首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, environmental magnetic, heavy metal and statistical analyses were conducted on 21 surface sediments collected from Chennai coast, India, to examine the feasibility of heavy metal pollution using magnetic susceptibility. The Chennai coastal sediment samples are dominated by ferrimagnetic minerals corresponding to magnetite-like minerals. The percentage of frequency dependent magnetic susceptibility reflects the presence of super-paramagnetic/single domain magnetic minerals in Chennai harbour, Cooum and Adayar rivers sediments. High pollution load index in sample E1, E2, CH7, C11, C12 and A16 is mainly due to anthropogenic activities such as, harbour activities, Cooum and Adayar rivers input and industrial effluent. Factor analysis shows that the magnetic concentration dependent parameters (χ, χ ARM and SIRM) covary with the heavy metal concentrations, suggesting that the input of magnetic minerals and heavy metals in Chennai coastal sediments are derived from the same anthropogenic sources. Strong correlation obtained between pollution load index (PLI) and concentration dependent parameters (χ, χ ARM and SIRM) for the polluted samples with magnetic susceptibility excess of 50×10 − 8 m3kg − 1. Significant correlations between heavy metals and magnetic susceptibility point out the potential of magnetic screening/monitoring for simple and rapid proxy indicator of heavy metal pollution in marine sediments.  相似文献   

2.
Detailed magnetic and geochemical measurements were performed on urban roadside soils collected from Lishui city, China, to establish a possible link between the enhanced concentration of traffic-related magnetic particles and heavy metals. Relatively higher magnetic susceptibility (mean: 124.1 × 10−8 m3 kg−1) and concentrations of metals (Cd, Cu, Pb and Zn) were observed for roadside soils. Concentration-dependent magnetic parameters (χ and SIRM) are highly significantly positively correlated to the concentration of metals (Ca, Cr, Ni, Cu, Zn, Cd, Pb, Fe, and V), but not significantly correlated with As, Mn, Co, Mg, and K. The principal component analysis showed that χ and SIRM significantly correspond to elements Ca, Cd, Cu, Pb, and Zn. The χ and SIRM also have significant linear correlation with integrated pollution index, indicating that χ and SIRM can be used as effective proxy indicators for the pollution of heavy metals. Magnetite in the pseudo-single-domain/multidomain (PSD/MD) grain size was identified as the dominant magnetic carrier by temperature-dependent measurements of saturation magnetization (Ms–T curve), XRD and hysteresis loops. Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS) analysis of the magnetic particles revealed the presence of large traffic-related angular-subangular, blocky, and spherical iron oxide particles. These iron oxide particles are typical for particles produced by traffic-related anthropogenic activities. It is concluded that vehicle emissions may be the major source of elevated heavy metals and magnetic particles in roadside soils. The results proved the applicability of magnetic method in detecting roadside pollution derived from vehicle emissions.  相似文献   

3.
An expressway-side soil profile 22 cm long was sampled from the grassland of the expressway linking Beijing and the Capital International Airport. Magnetic measurements, geochemical and multivariate statistic analyses were performed on the soil samples. The results reveal that the soil profile can be divided into two parts with significant difference in magnetic proxies and heavy metal concentration. The uppermost soil horizon (0–8 cm) represents the pollution-rich layer with higher concentration of ferrimagnetic phases and metallic elements. The values of xare very high with an average of 141.60 × 10−8 m3·kg−1 in the layer. We explain that the anthropogenic dust input from traffic is the predominant cause for strong signals of magnetic phases and heavy metals. Below the profile depth of 8 cm, there is minor pollution in the soil with lower concentration of magnetic minerals and heavy metals compared to the natural background values. χ remains quite stable and relatively low with an average of 49.44 × 10−8 m3·kg−1. S-ratio also generally decreases with depth, and it changes from 0.93 in the 0–8 cm layer to 0.87 below the depth of 8 cm. It indicates that the soil samples are overwhelmingly predominated by ferrimagnetic minerals in the upper part soil, while the contribution of imperfect antiferromagnetic components is stronger in the lower part. Rock magnetic experiments show MD magnetite as the main magnetic carrier both in the upper and lower parts. Themagnetic grain size in the upper part is, however, a bit coarser than that in the lower part. Cluster analysis shows a positive correlation between magnetic properties (χ, ARM, SIRM) and heavy metal pollutants of Pb, Zn, Cu. Fuzzy C-means cluster analysis can clearly help divide the soil profile into two different layers and distinguish their characteristics. It can be concluded that these magnetic concentration-related parameters can be used as proxies for pollution investigation in a fast, sensitive, low-cost and highly efficient approach to screening heavy metal pollution. __________ Translated from Quaternary Sciences, 2007, 27(6): 1113-1120 [译自:第四纪研究]  相似文献   

