首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
浙江建德铜矿(原名岭后铜矿)是20世纪60年代初期探明的中型铜矿,位于扬子板块和华夏板块结合带(即钦杭结合带)北东段。文中系统研究了建德铜矿主成矿期块状矿石石英中的流体包裹体。岩相学研究表明主要发育三类包裹体:包括富液相包裹体(I型),富气相包裹体(II型),以及含子晶包裹体(III型);显微测温结果显示:I类富液相包裹体加热后均一到液相,均一温度分布范围主要集中在280~340℃,流体包裹体盐度0.63~8.00 wt.%Na Cl eqv,II类富气相包裹体加热均一到气相,均一温度296~334℃,盐度1.22~2.00 wt.%Na Cl eqv的低盐度范围,III类含子晶包裹体,均一温度范围与II类包裹体基本相同,介于290~326℃,盐度则较高,介于31.87~38.16 wt.%Na Cl eqv。激光拉曼探针分析揭示,流体挥发分主要为水蒸气,同时部分包裹体气相组分中含有CO2、CH4、N2。II类与III类流体包裹体在视域内共存,且两者均一温度相似,盐度相差很大,表明强烈的流体沸腾作用发生。流体强烈沸腾作用是造成建德铜矿成矿物质沉淀富集的原因。成矿流体研究结合地质特征表明,建德铜矿是燕山期的矽卡岩型矿床而不是海西期的喷流沉积矿床。  相似文献   

2.
滇东南南秧田钨矿床位于老君山钨锡多金属成矿区内,大地构造位置位于扬子板块、华夏板块与三江褶皱系的结合部位。钨矿体主要呈似层状赋存于南秧田组,根据不同的矿物组合及穿插关系,可划分出三种矿石类型,即矽卡岩型矿石、石英脉型矿石和碳酸盐型矿石。对南秧田不同矿化类型白钨矿中流体包裹体的岩相学观察后发现该矿床主要发育4类流体包裹体:富液相两相包裹体(Ⅰ类)、富气相两相包裹体(Ⅱ类)、含子矿物三相包裹体(Ⅲ类)和纯气相包裹体(Ⅳ类)。矽卡岩型矿石白钨矿中流体包裹体的均一温度变化于176~311℃,盐度变化于0.2%~10.9%NaCleqv。石英脉型矿石白钨矿中流体包裹体的均一温度变化于200~395℃,盐度变化于0.4%~11.3%NaCleqv。碳酸盐型矿石白钨矿中流体包裹体的均一温度和盐度分别变化于201~395℃和2.6%~11.3%NaCleqv。显微测温结果表明成矿流体属中高温度、中低盐度流体。激光拉曼探针分析表明,白钨矿中流体包裹体组分主要为H2O,含少量的CH4。矽卡岩阶段成矿流体δD值范围为−80.2‰~−78.3‰,δ18O水值为6.8‰,石英脉阶段成矿流体的δD和δ18O水值分别为−93.7‰~−79‰和6.5‰~7.1‰,表明成矿流体主要来自于岩浆水,并可能经历了强烈的去气作用,或者存在不同程度地层有机质、大气降水和孔隙水的混入。流体包裹体均一温度和盐度呈正相关关系及H、O同位素特征综合分析,本研究认为岩浆水与大气降水混合是引起白钨矿沉淀的主要因素。  相似文献   

