of these hazardous phenomena. The 12 March 2011 north Nagano Prefecture earthquake (MJMA 6.7) occurred in a mountainous part of Japan that typically has an annual snow cover of more than 2 m, and it induced many snowy landslides. Some of these traveled relatively long distances. We examined the snowy Tatsunokuchi landslide to reconstruct the landsliding processes over deep snow. We infer that the Tatsunokuchi landslide occurred by collapse of a rock debris mass of 5?×?104 m3 that plunged into the abundant snow, forming a mixture of snow and rock debris, which then traveled on top of the snow. Later, the displaced mass included a large amount of snow which was pushed forward at the front and to the sides. The velocity of the landslide was estimated to be approximately 14 m/s. It appears that the displaced mass, having only a small proportion of rock debris, had a low enough density to travel easily on top of the snow. Our observations suggest that there was much liquid water at the base of the displaced mass shortly after the event. Our results suggest that landslides may damage wider areas than expected if they travel over deep snow.  相似文献   

6.
Landslide deposits dam Lake Oeschinen (Oeschinensee), located above Kandersteg, Switzerland. However, past confusion differentiating deposits of multiple landslide events has confounded efforts to quantify the volume, age, and failure dynamics of the Oeschinensee rock avalanche. Here we combine field and remote mapping, topographic reconstruction, cosmogenic surface exposure dating, and numerical runout modeling to quantify salient parameters of the event. Differences in boulder lithology and deposit morphology reveal that the landslide body damming Oeschinensee consists of debris from both an older rock avalanche, possibly Kandertal, as well as the Oeschinensee rock avalanche. We distinguish a source volume for the Oeschinensee event of 37 Mm3, resulting in an estimated deposit volume of 46 Mm3, smaller than previous estimates that included portions of the Kandertal mass. Runout modeling revealed peak and average rock avalanche velocities of 65 and 45 m/s, respectively, and support a single-event failure scenario. 36Cl surface exposure dating of deposited boulders indicates a mean age for the rock avalanche of 2.3 ± 0.2 kyr. This age coincides with the timing of a paleo-seismic event identified from lacustrine sediments in Swiss lakes, suggesting an earthquake trigger. Our results help clarify the hazard and geomorphic effects of rare, large rock avalanches in alpine settings.  相似文献   

7.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

8.
On 17 February 2006, a rockslide-debris avalanche cascaded down the steep slope of Mt. Can-abag, burying the entire village of Guinsaugon in St. Bernard, Southern Leyte, Philippines. Casualties include 139 dead with 980 still missing and presumed dead, making it perhaps the most catastrophic landslide in Philippine history. The landslide started at the ridge top along a fault plane associated with the active Philippine Fault Zone. It started as a block slide that transformed into an avalanche. The entire event lasted for only a few minutes. Estimated maximum landslide velocity is 120–130 m/s. The landslide left behind a deep, wedge-shaped scarp. The central part of the deposit exhibits a hummocky topography typical of avalanches, in contrast to the flatter surface of the debris-flow-type marginal deposit. High amounts of soil in the matrix were derived from the scouring of ancient landslide deposits and rice fields in the valley. The landslide has a total area of 3.2 km2 and a runout distance of 4.1 km. Estimated volume of debris is approximately 20 Mm3. At least four streams were dammed by the landslide debris. Intense precipitation and earthquakes preceding the landslide are the potential triggers. Preliminary back analyses assuming a planar and wedge slip surface yielded very low factors of safety even under dry conditions. A more rigorous analysis of the failure mechanism of the landslide is needed.  相似文献   