4.
Two types of soil (fluvisols and anthrosols) were collected from different environmental settings (suburb and industrial area) in Wuhan, central China, aiming to examine the applicability of magnetic mapping for heavy metal pollution of urban soil in a large region. Magnetic measurements and chemical analysis indicated elevated magnetization and heavy metal concentrations of topsoils in the industrial area. Magnetic susceptibility (χ), anhysteretic remanent magnetization (ARM) and saturation isothermal remanent magnetization (SIRM) of fluvisols are much higher than those of anthrosols, but contrary for frequency-dependent susceptibility, indicating that soil magnetism strongly depends on the soil type/condition. Predominant magnetic carrier in topsoils in industrial area is pseudo-single-domain/multi-domain magnetite. Environmental scanning electron microscope/energy dispersive X-ray examination of the magnetic extracts from these topsoils revealed abundant spherical particles with diameters of 10–50 μm that are rich in iron-oxides, and could be attributed to the nearby industrial activities (e.g., steel work and power generation). Significant correlations were observed between magnetic concentration-related parameters (e.g., χ, ARM and SIRM) and concentrations of Cu, Pb, Zn, Hg and Tomlinson pollution load index. These results proposed that magnetic proxy mapping of soil pollution is an effective, fast and inexpensive tool for delineation of heavy metal pollution. However, interpretation of magnetic properties for such a purpose must be done on a site-specific basis, taking into account the possibilities of pedogenic enhancement/depletion under the specific soil conditions.  相似文献   

5.
近50年来抚仙湖重金属污染的沉积记录*   总被引:15,自引:8,他引:15  
文章以抚仙湖污染严重的北部和基本未受人类活动影响的中部为研究对象,分别采集了沉积岩芯FB和FZ,通过对岩芯的137 Cs测年和重金属元素(Cu,Ni,Ti,Cr,V,Pb,Cd和Zn)的含量分析,研究了湖泊重金属来源和污染历史,并利用地质累积指数法评价了湖泊重金属污染程度。结果表明:抚仙湖北部的平均沉积速率约为2.0~2.8mm/a;20世纪80年代以前,湖泊北部和中部的重金属元素(Cu,Ni,Ti,V,Pb,Cd,Zn)以自然来源为主;80年代以后,抚仙湖受到人类活动的影响,但湖泊中部Cu,Ni,Ti,V,Pb,Zn以及湖泊北部Cu,Ni,Ti,V仍以自然来源为主;湖泊北部Pb和Zn地质累积指数值小于1,属无污染到中度污染;北部Cd地质累积指数为3~4,达强度污染;中部Cd地质累积指数为2~3,属中强度污染;且Pb,Zn和Cd污染程度有加速增大的趋势。  相似文献   