3.
长排矿区位于诸广山岩体南部,是近年来铀矿找矿重点突破的新成果。流体包裹体岩相学特征显示,该矿区成矿期主要发育2种类型包裹体:含CO_2三相包裹体(Ⅰ型)和气液两相包裹体(Ⅱ型)。其中,Ⅱ型包裹体又可分为富液相包裹体(Ⅱ-1型)和富气相包裹体(Ⅱ-2型)。根据流体包裹体岩相学特征和显微测温结果,可将成矿期流体包裹体划分为2组:第1组均一温度主要集中在291~388℃之间,盐度范围为3.23%~7.87%NaCleqv,为Ⅰ型含CO_2三相和Ⅱ-2型富气相包裹体;第2组均一温度范围主要集中于140~260℃之间,盐度为1.74%~10.24%NaCleqv,属Ⅱ-1型富液相包裹体,分别代表成矿期早阶段和晚阶段流体性质。晚阶段流体包裹体相对于早阶段具有较低的均一温度和较大的盐度变化范围,说明成矿期晚阶段很可能发生了不同来源流体的混合作用。激光拉曼分析显示,成矿期流体包裹体气相成分主要为CO_2、CH_4、H_2等。硫同位素分析结果显示,成矿期黄铁矿δ~(34)S值在-10.2‰~-3.2‰之间,与华南地区其他铀矿床成矿期硫化物的δ~(34)S值相近。结合区域地质特征可知,长排矿区成矿物质主要来源于古老含铀地层部分熔融形成的富铀花岗岩;温度降低和流体混合作用可能是导致铀络合物水解沉淀的重要因素。  相似文献   

4.
新疆西北部的托库孜巴依(巴依)金矿床位于西伯利亚古板块南缘,阿尔泰陆缘活动带克兰弧后盆地与哈巴河弧间盆地接壤处。本次研究在前人成果基础上,通过详细的野外调查、室内显微观察、流体包裹体测温、激光拉曼成分分析和氢-氧同位素分析等多种方法,揭示了巴依金矿各成矿阶段流体特征、成矿热液来源和流体演化过程。根据野外矿脉空间分布、穿插关系、矿物组合及结构构造等特征,结合流体包裹体研究,本文将巴依金矿的成矿作用划分为4个阶段:石英-磁铁矿阶段(Ⅰ),主要发育富液相包裹体,均一温度范围在3529~4134℃区间,盐度范围为73%~147%NaCleqv,平均为104%NaCleqv;石英-黄铁矿阶段(Ⅱ),该阶段主要发育富液相包裹体、富气相包裹体以及含子晶包裹体,均一温度范围为1860~3398℃,盐度变化范围为27%~443%NaCleqv,平均为92%NaCleqv;石英-黄铁矿-黄铜矿阶段(Ⅲ)主要发育富液相包裹体和含(富)CO_2三相水溶液包裹体,均一温度范围为1410~1864℃(富液相包裹体),盐度范围较大,介于0~88%NaCleqv之间;石英-方解石阶段(Ⅳ),流体包裹体以富液相为主,均一温度范围1020~1400℃,盐度范围为02%~43%NaCleqv。该矿床从成矿早阶段到成矿晚阶段温度-盐度整体呈下降趋势,在主要成矿阶段(Ⅱ、Ⅲ)出现流体沸腾现象。各成矿阶段δ~(18)O、δD同位素变化范围分别为:成矿早阶段(Ⅰ)531‰和-8510‰;主要成矿阶段(Ⅱ、Ⅲ)-153‰~150‰和-974‰~-811‰;成矿晚阶段(Ⅳ)-352‰~-342‰和-939‰~-871‰,成矿流体主要是早阶段的变质水与中晚阶段加入的大气水混合而成。巴依金矿成矿流体表现为一套中低盐度NaCl-H_2O-CO_2流体体系,符合造山型金矿成矿流体特征。综合矿床地质研究,本文认为在晚石炭世-二叠纪喀拉通克岛弧与西伯利亚板块碰撞造山构造体制下,流体混合、压力降低和沸腾作用是巴依金矿床富集成矿的主要机制。  相似文献   