9.
Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China   总被引:35,自引:16,他引:19  
The 2008 Wenchuan earthquake (M s = 8.0; epicenter located at 31.0° N, 103.4° E), with a focal depth of 19.0 km was triggered by the reactivation of the Longmenshan fault in Wenchuan County, Sichuan Province, China on 12 May 2008. This earthquake directly caused more than 15,000 geohazards in the form of landslides, rockfalls, and debris flows which resulted in about 20,000 deaths. It also caused more than 10,000 potential geohazard sites, especially for rockfalls, reflecting the susceptibility of high and steep slopes in mountainous areas affected by the earthquake. Landslide occurrence on mountain ridges and peaks indicated that seismic shaking was amplified by mountainous topography. Thirty-three of the high-risk landslide lakes with landslide dam heights greater than 10 m were classified into four levels: extremely high risk, high risk, medium risk, and low risk. The levels were created by comprehensively analyzing the capacity of landslide lakes, the height of landslide dams, and the composition and structure of materials that blocked rivers. In the epicenter area which was 300 km long and 10 km wide along the main seismic fault, there were lots of landslides triggered by the earthquake, and these landslides have a common characteristic of a discontinuous but flat sliding surface. The failure surfaces can be classified into the following three types based on their overall shape: concave, convex, and terraced. Field evidences illustrated that the vertical component of ground shaking had a significant effect on both building collapse and landslide generation. The ground motion records show that the vertical acceleration is greater than the horizontal, and the acceleration must be larger than 1.0 g in some parts along the main seismic fault. Two landslides are discussed as high speed and long runout cases. One is the Chengxi landslide in Beichuan County, and the other is the Donghekou landslide in Qingchuan County. In each case, the runout process and its impact on people and property were analyzed. The Chengxi landslide killed 1,600 people and destroyed numerous houses. The Donghekou landslide is a complex landslide–debris flow with a long runout. The debris flow scoured the bank of the Qingjiang River for a length of 2,400 m and subsequently formed a landslide dam. This landslide buried seven villages and killed more than 400 people.  相似文献   

10.
A strong earthquake (M J 6.9, M W 6.6–6.7) at about 11 km depth hit the western shore of the Noto Peninsula on Honshu, Japan, at about 00:42 coordinated universal time (9:42 a.m. local time) on 25 March 2007 (the Noto Hanto Earthquake in 2007). The earthquake triggered only 61 landslides, with most traveling short distances. It caused one long run-out landslide in the Nakanoya district of Monzen town, Wajima city, Ishikawa Prefecture, when a portion of a deep-seated landslide transformed into a moderate debris slide down a channel. The rock slide occurred on a south-facing convex-shaped slope on a small spur where earthquake ground shaking likely was strongly amplified by topography. A portion of the rock slide reached a small channel floored by materials containing abundant groundwater. Constant-volume box-shear tests on normally consolidated saturated specimens revealed that the apparent angle of internal friction of the channel-floor material was 33–36° at 10-mm shear displacement and did not show much decrease in effective normal stress during shearing. In situ rock-sliding testing on the exposed channel materials showed a low kinetic-friction angle of about 21°. We suggest that an unsaturated portion of the rock slide slid down the channel, with sliding between the rock-slide mass and the channel floor. Because the slope angle of the travel path nearly equaled the kinetic-friction angle, the unsaturated rock slide mass may have traveled at a moderately slow speed, or it might have decelerated and accelerated. Slow speed is supported by accounts from local residents that suggest movement of debris continued for 3 days after the main shock.  相似文献   