6.
Anthropogenic influence, mainly due to urban and industrial activities and traffic exhaust, may affect urban topsoil via atmospheric contamination and solid waste. Magnetic susceptibility measurements were conducted on 21 urban topsoil samples from the city of Xuzhou, China. High intensities of magnetic susceptibility were detected in the majority of the samples. SEM analysis shows that magnetic minerals are in the form of spherules and mainly due to anthropogenic inputs. The heavy metals Pb, Cu, Zn, Se, Sc, Mo, Fe, and Bi show strong correlations with magnetic susceptibility, and Ag, Ba, Cd, Ni, Cr, Sb, and Sn, on the other hand, show a weak correlation with magnetic susceptibility. Whereas, of these metals studied, only Hg has no significant correlation with the susceptibility. The Tomlinson pollution load index (PLI) also shows significant correlation with the susceptibility (χ). The present study shows that magnetic susceptibility is a fast, inexpensive, and non-destructive method for the detection and mapping of contaminated soils.  相似文献   

7.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

8.
Concentration and distribution of heavy metals (Cd, Cu, Pb and Zn) in urban soils of Hangzhou, China, were measured based on different land uses. The contamination degree of heavy metals was assessed on the basis of pollution index (PI), integrated pollution index (IPI) and geoaccumulation index (I geo). The 0.1 mol l−1 HCl extraction procedure and gastric juice simulation test (GJST) were used to evaluate the potential mobility and environmental risk of heavy metals in urban soils. The average concentration of Cd, Cu, Pb and Zn in urban soils was measured at 1.2 (with a range of 0.7–4.6), 52.0 (7.4–177.3), 88.2 (15.0–492.1) and 206.9 (19.3–1,249.2) mg kg−1, respectively. The degree of contamination increased in the order of industrial area (IA) > roadside (RS) > residential and commercial areas (RC) > public park and green areas (PG). The PIs for heavy metals indicated that there is a considerable Cd, Cu, Pb and Zn pollution, which originate from traffic and industrial activities. The IPI of these four metals ranged from 1.6 to 11.8 with a mean of 3.5, with the highest IPI in the industrial area. The assessment results of I geo also supported that urban soil were moderately contaminated with Cd and to a lesser extent also with Cu, Pb and Zn. The IP and I geo values reveal the pollution degree of heavy metal was the order of Cd > Pb > Zn ≈ Cu. It was shown that mobility and bioavailability of the heavy metals in urban soils increased in the order of Cd > Cu > Zn ≈ Pb. Owing to high mobility of Cd and Cu in the urban soils, further investigations are needed to understand their effect on the urban environment and human health. It is concluded that industrial activities and emissions from vehicles may be the major source of heavy metals in urban contamination. Results of this study present a rough guide about the distribution and potential environmental and health risk of heavy metals in the urban soils.  相似文献   

9.
Multivariate statistical analysis has been used for detailed examination of the relationship between the magnetic properties of Xuzhou urban topsoil, for example concentration-dependent properties (mass magnetic susceptibility (χ), susceptibility of anhysteretic remanent magnetization (χ ARM), saturation isothermal remanent magnetization (SIRM), soft remanent magnetization (SOFT), and frequency-dependent magnetic susceptibility (χ FD)) and feature-dependent properties (S −100 mT ratio, SIRM/χ ratio and F 300 mT ratio), and the concentrations of metals (Ti, Fe, Cr, Al, Ga, Pb, Sc, Ba, Li, Cd, Be, Co, Cu, Mn, Ni, V, Zn, Mo, Pt, Pd, Au, As, Sb, Se, Hg, Bi, Ag, and Sn), S, and Br in the soil. The results show that SIRM/χ ratios correlate best with the heavy metals (Hg, Cr, Sb, As, and Bi) which are mainly derived from coal-combustion emissions whereas χ FD correlates best with the metals (Al, Ti, V, Be, Co, Ga, Mn, and Li) which principally originate from soil parents. Concentration-dependent magnetic properties (χ ARM, χ, SIRM, and SOFT) correlate well with elements (Se, Pb, Cu, Zn, Fe, Ag, Sc, Ba, Mo, Br, S, Cd, Ni, etc.) which are mainly derived from road-traffic emissions. For the same chemical element, χ ARM, SIRM, and SOFT values are frequently better correlated than χ values, and χ ARM values are the best indicators of the concentrations of these elements associated with traffic emissions in this study area. In addition, S −100 mT ratios significantly correlate positively with Se, Sc, Pb, Cu, Zn, Mo, and S whereas F 300 mT ratios only correlate positively with Pt and negatively with Fe. These results confirm the suitability of different magnetic properties for characterizing the concentrations of heavy metals, S, and Br in Xuzhou urban topsoil.  相似文献   

