首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted from June 2013 to May 2014. The total of 100 precipitation samples were collected in Wushaoling national meteorological station located in the eastern of Qilian Mountains. The analysis indicates that the slope of Local Meteoric Water Line is lower than that of Global Meteoric Water Line. The average values of δ18 O and δD in precipitation are higher in summer but lower in winter. Except for negative correlation with relative humidity, the stable isotope values in precipitation are positive correlations with temperature, precipitation and water vapor pressure. Influenced by water vapor source, the values of d-excess are lower for the Westerly wind and the South Asia Monsoon onJuly and the Westerly wind and the East Asia Monsoon on August, but they are higher for the Westerly wind on other months, that they are also influenced by the weather conditions in rainfall process. The variation of stable isotope in precipitation exhibited significant temperature effect, and there is also some precipitation amount effect in spring and summer.  相似文献   

2.
本文在研究平凉地区大气降水、地表水和地下水的氢氧稳定同位素和氢的放射性同位素的基础上,重点讨论了大岔河隐伏岩溶水的水文地质条件。结果表明,大岔河隐伏岩溶水的补给局限在大岔河流域内,其径流条件良好,现代降水混入量平均为54%,具有潜在的开发利用价值。  相似文献   

3.
From 8 April to 11 October in 2005, hydrological observation of the Rongbuk Glacier catchment was carried out in the Mt. Qomolangma (Everest) region in the central Himalayas, China. The results demonstrated that due to its large area with glacier lakes at the tongue of the Rongbuk Glacier, a large amount of stream flow was found at night, which indicates the strong storage characteristic of the Rongbuk Glacier catchment. There was a time lag ranging from 8 to 14 hours between daily discharge peaks and maximum melting (maximum temperature). As melting went on the time lag got shorter. A high correlation was found between the hydrological process and daily temperature during the ablation period. The runoff from April to October was about 80% of the total in the observation period. Compared with the discharge data in 1959, the runoff in 2005 was much more, and the runoff in June, July and August increased by 69%, 35% and 14%, respectively. The rising of temperature is a major factor causing the increase in runoff. The discharges from precipitation and snow and ice melting are separated. The discharge induced by precipitation accounts for about 20% of the total runoff, while snow and ice melting for about 80%.  相似文献   

4.
In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological station of the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences and the surface water which collected from the Wolulan River were used to identify the transformation of three types of water.The isotope composition of different kinds of water sources were analyzed via stable isotope(deuterium and oxygen-18) investigation of natural water.The results show a clear seasonal difference in the stable isotopes in precipitation.During the cold half-year,the mean stable isotope in precipitation in the Sanjiang Plain reaches its minimum with the minimum temperature.The δ18O and δD values are high in the rainy season.In the Wolulan River,the evaporation is the highest in August and September.The volume of evaporation and the replenishment to the river is mostly same.The groundwater is recharged more by the direct infiltration of precipitation than by the river flow.The results of this study indicate that the water bodies in the Sanjiang Plain have close hydrologic relationships,and that the transformation among each water system frequently occurs.  相似文献   

5.
ANANALYSISOFWATERRESOURCECHARACTERISTICSOFTHERIVERSINTHENORTHERNSLOPEOFTHEKUNLUNMOUNTAINSXuYoupeng(许有鹏);GaoYunjue(高蕴珏)(Depart...  相似文献   

6.
对1971年以来百脉泉泉群流量动态特征进行了系统分析。根据研究区岩溶地下水的补径排条件,开展岩溶地下水动态、泉群喷涌与大气降水、地下水开采、土地利用(植被覆盖)等因素之间的定量相关性分析,为有针对性的做好泉水保护奠定了基础。  相似文献   