11.
Strong earthquakes are among the prime triggering factors of landslides. The 2008 Wenchuan earthquake (M w = 7.9) triggered tens of thousands of landslides. Among them, the Daguangbao landslide is the largest one, which covered an area of 7.8 km2 with a maximum width of 2.2 km and an estimated volume of 7.5 × 108 m3. The landslide is located on the hanging wall of the seismogenic fault, the Yingxiu–Beichuan fault in Anxian town, Sichuan Province. The sliding mass travelled about 4.5 km and blocked the Huangdongzi valley, forming a landslide dam nearly 600 m high. Compared to other coseismic landslides in the study area, the Daguangbao landslide attained phenomenal kinetic energy, intense cracking, and deformation, exposing a 1-km long head scarp in the rear of the landslide. Based on the field investigation, we conclude that the occurrence of the landslide is controlled mainly by the seismic, terrain, and geological factors. The special location of the landslide and the possible topographic amplification of ground motions due to the terrain features governed the landslide failure. The effects of earthquakes on the stability of slopes were considered in two aspects: First, the ground shaking may reduce the frictional strength of the substrate by shattering of rock mass. Second, the seismic acceleration may result in short-lived and episodic changes of the normal (tensile) and shear stresses in the hillshopes during earthquakes. According to the failure mechanism, the dynamic process of the landslide might contain four stages: (a) the cracking of rock mass in the rear of the slope mainly due to the tensile stress generated by the ground shaking; (b) the shattering of the substrate due to the ground shaking, which reduced the frictional strength of the substrate; (c) the shearing failure of the toe of the landslide due to the large shear stress caused by the landslide gravity; and (d) the deposition stage.  相似文献   

12.
Panday  Suman  Dong  Jia-Jyun 《Landslides》2021,18(12):3875-3889

Continuous 5-day (August 4–9, 2019) torrential rainfall in the monsoon season triggered more than 90 landslides on northwest-southeast extended mountain range of Mon State, Myanmar. In this study, remote sensing images, DEM, and limited fieldworks were used to create the landslide inventory. The topography features of these landslides are analyzed via ArcGIS. The largest one occurred on 9 August 2019 and caused 75 deaths and 27 buildings were damaged. This landslide occurred on gentle topography (slope angle, 23°) with long run-out, in which the angle of reach was relatively low (10°). The volume was 111,878 m3 was mainly composed of weathered granite and red soil and the sliding depth was approximately 7.5 m. Topographic characteristics including the relative slope height, angle of reach, and slope angle of source area of 35 landslides with areas?>?4000 m2 were analyzed. The spatial distribution characteristics and topographic features of the 35 landslides below are distinguished: (1) the concentration of most of landslides on southwest-facing slopes showing the heterogeneous spatial distribution of landslide; (2) an uncommon landslide distribution in which more than half of landslide originates from upper slope; (3) the range of the angle of the source area (17°–38°) compatible with the internal friction angle of soils in tropical regions (17°–33°); and (4) the tangent of the angle of reach is generally smaller than 0.5 (angle of reach?<?27°) shows a relative high mobility and the relation between landslide mobility and the slope angle of the landslide source area is similar to the one of earthquake-triggered landslides, even though the triggering mechanism, landslide type, and landslide volume are dramatically different.

  相似文献   

13.
More than 150 landslides originated in the eastern part of the Czech Republic (region of the Flysch Outer Western Carpathians—hereinafter, OWC) due to soil saturation caused by antecedent precipitation and long lasting and intensive rainfalls on 16–18 May 2010 (>300 mm as measured by some stations). As a consequence, a multitude of small failures originated 88% of which was smaller than 104 m2. Most landslides are characterised as shallow (<10 m) or middle–deep (10–30 m) incipient (rather short travel) landslides, debris slides and soil slips spatially clustered to a geological domain underlain by rather weak thin-bedded flysch and unconsolidated Quaternary deposits. An exception to this is represented by a kilometre-long rockslide (∼2–3 mil m3) affecting tectonically weakened and weathered claystone/mudstone-dominated flysch on the southern slope of Mt. Girová (the Beskydy Mountains). The rockslide is one of the largest long runout landslides in the territory of the Czech Republic activated over the past few decades as it reaches the dimensions of the largest documented Holocene long runout landslides in the Czech part of the OWC. A majority of the May 2010 landslide events developed inside older (Holocene or historic) landslide terrains, which points to their spatial persistency and recurrent nature. In spite of the fact that the May 2010 landslide event was not as destructive as some previous landslide activisation in the OWC region (e.g. July 1997 event), it left many slope failures at the initial stage of their potential future reactivation.  相似文献   

