首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to stream-stage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream–aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped) parameter that accounts not only for the resistance of flow at the river–aquifer boundary, but also for the effects of partial penetration of the river and other near-stream flow phenomena not included in the theoretical development of the step-response functions.  相似文献   

2.
Geographically isolated wetlands (GIWs) are commonly reported as having hardpan or low hydraulic conductivity units underneath that produce perched groundwater, which can sustain surface water levels independently of regional aquifer fluctuations. Despite the potential of GIW-perched aquifer systems to provide important hydrological and ecological functions such as groundwater storage and native amphibian habitat, little research has studied the hydrologic controls and dynamics of these systems. We compared several ridge-top depressional GIW-perched groundwater systems to investigate the role of watershed morphology on hydroregime and groundwater-surface water interaction. Ridge-top depressional wetlands in the Daniel Boone National Forest, Kentucky were chosen because they offer natural controls such as lack of apparent connection to surface water bodies, similar climate, and similar soils. Three wetlands with different topographic slopes and hillslope structures were mapped to distinguish key geomorphic parameters and monitored to characterize groundwater-surface water interaction. Wetlands with soil hummocks and low upland slopes transitioned from infiltration to groundwater discharge conditions in the spring and during storm events. The magnitude and duration of this transition fell along a continuum, where higher topographic slopes and steeper uplands produced comparably smaller and shorter head reversals. This demonstrates that ridge-top GIW-perched groundwater systems are largely sensitive to the runoff-recharge relationship in the upland area which can produce significant groundwater storage on a small-scale.  相似文献   

3.
Water-budget components and the vertical conductance were determined for Lowry (Sand Hill) Lake in north-central Florida, USA. In this type of lake, which interacts with both the surface-water and groundwater systems, the inflow components are precipitation, surface-water inflow, groundwater inflow, and direct runoff (i.e. overland flow), and the outflow components are evaporation, groundwater outflow, and surface-water outflow. In a lake and groundwater system that is typical of many karst lakes in Florida, a large part of the groundwater outflow occurs by means of vertical leakage through an underlying confining unit to a deeper, highly transmissive aquifer called the upper Floridan aquifer. The water-budget component that represents vertical leakage to the upper Floridan aquifer was calculated as a residual using the water-budget equation. For the 13 month period from August 1994 to August 1995, relative to the surface area of the lake, rainfall at Lowry Lake was 1.55 m yr−1, surficial aquifer inflow was 0.79 m yr−1, surface-water inflow was 1.92 m yr−1, and direct runoff was 0.01 m yr−1. Lake evaporation was 1.11 m yr−1, and surface-water outflow was 1.61 m yr−1. The lake stage increased 0.07 m yr−1, and the vertical leakage to the upper Floridan aquifer was 1.48 m yr−1. Surficial aquifer outflow from the lake was negligible. At Lowry Lake, vertical leakage is a major component of the water budget, comprising about 35% of the outflow during the study period. The vertical conductance (KV/b), a coefficient that represents the average of the vertical conductances of the hydrogeologic units between the bottom of a lake and the top of the upper Floridan aquifer, was determined to be 2.51 × 10−4 day−1 for Lowry Lake.  相似文献   

4.
5.
Xi Chen  Xunhong Chen   《Journal of Hydrology》2003,280(1-4):246-264
During a flood period, stream-stage increases induce infiltration of stream water into an aquifer; subsequent declines in stream stage cause a reverse motion of the infiltrated water. This paper presents the results of the water exchange rate between a stream and aquifer, the storage volume of the infiltrated stream water in the surrounding aquifer (bank storage), and the storage zone. The storage zone is the part of aquifer where groundwater is replaced by stream water during the flood. MODFLOW was used to simulate stream–aquifer interactions and to quantify rates of stream infiltration and return flow. MODPATH was used to trace the pathlines of the infiltrated stream water and to determine the size of the storage zone. Simulations were focused on the analyses of the effects of the stream-stage fluctuation, aquifer properties, the hydraulic conductivity of streambed sediments, regional hydraulic gradients, and recharge and evapotranspiration (ET) rates on stream–aquifer interactions. Generally, for a given stream–aquifer system, larger flow rates result from larger stream-stage fluctuations; larger storage volumes and storage zones are produced by larger and longer-lasting fluctuations. For a given stream-stage hydrograph, a lower-permeable streambed, an aquitard, or an anisotropic aquifer of low vertical hydraulic conductivity can significantly reduce the rate of infiltration and limit the size of the storage zone. The bank storage solely caused by the stage fluctuation differs slightly between gaining and losing streams. Short-term rainfall recharge and ET loss in the shallow groundwater slightly influence on the flow rate, but their effects on bank storage in a larger area for a longer period can be considerable.  相似文献   