7.
In this study, an inventory analysis approach was used to investigate the intensity of agricultural non-point source pollution(ANSP) and its spatial convergence at national and provincial levels in China from 1999 to 2017. On this basis, spatial factors affecting ANSP were explored by constructing a spatial econometric model. The results indicate that: 1) The intensity of China's ANSP emission showed an overall upward trend and an obvious spatial difference, with the values being high in the eastern and central regions and relatively low in the western region. 2) Significant spatial agglomeration was shown in China's ANSP intensity, and the agglomeration effect was increasing gradually. 3) In the convergence analysis, a spatial lag model was found applicable for interpretation of the ANSP intensity, with the convergence rate being accelerated after considering the spatial factors but slower than that of regional economic growth.4) The spatial factors affecting the ANSP intensity are shown to be reduced by improving agricultural infrastructure investment, laborforce quality, and crop production ratio, while the expansion of agricultural economy scale and precipitation and runoff have positive impact on ANSP in the study region. However, agricultural research and development(RD) investment showed no direct significant effect on the ANSP intensity. Meanwhile, improving the quality of the labor force would significantly reduce the ANSP intensity in the surrounding areas, while the precipitation and runoff would significantly increase the pollution of neighboring regions. This research has laid a theoretical basis for formulation and optimization of ANSP prevention strategies in China and related regions.  相似文献   

8.
The general trend of three elements (precipitation, runoff and evaporation) of the water balance of the Changjiang River Basin is discussed from the regional distribution of the mean annual values of view, i.e. isogram. The distribution of precipitation is non-uniform. The distribution of runoff mainly supplied from precipitation is more uniform than that of precipitation. The distribution of the evaporation from land is much more uniform than that of precipitation and runoff. Time distribution of these three elements shows the characteristics of comparatively distinct yearly variation and few variation between years. The relationship between precipitation and runoff, and between precipitation and evaporation in the humid region in the Changjiang River is analyzed. The slopes of their straight line correlation are nearly equal. The internal relationship between variables should be paid attention to, otherwise, a pseudo correlation may be resulted in. The paper provides the method of quantitative computa  相似文献   

9.
Stable isotope values of oxygen(~(18)O) and hydrogen(~(2)H) of surface waters were used to study the origin and environmental significances in the Issyk-Kul basin of Kyrgyzstan in Central Asia, which is the most important intermountain basin in the modern Tien Shan orogen. This study is the first analysis of hydrochemical spatial differentiation in the stable isotopes of surface waters in this watershed.75 samples were collected from rivers, springs, lakes,rain and snow during the rainy season in July and August of 2016. Stable isotopes of ~(18)O and ~(2)H were studied for all samples, and cation ratios(Sr/Ca and Mg/Ca) were also determined for lake water samples.Stable isotope values from precipitation scattered around the Local Meteoric Water Line(determined from Urumqi Station of the global network of isotopes in precipitation(GNIP)), together with values of the Deuterium excess parameter(d) from 15.3‰ to30.5‰, with an average of 19.8‰, indicating that the moisture sources are primarily from regions with low relative humidity. The δ~(18)O and δ~(2)H values were significantly different between the river and lake samples, indicating that regional evaporation caused the isotopic enrichment of lake water. Geospatial autocorrelation, measured by Moran's I coefficient,indicated weak spatial autocorrelation within stable isotopes of oxygen and hydrogen in the surface waters of the studied area, which is primarily an effect of climate during the water chemistry evolution. The cation ratios Sr/Ca and Mg/Ca in lake water samples were not correlated with the concentration of total dissolved solids, but did show correlation with stable isotopic values, which is significant for paleoenvironmental reconstruction.  相似文献   

10.
This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Maj or findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av- erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipitation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipitation showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we observed nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.  相似文献   