5.
迪彦钦阿木钼矿是近年来发现的一个超大型斑岩钼矿床,位于大兴安岭中段二连浩特-东乌旗多金属成矿带。本文主要对迪彦钦阿木钼矿床的流体包裹体及硫同位素进行了系统研究。迪彦钦阿木钼矿发育有四个成矿阶段:石英-钾长石阶段、石英-辉钼矿阶段、石英-多金属硫化物阶段及石英-萤石-碳酸盐阶段。矿床不同阶段的流体包裹体中,富气相(V类)、富液相(L类)和含子晶(S类)包裹体大量共存。显微测温结果显示,第一阶段包裹体均一温度为492~ 600℃,盐度分为两部分:5. 36%NaCleqv(L类)和32. 39%~64. 90%NaCleqv(S类);第二阶段包裹体均一温度为292~510℃,盐度为4. 49%~19. 92%NaCleqv(L类)和28. 43%~70. 21%NaCleqv (S类);第三阶段包裹体均一温度为206~388℃,盐度为2. 24%~22. 71%NaCleqv(L类)和28. 62%~54. 64%NaCleqv(S类);第四阶段包裹体均一温度、盐度最低,均一温度为133~288℃,盐度为0. 88%~7. 86%NaCleqv。流体具有从高温、高盐度向低温低盐度演化趋势。前三个成矿阶段L类、V类和S类包裹体大量共存,端元包裹体均一温度相近,盐度相差很大,表明发生了强烈的流体沸腾作用。多期次的流体沸腾作用是迪彦钦阿木矿床的主要成矿机制。硫同位素研究显示,δ~(34)S值的变化范围是1. 78‰~10. 41‰,暗示着迪彦钦阿木钼矿成矿物质主要来自于岩浆。  相似文献   

6.
小西弓金矿床是北山造山带南带重要的中型金矿床,矿体产出受韧性剪切带控制。热液成矿过程由早到晚分为石英-黄铁矿阶段、石英-多金属硫化物阶段和石英-碳酸岩阶段。石英-黄铁矿阶段石英中发育富液二相、富气二相和含CO2三相流体包裹体,均一温度范围为228℃~438℃,盐度为4.03%~17.50%NaCleqv,属中高温、中低盐度流体。石英-多金属硫化物阶段石英中发育富液二相、富气二相、含CO2三相和纯液相流体包裹体,均一温度范围为182℃~376℃,盐度为3.23%~12.21%NaCleqv。流体演化过程中发生了流体沸腾和混合作用,这可能是导致金沉淀富集的主要机制。流体沸腾温度区间约为268℃~347℃。成矿早阶段石英中流体包裹体的δ18 O和δD值分别为8.0‰~8.3‰和-84‰~-107‰。结合矿床地质特征和氢氧同位素研究认为,初始成矿流体来自变质热液,晚阶段有大气降水加入。  相似文献   

