首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
塔院井水位和水温的同震响应特征及其机理探讨   总被引:5,自引:0,他引:5  
本文统计分析了塔院井水位与水温对2004年1月至2007年9月全球68次Ms7.0以上大震的同震响应资料.分析结果显示塔院井对全球大震具有很好的映震能力,同震响应形态总是表现为水位振荡→水温下降、振荡停止(减弱)→水温恢复.进一步的分析表明,水位与水温的变化幅度不仅与震中距、震级有一定的统计关系,而且还与井-含水层特性及地震波到达时井-含水层系统的瞬时状态密切相关.综合分析了前人对水位振荡、水温下降-恢复过程的机理研究,概括为气体逸出说、热弥散说和冷水下渗说等.分析认为塔院井同震响应现象是各类机理共同作用的结果,单一的机制并不能很好地解释多次地震引起的同震响应现象.  相似文献   

2.
收集了2007年以来新30井数字化水位、水温远场大震同震响应观测数据,总结了其同震响应特征.新30井数字化水位和水温对不同震中距强震的同震响应在一定程度上存在着一致性,水位通常为先振荡(以振荡居多)后下降,而水温则通常表现为下降.统计结果显示,新30井水位对地震的同震响应灵敏性优于同井水温观测.  相似文献   

3.
重庆井网水位水温同震响应特征分析   总被引:1,自引:1,他引:0  
本文以2008年以来全球范围内发生的5次大地震为例,对重庆井网水位和水温同震响应特征进行了分析,结合井孔水文地质条件和自身观测条件,探讨了不同同震响应现象的可能成因并对其机理进行了探讨。结果表明,水位的记震能力优于水温,水位同震响应形态主要包括上升、下降和振荡三种类型,且同一口井水位对不同地震的响应形态不同;水温的同震响应形态主要包括上升和下降两种类型,其中只有荣昌华江和北碚柳荫井水温对5次地震均有同震响应,且同一口井水温对不同地震的响应形态相同。进一步分析表明,北碚柳荫井水位的同震响应能力优于荣昌华江井水位,北碚柳荫井水位的同震振幅与地震能密度成正比,并给出了其同震变化幅度与地震能量密度的对应关系。最后分别对水位和水温同震响应机理进行了探讨。  相似文献   

4.
统计云南地下流体对尼泊尔8.1级地震的同震响应情况,分析和总结了水位和水温数字化资料的同震响应特征。结果表明:尼泊尔8.1级地震对云南地区的影响较大,其流体宏观与微观动态有较显著的同震响应。水位与水温对该大地震的记震能力明显高于水氡和水质;不同井水位、水温同震响应最大振幅、持续时间相差很大,其变化形态水位以波动及阶升为主,水温表现为上升或下降—恢复;从主震与最大强余震的记录来看,震级越大,同震响应出现比例越高,且在同井中响应幅度越大,持续时间越长;同井不同仪器记录的同震幅度和持续时间不同;水温同震响应均出现在有水位同震响应井中,表明井水位与水温同震响应是密切相关的,且井水温同震响应多由井水位同震响应引起。  相似文献   

5.
分析了福州连江江南井水位、水温对多次大地震的同震响应资料,该井在多次大地震后同震形态表现为水位震荡-水温下降-水温上升或水位震荡-水温上升型。分析研究表明:该井水位的同震变化幅度随着震中距的增大而衰减,随着震级的增大而增大。并进一步探讨了震后该井呈现水位震荡-水温下降-水温上升和水位震荡-水温上升两种同震现象的机理,结合前人所提出的同震响应机理,分析认为,在地震波的作用下,井水位产生振动效应,可能导致地下水向下垂直运动速率增大,上层冷水快速混入观测含水层中,引起温度快速下降,同时,由于地震波激发了井深部较热的含水层中的热流体混入井孔中,导致水温上升,震后由于水位振动停止,较热的含水层混合通道闭合,井水温通过井壁及井水间的热传递而使水温逐渐恢复到背景水平。  相似文献   

6.
金沙江水网对日本9.0级地震的同震响应及其特征与机理   总被引:1,自引:0,他引:1  
本文系统介绍了金沙江水网6口观测井水位与水温动态对日本9.0级地震的同震响应, 分析了同震响应的特征与同震响应的机理。 结果表明, 4口井水位有同震响应, 同震响应形态全是振荡, 对地震波响应的时间、 振荡的幅度、 振荡的持续时间等的差异主要取决于井-含水层系统的导水系数。 结果还表明, 3口井水温有同震响应, 响应形态是不对称的V字或U字形; 水温的先期下降是井筒内上(冷)下(热)水混合作用引起的, 后期上升是井水与围岩之间的热传导引起吸热作用的结果, 各井水温升降的幅度、 持续时间等不同, 主要是井水温度梯度与水岩热传导系数不同引起的; 后期升幅总是大于先期降幅, 这可能与地震波作用使井区大地热流增强有关。  相似文献   