11.
The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Reservoir.This study aims to characterize the spatial distribution,inter-annual variation of runoff and sediment load in the Jinsha River Basin,and to analyze the contribution of rainfall and human activities to the runoff and sediment load changes.The monitoring data on runoff,sediment load and precipitation were collected from 11hydrological stations in the Jinsha River Basin from1966 to 2016.The data observed at the outlet of the basin showed that 71.4%of the runoff is from the upper reaches of the Jinsha River Basin and the Yalong River,while 63.3%of the sediment is from the lower reaches(excluding the Yalong River).There is no significant increase in runoff on temporal scale in the Jinsha River Basin,while it has an abrupt change in runoff in both upstream and midstream in 1985,and an abrupt change in downstream in 1980 and2013.The sediment load demonstrated a significantincreasing trend in the upstream,no significant reducing trend in the midstream,but significant reducing trend in the downstream.The sediment load in upstream showed abrupt change in 1987,in midstream in 1978 and 2014,in downstream in 2012.Rainfall dominated runoff variation,contributing more than 59.0%of the total variation,while human activity,including reservoirs construction,the implementation of soil and water conservation projects,is the major factor to sediment load variation,contributing more than 87.0%of the total variation.  相似文献   

12.
The combination of different topographic and climatic conditions results in varied precipitation-runoff relations, which in turn influences hillslope erosion, sediment transport and bedrock incision across mountainous landscapes. The runoff coefficient is a suitable tool to represent precipitation-runoff relations, but the spatial distribution of the runoff coefficient across tectonically active mountains in semi-arid environments has received little attention because of limited data availability. We calculated annual runoff coefficients over 22 years for 26 drainage basins across the semi-arid Qilian Mountains based on:(i) annual discharge records; and(ii) the China Meteorological Forcing Dataset to enhance our understanding of the precipitation-runoff processes. The mean annual runoff coefficients show no obvious spatial trends. When compared to potential controlling factors, mean annual runoff coefficients are highly correlated with mean slope rather than any climatic characteristics(e.g., mean annualprecipitation and Normalized Difference Vegetation Index). The slope-dependent runoff coefficient could theoretically have enhanced the topographic control on erosion rates and dampen the influence of precipitation. The enhanced discharge for drainage basins with less precipitation but steep topography in the western Qilian Mountains will enable fluvial incision to keep pace with ongoing uplift caused by the northward growth of the Qilian Mountains. The geomorphic implications are that tectonic rather than climatic factors are more significant for long-term landscape evolution in arid and semi-arid contexts.  相似文献   

13.
Runoff coefficients of the source regions of the Huanghe River in 1956–2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had at- tracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual pre- cipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is –3.9oC, temperature is the main factor in- fluencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area be-tween Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients be-come insignificant.  相似文献   

14.
The characteristics of climatic change and river runoff, as well as the response of river runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over the last 50 years by the methods of Mann-Kendall nonparametric test and the nonlinear regression model. The results show that: 1) The temperature and the precipitation increased significantly in the whole northern Xinjiang, but the precipitation displayed no obvious change, or even a decreasing trend in the northern mountainous area of the northern Xinjiang. 2) River runoff varied in different regions in the northern Xinjiang. It significantly increased in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang (p=0.05), while slightly increased in the west of the northern Xinjiang. 3) North Atlantic Oscillation (NAO) affects river runoff by influencing temperature and precipita-tion. The NAO and precipitation had apparent significant correlations with the river runoff, but the temperature did not in the northern Xinjiang. Since the mid-1990s river runoff increase was mainly caused by the increasing temperature in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang. Increased precipitation resulted in increased river runoff in the west of the northern Xinjiang.  相似文献   