7.
兰坪盆地西缘发育一条重要的脉状Cu矿带,矿床的成矿流体来源一直存在较大的争议。本次研究对该矿带南段新发现的茅草坪矿床进行流体包裹体和H-O-C-S同位素研究,结合前人发表的该矿带矿床的同位素数据,探讨矿床成矿流体特征和来源。茅草坪矿床早(A1脉)、晚(A2脉)两期含矿石英脉中的流体包裹体均为含CO2盐水包裹体,可细分为含石盐子晶、富液相(水溶液相)、富气相(CO2相)包裹体等不同类型。根据流体包裹体的共生特点,将其划分为3组包裹体组合:(1)第I组,出现在A1脉石英中,为富液相(I-W型)、富气相(I-C型)和含石盐子晶(I-S型)包裹体共生;(2)第Ⅱ组,同样出现在A1脉石英中,为富液相(Ⅱ-W型)和富气相(Ⅱ-C型)包裹体共生;(3)第Ⅲ组,出现在A2脉石英中,为富液相(Ⅲ-W型)和富气相(Ⅲ-C型)包裹体共生。测温结果显示:I-S型包裹体均一温度在293~370℃之间,流体盐度为30.06%~39.76%Na Cleqv;Ⅱ-W型包裹体均一温度在302~490℃之间,流体盐度为1.23%~18.63%Na Cleqv;Ⅲ-W型包裹体均一温度在263~400℃之间,流体盐度为1.20%~11.34%Na Cleqv。同一组内,包裹体气/液相比高度变化,表明包裹体捕获时的流体呈不均一态,此时包裹体均一温度中低值部分近似代表该组包裹体真实的捕获温度。因此,从I组到Ⅲ组,包裹体分别捕获于280~320℃(I组、Ⅱ组)和260~280℃(Ⅲ组),结合盐度数据,反应初始成矿流体发生沸腾作用,伴随石盐子晶析出,流体盐度下降,随后温度降低。茅草坪矿床成矿流体富CO2的特点与区域内其他脉状Cu矿床一致,但盐度明显偏高。矿床热液石英的δDV-SMOW值变化在-94.6‰~-56.2‰之间,计算的流体的δ18OV-SMOW值集中在+8.1‰~+9.6‰之间,与区域其他脉状Cu矿床相似,数据主要落在原生岩浆水区域的下方,表明流体来源于岩浆水,但经历了开放系统下的脱气作用,没有盆地流体或大气降水的贡献;热液碳酸盐方解石的δ13CV-PDF值为-8.3‰~-2.4‰,δ18OV-SMOW值为14.46‰~16.63‰,与区域其他脉状Cu矿床的C-O同位素组成相似,但C同位素组成明显低于区域脉状Pb-Zn矿床(碳主要来自盆地流体溶解的碳酸盐岩);黄铜矿的δ34SV-CDT值变化于-6.4‰~-3.9‰之间,处于区域其他脉状Cu矿床的S同位素组成范围内,但区别于区域砂岩型Cu矿床(硫来自硫酸盐的细菌还原作用)。因此,推测矿床的CO2和硫可能也来自脱气的岩浆。茅草坪脉状Cu矿床成矿流体的研究表明:兰坪盆地西缘脉状Cu矿床成矿流体可能来自富CO2、经历脱气的岩浆水,没有大气降水和盆地卤水的参与。  相似文献   

8.
江苏观山铜铅金矿床成矿流体地球化学和成因   总被引:3,自引:1,他引:2  
观山铜铅金矿矿石中含有4种类型的流体包裹体:(Ⅰ)纯液相水溶液包裹体;(Ⅱ)富液相气液两相水溶液包裹体;(Ⅲ)富气相气液两相水溶液包裹体;(Ⅳ)纯气相包裹体。它们的气相分数变化较大,显示成矿过程中可能发生过沸腾作用。流体包裹体的显微测温结果显示,成矿流体的冰点温度为-0.3℃~-4.7℃,流体盐度w(NaCleq)变化范围为0.48%~7.39%,均一温度为133~304℃,对应流体密度为0.70~0.98g/cm3。同位素测定显示成矿流体的氢氧同位素组成分别为δD水=-81.0‰~-90.0‰,δ18O水=0.1‰~2.3‰,说明成矿流体主要为大气降水,但在矿体深部可能有少量岩浆水的加入。热液方解石碳同位素δ13C方解石=-1.2‰~2.9‰,显示其中的C主要来源于流体对流循环过程中对基底岩石中碳酸盐地层的溶解。综合成矿地质特征、成矿流体的证据与围岩蚀变类型,初步推断观山铜铅金矿为高硫型浅成低温热液金属矿床,沸腾作用可能是引起矿质发生沉淀富集成矿的重要因素之一。  相似文献   