6.
A field study of surface water and groundwater interactions during baseflow and stormflow conditions was performed at the Reedy Creek watershed in the Virginia Coastal Plain. Three estimates of the average saturated hydraulic conductivity (Ks) of the unconfined aquifer were in reasonable agreement (ranging from 0.0033 to 0.010 cm/s), indicating that baseflow in the creek is entirely from the drainage of shallow groundwater from the relatively thin (1–6 m thick) unconfined aquifer. This relatively permeable surficial aquifer was found to be underlain by dark, olive grey, clay-silt and diatomaceous Miocene deposits of low permeability known as the Calvert Formation, which is believed to function as a confining bed in the area. A chemical hydrograph separation technique was used to resolve the contributions of [old] (pre-event) and [new] (event) water to stormflow. Results from a major rainstorm indicated that old water dominated the stormflow response of the watershed, although the new water contribution approached 40% at the hydrograph peak. Stormflow at Reedy Creek appears to result from saturation overland flow from variable source areas which include the stream channels and a significant part of the riparian wetland area. This response appears to be attributable to the transient dynamics of the shallow groundwater flow system and to the formation of localized groundwater mounds which raise the water-table to the wetland surface.  相似文献   

7.
Xunhong Chen 《水文研究》2011,25(2):278-287
Characterization of streambed hydraulic conductivity from the channel surface to a great depth below the channel surface can provide needed information for the determination of stream‐aquifer hydrologic connectedness, and it is also important to river restoration. However, knowledge on the streambed hydraulic conductivity for sediments 1 m below the channel surface is scarce. This study describes a method that was used to determine the distribution patterns of streambed hydraulic conductivity for sediments from channel surface to a depth of 15 m below. The method includes Geoprobe's direct‐push techniques and Permeameter tests. Direct‐push techniques were used to generate the electrical conductivity (EC) logs and to collect sequences of continuous sediment cores from river channels, as well as from the alluvial aquifer connected to the river. Permeameter tests on these sediment cores give the profiles of vertical hydraulic conductivity (Kv) of the channel sediments and the aquifer materials. This method was applied to produce Kv profiles for a streambed and an alluvial aquifer in the Platte River Valley of Nebraska, USA. Comparison and statistical analysis of the Kv profiles from the river channel and from the proximate alluvial aquifer indicates a special pattern of Kv in the channel sediments. This depth‐dependent pattern of Kv distribution for the channel sediments is considered to be produced by hyporheic processes. This Kv‐distribution pattern implied that the effect of hyporheic processes on streambed hydraulic conductivity can reach the sediments about 9 m below the channel surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
David F. Boutt 《水文研究》2017,31(7):1479-1497
This study analyzes a long‐term regional compilation of water table response to climate variability based on 124 long‐term groundwater wells distributed across New England, USA, screened in a variety of geologic materials. The New England region of the USA is located in a humid‐temperature climate underlain by low‐storage‐fractured metamorphic and crystalline bedrock dissected by north–south trending valleys filled with glacial and post‐glacial valley fill sediments. Uplands are covered by thin glacial till that comprises more than 60% of the total area. Annual and multi‐annual responses of the water table to climate variability are assessed to understand how local hydraulic properties and hydrogeologic setting (located in recharge/discharge region) of the aquifer influence the hydrologic sensitivity of the aquifer system to climate variability. This study documents that upland aquifer systems dominated by thin deposits of surface till comprise ~70% of the active and dynamic storage of the region. Total aquifer storage changes of +5 to ?7 km3 occur over the region during the study interval. The storage response is dominated by thin and low permeability surficial till aquifer that fills and drains on a multi‐annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Whereas the till aquifer system is traditionally neglected as an important storage reservoir, this study highlights the importance of a process‐based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region.  相似文献   