15.
The South Narimalahei area is located on the north side of the Middle Kunlun fault in the eastern section of the East Kunlun composite orogenic belt. The ore body is veined and controlled by structures and se-condary fissures, which occurs in the structural alteration fracture zone in the Late Triassic granodiorite. In this deposit, copper mineralization is closely related to silicification and sericification. The formation process of the deposit includes hydrothermal mineralization and supergene oxidation. In this paper, the fluid inclusion minera-logy, microscopic temperature measurement and stable isotope studies have been carried out for ore of the main mineralization stage. The results show that the primary gas-liquid two-phase inclusions and a small amount of single-liquid inclusions are mainly developed in the quartz in the main mineralization stage. The results of microscopic temperature measurement show that the ore-forming fluid which has low temperature(151.7℃--205.8℃), low salinity(2.06 wt%--4.94 wt%NaCl), low density(0.86--0.92 g/cm~3) and shallow formation(1.5--3.0 km) is a hydrothermal solution of NaCl-H_2O system. Hydrogen and oxygen isotope results show that the ore-forming fluids mainly come from atmospheric precipitation, with a small amount of magmatic fluids participating. It is preliminarily determined that the South Narimalahei copper polymetallic deposit is a low-temperature hydrothermal vein deposit.  相似文献   

16.
The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau.  相似文献   

17.
降水的时空变异分析是认识区域水资源形成与演变的重要方法。时空变异特征分析不仅可以系统地对降水的时间序列进行分析,而且能从空间上把握降水的分布格局。本文将河南省近51年雨季降水资料,结合数字高程模型(DEM),利用回归分析、空间自相关分析、空间插值模拟及交叉验证等,对河南省降水时空变异特征进行分析。结果表明:(1)河南省雨季降水整体来看呈增加趋势,近年来尤为明显;但9月份表现异常,呈下降趋势。(2)月降水量差异明显,最大降水量在7月份,平均达到178.3 mm;(3)在空间上降水呈现出明显的南多北少,东多西少的格局;有明显的集聚特点,在南部以罗山、潢川为中心形成降水丰沛聚集区,北部以辉县为中心形成降水稀少聚集区;林县、栾川和西峡表现为空间例外,明显高于相邻区域的降水量。  相似文献   

18.
Asatypicalmarshriver,theBielahongRiverliesinthehinterlandofthehoiangPlain.ItrisesinandgoeSthroughl~areasofplainma-rsh.Themarshrateinthebasinis45Percent.ThehydrologicalcharacteristicsoftheBielahongRiverbasincanreflectthehydrologicalcharacteristicsofthewholernaxshplain.Thereare1.119x106hamarshintheSanjiangPlain.AlterlOng-timedevelopment,marshisstillthemainnaturallandscapeandsoiltypeintheplain.Waterisoneofthemostactiveelementsinmarshecosystem.Itaffectsplantsgrowth,speciesdistribution,soilfo…  相似文献   

19.
利用东北地区2000-2010年93个气象站点观测数据作为“真实值”,对TRMM降水数据进行精度验证,发现研究区TRMM降水数据与观测数据之间具有明显的线性相关性,且TRMM降水数据数值偏大于观测值,表明TRMM降水数据在东北地区具有一定的可信度。对东北地区多年平均、2001、2010年的TRMM数据,进行GWR模型降尺度研究,得到1 km的新降水数据,并与全局OLS回归模型进行对比。结果表明:(1)相比全局OLS回归模型,GWR模型的降尺度结果可获得更好的RRMSE,说明GWR模型更适用于东北地区TRMM数据的降尺度研究;(2)东北地区GWR模型的降尺度分析结果与观测数据之间的相关系数在0.44-0.97之间,且分布较分散;(3)经过降尺度的TRMM降水数据,在空间分辨率上有较大提高,能更真实地反映研究区的降水特征,为该数据小尺度的应用研究奠定基础。  相似文献   

20.
Study on the organic compounds and stable isotope composition of a sediment section in Dabusu Lake revealed that the organic materials in the sediments came mainly from terrestrial plants brought into the lake by rtmoff.The δ^13 C of the organic materials had high values during warm-dry climatic stages and decreased in cold-wet stages.Analysis of data on carbonate content and ^14C age showed that the lake basin had experienced several wet-cold and warm-dry climatic cycles since 15000 a BP. Since 6700 a BP, the climate reached a relatively stable warm-dry stage,so that the lake water was gradually condensed and finally a saline lake was formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号