9.
扎拉格阿木铜矿床位于锡林浩特地块北部边缘,矿体赋存于二叠纪砂质板岩和角砾岩中,受NE向断裂控制,为中温热液脉型铜矿床。本文通过流体包裹体和C?H?O?S?Pb同位素地球化学研究手段,来探讨扎拉格阿木铜矿成矿机制。成矿热液期存在5个成矿阶段:钾长石阶段、石英?绢云母阶段、石英?黄铁矿阶段、石英?多金属硫化物阶段、石英?方解石阶段。其中石英?多金属硫化物阶段为主成矿阶段,本阶段主要发育富液相、富气相、含子矿物包裹体;富液相包裹体均一温度与盐度分别为:138~289℃和2.06%~16.11% NaCl eqv;含子矿物包裹体均一温度与盐度分别为:320~374℃和32.68%~39.81% NaCl eqv,包裹体气体成分除少量CO2以外,均为H2O。H?O同位素分析表现为,石英中的〖δO〗^18值变化范围-8.5‰~7.5‰,流体的δD值变化范围为-116‰~-98‰,暗示早阶段成矿流体主要为岩浆热液,晚期伴有大气降水混入。C?O同位素分析表明,δ13C值为-6.9‰~ -10.1‰,δ18OSMOW介于2.5‰~11.7‰,在δ18O?δ13C 图上数据点落在岩浆水与大气水的中间区域。矿石硫化物的δ34S值介于-4.5‰~1.5‰,指示具有幔源岩浆硫的特征。矿石硫化物Pb同位素的208Pb/204Pb、207Pb/204Pb和206Pb/204Pb比值分别为38.034~38.609、15.497~15.655和18.141~18.446,推测Pb具有地幔来源的特点并伴有地壳或造山带Pb混入。成矿过程中伴随着流体沸腾作用,成矿物质沉淀受早期形成的岩浆热液与后加入大气降水混合的影响。  相似文献   

10.
银水寺铅锌矿床位于大别造山带北缘,是该区最大的矽卡岩型矿床。矿体主要发育在中元古界庐镇关岩群仙人冲组大理岩与郑堂子组千枚岩之间的层间破碎带以及正长花岗斑岩与大理岩的接触带中。矿床先后经历了四个成矿阶段,矽卡岩阶段(Ⅰ)、石英.白钨矿阶段(Ⅱ)、石英.硫化物阶段(Ⅲ)、碳酸盐阶段(Ⅳ)。矽卡岩阶段(Ⅰ)主要发育绿帘石、阳起石、石英、绿泥石、磁铁矿及少量金属硫化物等;石英.白钨矿阶段(Ⅱ)主要发育石英、方解石、萤石及少量白钨矿和金属硫化物;石英.硫化物阶段(Ⅲ)广泛发育闪锌矿、方铅矿、黄铜矿等金属硫化物及石英、方解石、萤石、绿泥石等;碳酸盐阶段(Ⅳ)主要发育方解石、石英及少量黄铁矿。矿床中发育三种类型流体包裹体,包括富CO2水溶液包裹体(AC类)、气液两相水溶液包裹体(L类)和含子晶多相包裹体(S型)。根据流体包裹体岩相学、显微测温、激光拉曼研究结果,矽卡岩阶段主要有富CO2包裹体和气液两相水溶液包裹体,均一温度为314~400℃、盐度变化范围较大(1.1%~19.3%NaCleqv);石英.白钨矿阶段发育气液两相水溶液包裹体、含子晶多相包裹体和富CO2包裹体,后两者均一温度相近(263~349℃)、盐度差异较大(32.8%~41%NaCleqv和0.8%~6.1%NaCleqv),表明流体发生了沸腾作用;石英.硫化物阶段主要发育气液两相水溶液包裹体,均一温度为230~332℃,盐度为0.2%~8.9%NaCleqv;碳酸盐阶段只发育气液两相水溶液包裹体,显示低温(162~245℃)、低盐度(0.2%~5.6%NaCleqv)的特征。矿床不同成矿阶段石英、绿帘石中流体包裹体中水H-O同位素研究结果表明,δ18Ofluid值从早到晚逐渐减小,其中矽卡岩阶段为–1.3‰~4.7‰、石英.硫化物阶段为–5.1‰~–3.1‰,表明银水寺矿床早期成矿流体主要为岩浆来源,并在成矿过程中不断有大气降水的加入。石英流体包裹体中CO2的C同位素测试结果表明,矽卡岩阶段δ13CV-PDB值为–9.2‰,石英.硫化物阶段为–25.8‰~–15.4‰,表明早期成矿流体中碳质主要来自岩浆,石英-硫化物阶段有大量有机碳加入,其可能与流体和富含有机质的地层反应有关。矿石中主要金属硫化物的δ34S值(1.7‰~4.4‰)显示了深源硫的特征。Pb同位素变化范围集中(206Pb/204Pb=16.55~16.705,207Pb/204Pb=15.369~15.459,208Pb/204Pb=37.463~37.767),显示壳幔混源的特点。随着成矿作用的进行,岩浆流体与碳酸盐围岩地层发生水岩交代反应形成矽卡岩,该过程造成了成矿矽卡岩阶段磁铁矿和少量闪锌矿的沉淀;断裂活动造成热液体系压力下降,流体发生沸腾,CO2、HF进入气相并逃逸促使矿床中钨的沉淀;同时大气降水沿裂隙灌入,混合作用导致流体的温度、盐度降低,Cl–浓度下降,造成矿床中铅锌的大面积沉淀。  相似文献   