14.
The 2008 Ms 8.0 Wenchuan earthquake triggered a large number of extensive landslides. It also affected geologic properties of the mountains such that large-scale landslides followed the earthquake, resulting in the formation of a disaster chain. On 10 July 2013, a catastrophic landslide–debris flow suddenly occurred in the Dujiangyan area of Sichuan Province in southeast China. This caused the deaths of 166 people and the burying or damage of 11 buildings along the runout path. The landslide involved the failure of ≈1.47 million m3, and the displaced material from the source area was ≈0.3 million m3. This landslide displayed shear failure at a high level under the effects of a rainstorm, which impacted and scraped an accumulated layer underneath and a heavily weathered rock layer during the release of potential and kinetic energies. The landslide body entrained a large volume of surface residual diluvial soil, and then moved downstream along a gully to produce a debris flow disaster. This was determined to be a typical landslide–debris flow disaster type. The runout of displaced material had a horizontal extent of 1200 m and a vertical extent of 400 m. This was equivalent to the angle of reach (fahrböschung angle) of 19° and covered an area of 0.2 km2. The background and motion of the landslide are described in this study. On the basis of the above analysis, dynamic simulation software (DAN3D) and rheological models were used to simulate the runout behavior of the displaced landslide materials in order to provide information for the hazard zonation of similar types of potential landslide–debris flows in southeast China following the Wenchuan earthquake. The simulation results of the Sanxicun landslide revealed that the frictional model had the best performance for the source area, while the Voellmy model was most suitable for the scraping and accumulation areas. The simulations estimated that the motion could last for ≈70 s, with a maximum speed of 47.7 m/s.  相似文献   

15.
This work aims to understand the process of potential landslide damming using slope failure mechanism,dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Himachal Pradesh(India) is taken as the case study. The Urni landslide has evolved into a complex landslide in the last two decade(2000-2016) and has dammed the Satluj River partially since year 2013,damaging ~200 m stretch of the National Highway(NH-05). The crown of the landslide exists at an altitude of ~2180-2190 m above msl, close to the Urni village that has a human population of about 500.The high resolution imagery shows ~50 m long landslide scarp and ~100 m long transverse cracks in the detached mass that implies potential for further slope failure movement. Further analysis shows that the landslide has attained an areal increase of 103,900 ± 1142 m^2 during year 2004-2016. About 86% of this areal increase occurred since year 2013. Abrupt increase in the annual mean rainfall is also observed since the year 2013. The extreme rainfall in the June, 2013; 11 June(~100 mm) and 16 June(~115 mm),are considered to be responsible for the slope failure in the Urni landslide that has partially dammed the river. The finite element modelling(FEM) based slope stability analysis revealed the shear strain in the order of 0.0-0.16 with 0.0-0.6 m total displacement in the detachment zone. Further, kinematic analysis indicated planar and wedge failure condition in the jointed rockmass. The debris flow runout simulation of the detached mass in the landslide showed a velocity of ~25 m/s with a flow height of ~15 m while it(debris flow) reaches the valley floor. Finally, it is also estimated that further slope failure may detach as much as 0.80 ±0.32 million m^3 mass that will completely dam the river to a height of 76±30 m above the river bed.  相似文献   

16.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   

17.
The 2008 Wenchuan earthquake triggered more than 100 rock avalanches with volumes greater than 10 million cubic metres. The rock avalanche with the longest runout amongst these destructive landslides occurred in the Wenjia valley, Mianzhu, Sichuan, China. The landslide involved the failure of about 27.5 million cubic metres of sandstone from the source area. The displaced material travelled about 4,170 m with an elevation descent of about 1,360 m, equivalent to a fahrböschung of 16.9° and covered an area of 1.5 million square metres, with the final deposited volume of approximately 49 million cubic metres. The catastrophic event destroyed the village of Yanjing, killed 48 people and buried some houses at the mouth of the Wenjia valley. On the basis of a detailed field investigation, we introduce basic characteristics of the rock avalanche and find that the rock avalanche resulted in two run-ups and a superelevation along the runout path, and downslope enlargement due to the entrainment of path materials. A numerical model (DAN3D) is used to simulate the post-failure behaviour of the rock avalanche. By means of trial and error, a combination of the frictional model and Voellmy model is found to provide the best performance in simulating this rock avalanche. The simulation results reveal that the rock avalanche had a duration of about 240 s and an average velocity of 17.4 m/s.  相似文献   