7.
九江1井水位与水温对大震的同震响应特征及机理浅析   总被引:1,自引:0,他引:1  
统计分析九江1井2008—2011年水位、水温在多次大震中的同震响应特征,结果显示:水位通常表现为在正常背景下振荡,水温则通常表现为突降后恢复正常,水位和水温对远场大震的同震响应存在着一致性。同时,九江1井水位对地震的同震响应灵敏性优于同井水温观测,但水位观测受降雨影响,且气压效应明显。  相似文献   

8.
以2008—2017年腾冲地震台井水位记录的同震响应事件为研究对象,系统分析该井水位的同震响应特征,结合井孔地质背景条件,对同震响应机理进行初步探讨。结果表明:腾冲地震台井水位同震响应能力随着震级增大而逐渐增强;因井震距不同,同震响应主要表现为近震阶降—复原型和远震振荡型变化;同震响应幅度随震级增大而增大,随井震距增大而减小,且水位同震变化受震级与井震距的影响力基本相当;震级越大,同震响应持续时间越长;发生井水位同震响应的地震分布具有明显区位型特点。分析认为,振荡型同震响应机理与面波作用有关,阶降—复原型同震响应机理可能与腾冲地震台观测井所处地质构造有关。  相似文献   

9.
远场大震的水位、水温同震响应及其机理研究   总被引:19,自引:0,他引:19  
深井水温观测在中国已经开展了20年,但目前对于水温响应机理的研究还不充分。在对2004年12月26日印尼苏门答腊MS8.7地震后,中国地下流体观测井网中121个观测井水位、水温同震响应特征的研究中,作者发现了具有规律性的一类变化类型:当某些观测井水位出现振荡的时候,其同井水温绝大多数会出现几十分钟到数小时的下降—恢复过程。为了对此现象进行验证,又收集了河北唐山矿井2001年数字化以来39次远场大震水位、水温的同震响应资料,发现其具有相同的规律。在对可能造成水温下降的影响因素研究分析的基础上,提出了同震水温下降的气体脱逸模式,给出了在气泡脱逸过程中造成水温下降的2种主要影响因素,并利用此模式对部分观测现象进行了较合理的解释  相似文献   

10.
利用位于华蓥山断裂带的重庆荣昌井水温数字化分钟值观测资料,统计分析了该井水温对2008年1月—2021年9月全球MS≥7.0、川滇地区MS≥6.0、重庆及周边地区MS≥4.0共273次地震的同震-震后响应动态特征,对井水温同震优势方向成因和机理进行了深入研究,获得以下认识:①荣昌井水温同震-震后响应能力较好,对近震和远震均可记录到;该井水温同震响应由深及浅的顺序发生,响应持续时间随观测深度的增加而增加,响应幅度随观测深度的增加而减小,且该井水温同震-震后响应持续时间较同井水位的长;②自观测以来,荣昌井多层水温同震响应方向均为上升,说明单个井水温对不同地震的同震响应存在优势响应方向,水温的同震特征更依赖于井孔自身观测条件的影响;荣昌井水温同震响应优势方向上升可能是地震波的扰动造成井下深部气体释放,并沿裂隙上升进入井含水层系统而引起;③荣昌井水位-水温对中、远场地震的同震为同向上升正相关关系或振荡—上升,对近场地震的同震为水位下降—水温上升的反相关关系,可能是近场地震和中、远场地震引起的水位同震响应变化机制不一致所致;引起荣昌井水温同震变化的地震波能量密度e(r)>10-5J/m3,而引起荣昌井水温和水位同震反向变化的地震波能量密度e(r)>1J/m3。  相似文献   

11.
Co-seismic responses of the groundwater level and temperature in the Tayuan well of 68 earthquakes (M_S≥7.0) from January 2004 to September 2007 were analyzed. Results show that the Tayuan well has a strong ability to record large earthquakes worldwide, and the co-seismic response shows a pattern of water level oscillation → temperature decrease→ oscillation stop → temperature resumption. Further analyses indicate that the amplitude of the water level and temperature change is not only concerned with the epicenter distance and magnitude, but is also related to the temporal state of aquifer while the seismic wave arrives. Mechanisms of water level oscillation, temperature decrease, water level oscillation stop and temperature resumption are discussed, with the results from previous research on the co-seismic response mechanisms analyzed. These include gas escape, heat diffusion and cold water seepage. Results show that a single mechanism could not explain the co-seismic response of the Tayuan well water level to multiple earthquakes; the results were garnered from a variety of jointly acting mechanisms.  相似文献   

12.
尼泊尔MS8.1地震引起中国大陆大量地震观测井水位和水温的同震响应. 从宏观结果看, 在54个同时存在水位和水温同震效应的观测井中, 有51口观测井的变化类型为水位上升-水温上升、 水位下降-水温下降、 水位振荡-水温上升或下降(以下降为主), 井水位与井水温同震效应表现出良好的相关性, 这可能与地下水动力学作用有关; 有3口观测井的水位变化与水温变化方向相反, 且水温变化均为震后效应. 另外, 有1口观测井水位无变化而水温同震效应明显. 这些不同类型的同震变化与井孔条件、 水温梯度、 传感器位置及水位埋深等多种因素有关. 从微观结果看, 井水位同震效应出现的时间及变化幅度与井水温同震效应出现的时间及变化幅度之间的关联性比较复杂, 这与井孔条件和温度梯度等因素有关.   相似文献   