11.
内蒙古阿右旗卡休他他铁金矿床属于夕卡岩-热液叠加型矿床。特定岩性、岩浆岩、构造是形成该种类型矿床的基本条件:辉长岩和石英闪长岩与围岩的接触带控制矿床的产出部位,岩体接触带的夕卡岩控制着铁、金矿体的分布范围,层间破碎带和构造裂隙带则控制着铁、金矿体的形态。铁矿化产于中基性岩体和围岩接触的夕卡岩带中,金矿体产在富铁矿体及其附近的夕卡岩中,金矿和铁矿是同一地质作用过程中不同阶段的产物,矿床可能形成于海西中期。  相似文献   

12.
加拿大萨斯喀彻温省索西(Southey)钾盐矿床特征及成因   总被引:1,自引:1,他引:0  
加拿大萨斯喀彻温省索西(Southey)钾盐矿床,主要赋存于中泥盆统的Elk Point(埃尔克波因特)群上部Prairie Evaporite(草原蒸发岩)组。钾盐矿层稳定,似水平状展布,埋深约1250~1550 m;钾盐矿物主要有钾石盐(KCl)和光卤石(KCl·Mg Cl2·6H2O),矿石品位高,w(K2O)可达11.17%~21.85%,是世界少有的高品质钾盐矿床。文章分别从构造位置、古地理条件、物源补给、沉积韵律和成矿过程等多个方面综合分析了索西钾盐矿床的成因。  相似文献   

13.
论凤山铜矿床的再生成因   总被引:3,自引:0,他引:3  
张立生 《矿产与地质》1992,6(6):431-439
凤山铜矿床产于中元古界昆阳群绿汗江组凤山段,其下伏为中元古代晚期的滇中裂陷槽中的狮山铜矿床。凤山铜矿床矿体呈脉状、巢状、囊状,切割围岩,形态产状受断裂构造及狮山段紫色层“刺穿体”的控制,是典型的后生矿床。矿石物质成分(以黄铜矿、斑铜矿为主)、黄铁矿的Co含量(0.6%)及Co/Ni比值(75.71)和硫化物的δ^34S值均继承了狮山铜矿床的特点;矿石具碎斑状、角砾状,细脉状和网脉状等后生矿石构造,凤山铜矿床黄铜矿、斑铜矿对各种波长入射光的反射率均高于狮山铜矿床黄铜矿、黄铜矿的Cu、Au、Ag含量高于狮山铜矿的黄铜矿,而S、As、Zn含量低于狮山矿的黄铜矿。基于上述特征,提出了凤山铜矿床的再生成矿模式。凤山铜矿床的成矿物质来自下伏的狮山铜矿床及狮山段紫色层细碧质火山角砾岩,经后期非含矿热液溶解而沿构造上升,而后在上覆地层的构造中沉淀、富集而形成再生矿床。  相似文献   