18.
A catastrophic earthquake with a Richter magnitude of 7.3 occurred in the Chi-Chi area of Nantou County on 21 September 1999. Large-scale landslides were generated in the Chiufenershan area of Nantou County in central Taiwan. This study used a neural network-based classifier and the proposed NDVI-based quantitative index coupled with multitemporal SPOT images and digital elevation models (DEMs) for the assessment of long-term landscape changes and vegetation recovery conditions at the sites of these landslides. The analyzed results indicate that high accuracy of landslide mapping can be extracted using a neural network-based classifier, and the areas affected by these landslides have gradually been restored from 211.52 ha on 27 September 1999 to 113.71 ha on 11 March 2006, a reduction of 46.24%, after six and a half years of assessment. In accordance with topographic analysis at the sites of the landslides, the collapsed and deposited areas of the landslide were 100.54 and 110.98 ha, with corresponding debris volumes of 31,983,800 and 39,339,500 m3. Under natural vegetation succession, average vegetation recovery rate at the sites of the landslides reached 36.68% on 11 March 2006. The vegetation recovery conditions at the collapsed area (29.17%) are shown to be worse than at the deposited area (57.13%) due to topsoil removal and the steep slope, which can be verified based on the field survey. From 1999 to 2006, even though the landslide areas frequently suffered from the interference of typhoon strikes, the vegetation succession process at the sites of the landslides was still ongoing, which indicates that nature, itself, has the capability for strong vegetation recovery for the denudation sites. The analyzed results provide very useful information for decision-making and policy-planning in the landslide area.  相似文献   

19.
An extreme rainfall event over the southern Shetland Islands in northern Scotland, UK, on 19 September 2003, triggered at least 20 significant peat slides and at least 15 smaller landslides of varying types. The peat slides were examined and surveyed to characterise and explain the distinctive morphological features that were produced. The failures varied in size from 0.4 to 7.3 ha (2,300 to 59,000 m3 displaced volumes of peat) and involved blanket peat up to 3 m deep and slope gradients as low as 4°. Almost all of the failure surfaces were located at the peat–mineral interface. The morphological features included large areas (up to 0.5 ha) of intact peat that moved without breaking up, linear compression and thrust features and unusual occurrences of mineral debris. These features suggest peat of high tensile strength throughout its depth and the generation of high and sometimes artesian water pressures at the base of the peat during the event. However, the variations between peat slides highlight some of the difficulties of trying to assess the susceptibility of blanket peat to failure without full knowledge of the local peat geotechnical properties and structural features within the peat mass.  相似文献   

20.
A large rock and ice avalanche occurred on the north face of Mount Steele, southwest Yukon Territory, Canada, on July 24, 2007. In the days and weeks preceding the landslide, several smaller avalanches initiated from the same slope. The ice and rock debris traveled a maximum horizontal distance 5.76 km with a maximum vertical descent of 2,160 m, leaving a deposit 3.66 km2 in area on Steele Glacier. The seismic magnitude estimated from long-period surface waves (M s) is 5.2. Modeling of the waveforms suggests an estimated duration of approximately 100 s and an average velocity of between 35 and 65 m/s. This landslide is one of 18 large rock avalanches known to have occurred since 1899 on slopes adjacent to glaciers in western Canada. We describe the setting, reconstruct the event chronology and present a preliminary characterization of the Mount Steele ice and rock avalanches based on field reconnaissance, analysis of seismic records and an airborne LiDAR survey. We also present the results of a successful dynamic simulation for the July 24 event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号