10.
An investigation on spatial distribution, possible pollution sources, and affecting factors of heavy metals in the urban–suburban soils of Lishui city (China) was conducted using geographic information system (GIS) technique and multivariate statistics. The results indicated that the topsoils in urban and suburban areas were enriched with metals, such as Cd, Cu, Pb, and Zn. Spatial distribution maps of heavy metal contents, based on geostatistical analysis and GIS mapping, indicated that Cd, Cr, Cu, Mn, Ni, Pb, and Zn had similar patterns of spatial distribution. Their hot-spot areas were mainly concentrated in the densely populated old urban area of the city. Multivariate statistical analysis (correlation analysis, principal component analysis, and clustering analysis) showed distinctly different associations among the studied metals, suggesting that Cr, Cu, Ni, Pb, Cd, and Zn had anthropogenic sources, whereas Co and V were associated with parent materials and therefore had natural sources. The Cd, Cr, Ni, Pb, and Zn contents were positively correlated with soil organic matter, pH, and sand content (p < 0.01). It is concluded that GIS and multivariate statistical methods can be used to identify hot-spot areas and potential sources of heavy metals, and assess soil environment quality in urban–suburban areas.  相似文献   

11.
Chemical methods are generally chosen to monitor soil pollution but magnetic measurements proved to yield additional information at low cost and less time consumption. In this investigation, the novel use of rapid and non-destructive magnetic measurements to characterize Br levels in Xuzhou (China) urban roadside soils was reported. X-ray fluorescence spectrometry (XRF) was used to quantify Br in the soil samples. Data from 21 roadside soil samples confirm Br contamination, with a mean level of 4.36 mg kg−1 and a range of 2.4–8.7 mg kg−1. These values are higher than that of unpolluted soils in Xuzhou that averages 1.1 mg kg−1. Hierarchical clustering analysis shows Br in Xuzhou roadside soils is mainly from road traffic. Clear correlations between Br levels and simple magnetic parameters [mass specific susceptibility (χ LF), susceptibility of anhysteretic remanent magnetization (χ ARM), saturation isothermal remanence (SIRM)] are observed. The present study shows that these three magnetic parameters can be used as a proxy for Br levels in Xuzhou urban roadside soils.  相似文献   

12.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

13.
The lakes of the Himalaya are degrading due to increase in toxic heavy metal loading. This study reports the last 50-year heavy metal pollution loading in the Rewalsar Lake, Himachal Pradesh, India. Sediment cores were recovered to study the pollution loading in the lake sediments. The 137Cs and 210Pb isotope-based sedimentation rate suggest rapid sedimentation in the lake during the last ~50 years. The concentrations of Mn, Cu, Zn, Cd, Pb, Co, Ni, Cr metals in the lake sediments owe its contributions both to the natural and anthropogenic sources. Prior to ca 1990 AD, metal loading was dominated by the lithogenic input, whereas post ca 1990 AD the metal loading was controlled by the anthropogenic factors. The Pb concentration in the lake gradually increased during 1990–2004 and then decreased significantly till present. The higher concentration of Pb seems to be derived from the fossil fuel burning, while the Cr concentration in the lake indicates the use of fertilizer in the catchment area. The lowest concentrations of elements around ca 1990 AD seem to have occurred due to channelization of the lake feeding system.  相似文献   