14.
作为战略性关键金属矿产,锂矿勘查与研究已成为当今矿产勘查和地学研究的热点。项目组2017年以来通过多次野外勘查、系统取样与室内化验分析,确认在新疆和田县白龙山锂多金属矿床东部的雪凤岭一带发现了雪凤岭、雪盆和双牙3处花岗伟晶岩型锂多金属矿床。雪凤岭锂矿床由3个含矿伟晶岩脉群共计47条锂多金属矿体组成,矿体长32~360 m,厚0.9~8 m,走向110°~120°,倾角49°~78°。对雪凤岭矿区伟晶岩脉群研究,发现含矿伟晶岩脉群‒含白云母伟晶岩脉群‒块体石英长石伟晶岩脉群‒含黑色电气石伟晶岩脉群‒块体石英长石伟晶岩脉群‒含白云母伟晶岩脉群‒含矿伟晶岩脉群具对称分带特征,进而在距雪凤岭1550 m南部的双牙山和雪盆沟发现较好的锂矿体,其中双牙锂矿床主矿体长850 m,厚12 m,出露最宽处近100 m;雪盆锂矿床3条锂矿体,长800~1200 m,厚4~8 m,向西合成一个矿体,厚12~20 m。各矿体Li2O品位0.6%~4.02%。伴生BeO品位0.04%~0.15%,Rb2O品位0.10%~0.23%,Nb2O5品位0.007%~0.047%,Ta2O5品位0.003%~0.046%。预测雪凤岭、雪盆、双牙3个矿床334资源量共计Li2O为7.1886×105 t,BeO为2.648×103 t,Rb2O为1.433×103 t,Nb2O5为3.387×103 t,Ta2O5为1.727×103 t,雪凤岭一带有望成为一个超大型锂多金属稀有金属矿产基地。  相似文献   

15.
云南白牛厂银多金属矿床成因   总被引:1,自引:0,他引:1  
对云南白牛厂超大型银多金属矿床的地质、地球化学特征及矿床形成的长期性及多阶段性的研究认为:白牛厂银多金属矿床是热水沉积—叠生成因矿床,早期呈现寒武纪的热水同生沉积成矿作用,晚期为燕山期花岗岩浆热液成矿作用。该矿床是热水沉积成矿作用与岩浆热液成矿作用叠加成矿的产物。  相似文献   

16.
云南大平掌铜多金属矿床硫、铅、氢、氧同位素地球化学   总被引:10,自引:0,他引:10  
对云南大平掌铜多金属火山岩型块状硫化物矿床的矿石矿物和火山岩围岩的S、Pb同位素及脉石矿物、硅 化岩、硅质岩等的H、O同位素地球化学特征进行了研究,认为矿床中大多数硫来源于热液对火山岩的淋滤,或直接 来源于火山喷气作用;矿石铅与火山岩铅属同一来源,且以富放射性成因铅为特征;成矿流体可能主要来源于深循环的海水与岩浆水的混合流体,而大气降水参与的可能性很小。  相似文献   