9.
A generalized watershed model was used to evaluate the effects of global climate changes on the hydrologic responses of freshwater ecosystems. The Enhanced Trickle Down (ETD) model was applied to W-3 watershed located near Danville, Vermont. Eight years of field data was used to perform model calibration and verification and the results were presented in Nikolaidis et al., (1993). Results from the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation models which simulated the doubling of present day atmospheric CO2 scenarios were used to perform the hydrologic simulations for the W-3 watershed. The results indicate that the W-3 watershed will experience increases in annual evapotranspiration and decreases in annual outflow and soil moisture. Stochastic models that simulate collective statistical properties of meteorological time series were developed to generate data to drive the ETD model in a Monte-Carlo fashion for quantification of the uncertainty in the model predictions due to input time series. This coupled deterministic and stochastic model was used to generate probable scenarios of future hydrology of the W-3 watershed. The predicted evapotranspiration and soil moisture under doubling present day atmospheric CO2 scenarios exceed the present day uncertainty due to input time series by a factor greater than 2. The results indicate that the hydrologic response of the W-3 watershed will be significantly different than its present day response. The Enhanced Trickle Down model can be used to evaluate land surface feedbacks and assessing water quantity management in the event of climate change.  相似文献   

10.
Recent research has indicated that Sierra Nevada meadows are hydrologically more complex than previously considered. Improved understanding of the effects of aquifer parameters and climate change on water resources in and downstream of meadows is critically needed to effectively manage mountain meadows for ecosystem services and watershed contributions. This research investigates the roles of bedrock geometry, saturated hydraulic conductivity, and meadow gradient in affecting groundwater storage dynamics and surface‐water outflows in site‐scale high‐elevation meadows. Under current and projected lower snowpack conditions, we modeled groundwater flow in representative high‐elevation meadows considering 2 conceptual aquifer thickness models: uniform and variable thickness. Spatially, variable aquifer thicknesses interpreted from bedrock depths (0–28 m) were identified from a high‐resolution ground‐penetrating radar survey conducted at Tuolumne Meadows, CA. Our interpreted bedrock surface indicated several buried U‐shaped valleys including a buried ridge that separates 2 U‐shaped valleys. Groundwater flow simulations show that an increase in meadow gradient and hydraulic conductivity led to a decrease in seasonal storage and an increase in surface‐water outflow. However, models with varying bedrock geometries change the magnitude and timing of these processes. Uniform thickness models overestimated storage at the model edges and resulted in higher projected volumes of water being released to streams earlier than previously observed.  相似文献   

11.
Numerical Modeling of Atoll Island Hydrogeology   总被引:3,自引:0,他引:3  
We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.  相似文献   

12.
Biased monitoring of fresh water-salt water mixing zone in coastal aquifers   总被引:2,自引:0,他引:2  
In coastal aquifers, significant vertical hydraulic gradients are formed where fresh water and underlying salt water discharge together upward to the seafloor. Monitoring boreholes may act as "short circuits" along these vertical gradients, connecting between the higher and the lower hydraulic head zones. When a sea tide is introduced, the fluctuations of both the water table and the depth of the mixing zone are also biased due to this effect. This problem is intensified in places of long-screen monitoring boreholes, which are common in many places in the world. For example, all approximately 500 boreholes of the fresh water-salt water mixing zone in the coastal aquifer of Israel are installed with 10 to 50 m long screens. We present field measurements of these fluctuations, along with a three-dimensional numerical model. We find that the in-well fluctuation magnitude of the mixing zone is an order of magnitude larger than that in the porous media of the actual aquifer. The primary parameters that affect the magnitude of this bias are the anisotropy of the aquifer conductivity and the borehole hydraulic parameters. With no sea tide, borehole interference is higher for the anisotropic case because the vertical hydraulic gradients are high. When tides are introduced, the amplitude of the mixing zone fluctuation is higher for the isotropic case because the overall effective hydraulic conductivity is greater than the conductivity in the anisotropic case. In the aquifer, the fresh water-salt water mixing zone fluctuations are dampened, and tens of meters inland from the shoreline, the fluctuations are on the order of few centimeters.  相似文献   