14.
Dreissena polymorpha is an exotic freshwater bivalve species which was introduced into the Great Lakes system in the fall of 1985 through the release of ballast water from European freighters. Utilizing individual growth rings of the shells, the stable isotope distribution (δ18O and δ13C) was determined for the life history of selected samples which were collected from the western basin of Lake Erie. These bivalves deposit their shell in near equilibrium with the ambient water and thus reflect any annual variation of the system in the isotopic records held within their shells. Observed values for δ18O range from -6.64 to –9.46‰ with an average value of –7.69‰ PDB, while carbon values ranged from –0.80 to –4.67‰ with an average value of –1.76‰ PDB. Dreissena polymorpha shells incorporate metals into their shells during growth. Individual shell growth increments were analyzed for Pb, Fe, Mg, Mn, Cd, Cu, and V concentrations. The shells show increased uptake of certain metals during periods of isotopic enrichment which correspond with warmer water temperatures. Since metals are incorporated into the shells, the organism may be useful as a biomonitor of metal pollution within aquatic environments. Received: 31 October 1996 · Accepted: 21 May 1997  相似文献   

15.
In an attempt to delineate heavy metal contamination precincts and to evaluate the extent and degree of toxic levels, besides their possible sources, 38 water samples from Ankaleshwar Industrial Estate, south Gujarat, India were analyzed. By clutching geochemical analyses and GIS-based colour composites areas depicting anomalously high concentration of heavy metals (Mo, Zn, Pb, Ni, Co, Cd, etc.) in the groundwater were revealed. The multicomponent overlays in grey-scale facilitated in identifying situates of heavy metal ‘hot spots’, and lateral protuberances of the contamination plume around defile stretch of the main stream Amla Khadi flowing through the area. The multiple pollution plumes emerging from other parts of the area further coincide with effluent laden streams and small channels indicating industrial establishments as major sources of groundwater contamination. Influent nature of the streams, accelerated infiltration process, high mass influx and shallow groundwater table are the factors conducive for easy access of heavy metals to the phreatic aquifers affecting over 20 km2 area. On the basis of P/U ratios (concentration of metals in polluted water to unpolluted water), geogenic and anthropogenic sources have been identified. Very high levels of technogenic elements present in the ground water raise concerns about possible migration into food crops, as the area is an important horticultural locale and is highly cultivated.  相似文献   

16.
Upcoming International Events   总被引:3,自引:0,他引:3  
Metals in lacustrine sediment have both anthropogenic and natural sources. Because of intensified human activities, the anthropogenic input of metal elements has exceeded the natural variability. How to distinguish the anthropogenic sources in lake sediments is one of the tasks in environmental management. The authors present a case study, which combined the geochemical and statistical methods to distinguish the anthropogenic sources from the natural background. A 56 cm core (core DJ-5) was collected from Dongjiu Lake, Taihu Lake catchment, China. The concentration distributions of Al, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Ti, V and Zn in core DJ-5 indicated that Dongjiu Lake had serious Cd pollution, and the concentrations of Cr, Cu, Pb, Mn and Zn had also exceeded the Chinese State Standards of Soil Environmental Quality in the upper layer of the core. Using Al as a reference element, the other metals were normalized and compared with their baselines to calculate the enrichment factors (EFs). The principal component analysis (PCA) of metal concentrations was performed using ViSta6.4. The results of EFs and PCA indicated that the concentration variations of Cd, Cu, Pb, Mn and Zn were mainly caused by the anthropogenic sources, and the concentration variations of Cr and Ni were influenced by both the anthropogenic and natural factors, while the other metals were mainly derived from the natural sources. Intensified human activities within the lake catchment area resulted in the increase of heavy metal inputs directly and the acceleration of erosion which caused other metal elements to deposit in the aquatic environment. The results of this work will be useful in probing changes forced by humans in the lake environment and in adjusting human activity in restoring the lake environment.
Yanhong WuEmail:
  相似文献   