13.
In this study,we analyze the co-seismic response of water levels in the Jiaji well to strong earthquakes(MS≥7.8) from 2001 to 2010 at an epicentral distance less than 8000km.We investigated the co-seismic variation form of water levels,and analyzed the relationship between the amplitude of water level variation and the magnitude and the epicentral distance.We then checked the seismic wave phases when the changes of water level occurred.It was shown that:(1) the water level’s co-seismic response is mainly characterized by escalation with no oscillation;(2) the amplitude of water level change has a certain connection with epicentral distance and magnitude;(3) co-seismic response of water levels in the Jiaji well shows a certain directivity;(4) most of the co-seismic responses were caused by surface waves,and some by long-period S waves.  相似文献   

14.
收集了2008~2016年广西桂平西山井水位观测数据及全球5级以上地震资料,分析井孔记录水震波的能力、水震波形态特征及影响因素,初步探讨了西山井同震的机理,获得以下认识:桂平西山井对全球M_S≥7地震具有较好的同震响应能力,水震波的形态主要为振荡型,少数呈现阶升型。井-含水层观测系统、地震震级、井震距是影响井孔记录水震波能力的主要因素。含水层介质受瑞利面波作用会发生体积变化,导致水位振荡,是形成振荡型水震波的可能机理。阶变型水震波的形成与区域应力场增强、介质变化及构造活动等因素有关。西山井水位阶升与周边中强地震活动存在较好对应关系,该认识可为地震预测研究提供参考。  相似文献   

15.
自2000年庐江地震台数字化水位、水温观测以来,在多次大地震中水位、水温均有明显的同震效应,四川汶川8.0级地震、日本本州9.0级地震引起汤池1号井水位、水温的同震特征。动水位同震效应表现为脉冲变化,震后水位逐渐升高;水温表现为阶跃下降,震后水温缓慢恢复到正常状态。  相似文献   

16.
The present paper shows analysis of water level (the distance from the land surface to the water in the well under static condition) and water temperature observed at three different levels of Chuan no. 03 well to study the changes associated with the Wenchuan earthquake of 2008 and the 2011 Tohoku-Oki earthquake. Our analysis shows co-seismic changes in water level and water temperature associated with the increase in compressive stress associated with the Wenchuan earthquake. The water level shows an increase, whereas there was drop in water temperature at the shallow depth (395 m) and enhancement of water temperature at the middle (595 m) and the bottom (765 m) layers. However, no step change in water level or temperature of Chuan no. 03 well is observed associated with the Tohoku-Oki earthquake, only seismic wave propagation-induced water level oscillation and led to co-seismic response of water temperature. The analysis of the co-seismic responses and post-earthquake adjustment processes combined with the borehole histogram and the borehole temperature gradient data clearly show co-seismic changes in water temperature that could be closely associated with the changes in the regional stress and strain state and the distribution of the aquifer and the characteristics of the aquifer. The observed temperature variation of different layers in the borehole is likely to be controlled by the flow of water in the horizontal direction.  相似文献   

17.
In this paper, statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal MS8.1 earthquake, and the co-seismic response characteristics of the water level and water temperature are analyzed and summarized with the digital data. The results show that the Nepal MS8.1 earthquake had greater impact on the Yunnan region, and the macro and micro dynamics of fluids showed significant co-seismic response. The earthquake recording capacity of water level and temperature measurement is significantly higher than that of water radon and water quality to this large earthquake; the maximum amplitude and duration of co-seismic response of water level and water temperature vary greatly in different wells. The changing forms are dominated by fluctuation and step rise in water level, and a rising or falling restoration in water temperature. From the records of the main shock and the maximum strong aftershock,we can see that the greater magnitude of earthquake, the higher ratio of the occurrence of co-seismic response, and in the same well, the larger the response amplitude, as well as the longer the duration. The amplitude and duration of co-seismic response recorded by different instruments in a same well are different.Water temperature co-seismic response almost occurred in wells with water level response, indicating that the well water level and water temperature are closely related in co-seismic response, and the well water temperature seismic response was caused mainly by well water level seismic response.  相似文献   

18.
在河北赤城井井下30 m、53 m、58 m处分别安装了3个温度传感器,进行水温微动态观测。通过对2004年12月以来全球发生的22次M_S≥8.0地震时赤城井不同深度水温观测数据的变化进行研究发现,井下30 m处水温均无明显同震变化;而7次大震时53 m、58 m处水温有明显的同震变化,53 m处水温同震初始变化形态均为上升,58 m处均为下降。同时,对水温变化机理进行探讨发现,井下30 m处水温日变幅度偏大是记录不到地震的主要原因;水温同震初始变化是由井孔水体对流引起的,53 m处水温同震初始变化形态均为上升是由于该处位于负温度梯度带,井孔中水体受震荡激发而加速对流与掺混是导致58 m处水温同震初始下降的主要原因,赤城井水温同震初始变化的后效恢复过程为热传导作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号