13.
In a previous study, a denitrification wall was constructed in a sand aquifer using sawdust as the carbon substrate. Ground water bypassed around this sawdust wall due to reduced hydraulic conductivity. We investigated potential reasons for this by testing two new walls and conducting laboratory studies. The first wall was constructed by mixing aquifer material in situ without substrate addition to investigate the effects of the construction technique (mixed wall). A second, biochip wall, was constructed using coarse wood chips to determine the effect of size of the particles in the amendment on hydraulic conductivity. The aquifer hydraulic conductivity was 35.4 m/d, while in the mixed wall it was 2.8 m/d and in the biochip wall 3.4 m/d. This indicated that the mixing of the aquifer sands below the water table allowed the particles to re-sort themselves into a matrix with a significantly lower hydraulic conductivity than the process that originally formed the aquifer. The addition of a coarser substrate in the biochip wall significantly increased total porosity and decreased bulk density, but hydraulic conductivity remained low compared to the aquifer. Laboratory cores of aquifer sand mixed under dry and wet conditions mimicked the reduction in hydraulic conductivity observed in the field within the mixed wall. The addition of sawdust to the laboratory cores resulted in a significantly higher hydraulic conductivity when mixed dry compared to cores mixed wet. This reduction in the hydraulic conductivity of the sand/sawdust cores mixed under saturated conditions repeated what occurred in the field in the original sawdust wall. This indicated that laboratory investigations can be a useful tool to highlight potential reductions in field hydraulic conductivities that may occur when differing materials are mixed under field conditions.  相似文献   

14.
Regional estimates of aquifer recharge are needed in data-scarce regions such as the Basin of Mexico, where nearly 20 million people are located and where the Basin’s aquifer system represents the main water source. In order to develop the spatio-temporal estimates of aquifer recharge and to analyze to what extent urban growth has affected aquifer recharge, this work presents a daily soil water balance which uses different vegetation and soil types as well as the effect of topography on climatological variables and evapotranspiration. The soil water balance was applied on a daily time step in the Basin of Mexico for the period 1975–1986, obtaining an annually-lumped potential recharge flow of 10.9–23.8 m3/s (35.9–78.1 mm) in the entire Basin, while the monthly values for the year with the largest lumped recharge value (1981 = 78.1 mm) range from 1 m3/s (0.3 mm) in December to 87.9 m3/s (23.7 mm) in June. As aquifer recharge in the Basin mainly occurs by subsurface flow from its enclosing mountains as Mountain Block Recharge, urban growth has had a minimal impact on aquifer recharge, although it has diminished recharge in the alluvial plain.  相似文献   

15.
The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on‐going under sulfate reducing conditions. Long‐term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO42–) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels.  相似文献   

16.
This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin of the Lower Mississippi River alluvial plain. Results of this study showed good to very good model performances with the coefficient of determination (R2) and Nash‐Sutcliffe efficiency (NSE) index from 0.4 to 0.9, respectively, during both hydrologic and crop model calibration and validation. An empirical relationship between ET, PERC, GWQ, and water table fluctuations was able to predict 64% of the water table variation of the alluvial plain in this study. Thematic maps were developed to identify areas with overuse of groundwater, which can help watershed managers to develop water resource programs.  相似文献   