17.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

18.
In this work we studied the accumulation of heavy metals in nine species of fish with different life and feeding habitats which are native and major commercial fish in the Baotou Urban Section of the Yellow River. The results showed that the concentration of heavy metals was significantly dependent on fish species; the pollution index of heavy metals in different species were ranked as Hemiculter leucisclus > Carassius auratus auratus > Hemibarbus maculatus > Megalobrama amblycephala > Abbottina rivularis > Cyprinus carpio > Squaliobarbus curriculus > Perccottus glehni > Saurogobio dabryi. Product–moment correlation coefficients among the metal pairs Pb–Zn, Cu–Cd, Cu–Zn, Cu–Pb, Pb–Cd, and Zn–Cd revealed there was no competitions between metals in each tissue. Correlations between heavy metal concentrations and fish length or weight indicated that accumulation of the heavy metals by the different fish species was related to their surrounding environments and their life and feeding habitats. According to the mean bioconcentration factors (BCFs), the heavy metal concentrations in these nine species were ranked Zn ≫ Cu > Cd ≈ Pb. In this work, the bioaccumulation factors (BAFs) were developed by using the sum of exchangeable and bound-to-carbonate heavy metals as Cs values. It was found that BAFs better reveal the accumulation characteristics of the heavy metals in the fish, which might provide an effective method for assessing bioaccumulation of heavy metals.  相似文献   

19.
Environmental pollution and its harmful consequences for the population’s health derived from coal production in the locality of Ensenada (Argentina) is studied by magnetic and non-magnetic means. Coke is used for the production of industrial coal. This is a final product obtained in petroleum refineries. Coke is a non-magnetic material showing values of magnetic susceptibility close to zero. Conversely, the magnetic susceptibility of the coal released from factory chimneys is considerably enhanced due to the building of magnetic fibers and spherules inside the furnace, used for coal production. Due to this property, the magnetic content of coal can be used as environmental proxy for studying the environmental impact caused by coal industries in urban areas. The values of magnetic susceptibility decrease as the distance from the contamination source increases. This indicates that magnetic concentration is lower. The grain size of magnetic particles also decreases according to the distance, which is seen when analyzing the grain size parameters. According to the different non-magnetic approaches applied, the particles released by the industry, which affect the region, fall within the rank of breathable particles (<2.5 μm). Besides, inhalable particles are also found (2.5–10 μm). Such determinations are consistent with inter-parametric ratios applied in the study of grain sizes. The undesirable dust of the local coal industry also carries heavy metals which are dangerous for the population’s health, like Zn, Cu, Pb and V.  相似文献   

20.
A study of the water and sediment chemistry of the Nainital, Bhimtal, Naukuchiyatal and Sattal Lakes of Kumaun, has shown that the water of these lakes are alkaline and that electrical conductivity, total dissolved solid and bicarbonate HCO 3 are much higher in Nainital than in the other three lakes. The weathering of limestone lithology and anthropogenic pollution, the latter due to the very high density of population in the Nainital valley, are the primary sources of enhanced parameters. The low pH of Nainital Lake water is due to low photosynthesis and enhanced respiration, increasing CO2 in the water and the consequent enhancement of Ca2+ and HCO 3 . The dissolved oxygen in Nainital Lake is less compared to other lakes, indicating anoxic conditions developing at the mud–water interface at depth. The PO 4 3− content in Nainital is higher (124 μg/l), showing an increasing trend over time leading to eutrophic conditions. The trace metals (Cu, Co, Zn, Ni, Mn, and Sr) are present in greater amounts in the water of Nainital Lake than in the other three lakes, though Fe and Cr are high in Bhimtal and Fe in Naukuchiyatal. The higher abundance is derived from the leaching of Fe–Mg from metavolcanic and metabasic rocks. Most of the heavy metals (Cr, Ni, Cu, Mn, Fe, Sr, and Zn) significantly enrich the suspended sediments of the lakes compared to the bed sediments which due to their adsorption on finer particles and owing to multiple hydroxide coating and organic content, except for Fe, which is enriched in the bed sediments. The high rate of sedimentation, 11.5 mm/year in Nainital, compared to Bhimtal with 4.70 mm/year, Naukuchiyatal with 3.72 mm/year, and Sattal with 2.99 mm/year, has resulted in shorter residence time, poor sorting of grains, and lesser adsorption of heavy metals, leading consequently, their depletion in the bed sediments of Nainital Lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号