17.
ABSTRACT

This study investigates the impact of hydraulic conductivity uncertainty on the sustainable management of the aquifer of Lake Karla, Greece, using the stochastic optimization approach. The lack of surface water resources in combination with the sharp increase in irrigation needs in the basin over the last 30 years have led to an unprecedented degradation of the aquifer. In addition, the lack of data regarding hydraulic conductivity in a heterogeneous aquifer leads to hydrogeologic uncertainty. This uncertainty has to be taken into consideration when developing the optimization procedure in order to achieve the aquifer’s sustainable management. Multiple Monte Carlo realizations of this spatially-distributed parameter are generated and groundwater flow is simulated for each one of them. The main goal of the sustainable management of the ‘depleted’ aquifer of Lake Karla is two-fold: to determine the optimum volume of renewable groundwater that can be extracted, while, at the same time, restoring its water table to a historic high level. A stochastic optimization problem is therefore formulated, based on the application of the optimization method for each of the aquifer’s multiple stochastic realizations in a future period. In order to carry out this stochastic optimization procedure, a modelling system consisting of a series of interlinked models was developed. The results show that the proposed stochastic optimization framework can be a very useful tool for estimating the impact of hydraulic conductivity uncertainty on the management strategies of a depleted aquifer restoration. They also prove that the optimization process is affected more by hydraulic conductivity uncertainty than the simulation process.
Editor Z.W. Kundzewicz; Guest editor S. Weijs  相似文献   

18.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

19.
Recharge areas of spring systems can be hard to identify, but they can be critically important for protection of a spring resource. A recharge area for a spring complex in southern Wisconsin was delineated using a variety of complementary techniques. A telescopic mesh refinement (TMR) model was constructed from an existing regional-scale ground water flow model. This TMR model was formally optimized using parameter estimation techniques; the optimized "best fit" to measured heads and fluxes was obtained by using a horizontal hydraulic conductivity 200% larger than the original regional model for the upper bedrock aquifer and 80% smaller for the lower bedrock aquifer. The uncertainty in hydraulic conductivity was formally considered using a stochastic Monte Carlo approach. Two-hundred model runs used uniformly distributed, randomly sampled, horizontal hydraulic conductivity values within the range given by the TMR optimized values and the previously constructed regional model. A probability distribution of particles captured by the spring, or a "probabilistic capture zone," was calculated from the realistic Monte Carlo results (136 runs of 200). In addition to portions of the local surface watershed, the capture zone encompassed areas outside of the watershed--demonstrating that the ground watershed and surface watershed do not coincide. Analysis of water collected from the site identified relatively large contrasts in chemistry, even for springs within 15 m of one another. The differences showed a distinct gradation from Ordovician-carbonate-dominated water in western spring vents to Cambrian-sandstone-influenced water in eastern spring vents. The difference in chemistry was attributed to distinctive bedrock geology as demonstrated by overlaying the capture zone derived from numerical modeling over a bedrock geology map for the area. This finding gives additional confidence to the capture zone calculated by modeling.  相似文献   

20.
Spatially distributed hydrometeorological and plant information within the mountainous tropical Panama Canal watershed is used to estimate parameters of the Penman–Monteith evapotranspiration formulation. Hydrometeorological data from a few surface climate stations located at low elevations in the watershed are complemented by (a) typical wet‐ and dry‐season fields of temperature, wind, water vapour and pressure produced by a mesoscale atmospheric model with a 3 × 3 km2 spatial and hourly temporal resolution, and (b) leaf area index fields estimated over the watershed during a few years using satellite data with two different spatial and temporal resolutions. The mesoscale model estimates of spatially distributed surface hydrometeorological variables provide the basis for the extrapolation of the surface climate station data to produce input for the Penman–Monteith equation. The satellite information and existing digital spatial databases of land use and land cover form the basis for the estimation of Penman–Monteith spatially distributed parameter values. Spatially distributed 3 × 3 km2 potential evapotranspiration estimates are obtained for the 3300 km2 Panama Canal watershed. Estimates for Gatun Lake within the watershed are found to reproduce well the monthly and annual lake evaporation obtained from submerged pans. Sensitivity analysis results of potential evapotranspiration estimates with respect to cloud cover, dew formation, leaf area index distribution and mesoscale model estimates of surface climate are presented and discussed. The main conclusion is that even the limited spatially distributed hydrometeorological and plant information used in this study contributes significantly toward explaining the substantial spatial variability of potential evapotranspiration in the watershed. These results also allow the determination of key locations within the watershed where additional surface stations may be profitably placed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号