17.
The occurrence and the chemical compositions of ore minerals (especially the silver‐bearing minerals) and fluid inclusions of the El Zancudo mine in Colombia were investigated in order to analyze the genetic processes of the ore minerals and to examine the genesis of the deposit. The El Zancudo mine is a silver–gold deposit located in the western flank of the Central Cordillera in Antioquia Department. It consists mainly of banded ore veins hosted in greenschist and lesser disseminated ore in porphyritic rocks. The ore deposit is associated with extensive hydrothermally altered zones. The ores from the banded veins contain sphalerite, pyrite, arsenopyrite, galena, Ag‐bearing sulfosalts, Pb‐Sb sulfosalts, and minor chalcopyrite, electrum, and native silver. Electrum is included within sphalerite, pyrite, and arsenopyrite, and is also partially surrounded by pyrite, arsenopyrite, sphalerite, and tetrahedrite. Native silver is present in minor amounts as small grains in contact with Ag‐rich sulfosalts. Silver‐bearing sulfosalts are argentian tetrahedrite–freibergite solid solution, andorite, miargyrite, diaphorite, and owyheeite. Pb‐Sb sulfosalts are bournonite, jamesonite, and boulangerite. Two main crystallization stages are recognized, based on textural relations and mineral assemblages. The first‐stage assemblage includes sphalerite, pyrite, arsenopyrite, galena and electrum. The second stage is divided into two sub‐stages. The first sub‐stage commenced with the deposition and growth of sphalerite, pyrite, and arsenopyrite. These minerals are characterized by compositional growth banding, and seem to have crystallized continuously until the end of the second sub‐stage. Tetrahedrite, Pb‐Cu sulfosalts, Ag‐Sb sulfosalt, and Pb‐Ag‐Sb sulfosalts crystallized from the final part of the first sub‐stage and during the whole second sub‐stage. However, one Pb‐Ag‐Sb sulfosalt, diaphorite, was formed by a retrograde reaction between galena and miargyrite. The minimum and maximum genetic temperatures estimated from the FeS content of sphalerite coexisting with pyrite and the silver content of electrum are 300°C and 420°C, respectively. These estimated genetic temperatures are similar to, but slightly higher than the homogenization temperatures (235–350°C) of primary fluid inclusions in quartz. The presence of muscovite in the altered host rocks and gangue suggest that the pH of the hydrothermal solutions was close to neutral. Most of the sulfosalts in this deposit have previously been attributed as the products of epithermal mineralization. However, El Zancudo can be classified as a xenothermal deposit, in view of the low pressure and high temperature genetic conditions identified in the present study, based on the mineralogy of sulfosalts and the homogenization temperatures of the fluid inclusions.  相似文献   

18.
Abstract: The Shijuligou deposit was separated by an arcuate ductile shear zone cross the center of the deposit region, resulting in the difference between the southern and northern ore bodies. The lead (Pb) isotopic data of ores of the Shijuligou copper deposit have averages of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb in 17.634, 15.444, and 37.312, respectively. It has been shown that ore-forming metals originated from intrusive and extrusive rocks in the upper part of ophiolites. The sulfur isotopic data of pyrite and chalcopyrite in the northern part change from +7.61‰ to +8.09‰ and +4.95‰ to +8.88‰ in the southern part. Isotopes of δ18O in the Shijuligou copper deposit are between +11.1‰ and +18.6‰, with the calculated δ18OH2O at +0.65‰. It is suggested that the mineralized fluid is a mixture of magma fluid, meteorological water, and seawater through circulating and leaching metals from the volcanic rocks. The zircon uranium-lead (U–Pb) dating of gabbro is 457.9±1.2 Ma, and the lower crossing age of the discordant and concordia curves of pyroxene spilite of zircon is 454±15 Ma. It is indicated that the Shijuligou deposit formed in a new ocean crust (ophiolite) of the back-arc basin in the late Ordovician. Mineralization should occur in the intermittence period after strong volcanic activity, and the age should be the late Ordovician. Moreover, the mineralization of ophiolite-hosted massive sulfide deposits in the ancient orogenic belt of the late Ordovician in the northern Qilian Mountains was controlled by the primary fault/fracture, with the forming of a metallogenic hydrothermal system by a mixture of volcanic magma fluid and seawater, which circularly leached the metallogenic metals from the volcanic rocks, resulting in their accumulation. The ore bodies were transformed with morphology and metallogenic elements. Jasperoid is an important sign for prospecting such deposits. There were many island arcs in the continent of China. This study provides evidence for understanding and exploration of ophiolite-hosted massive sulfide deposits in western China, especially in the area of northern Qilian Mountains.  相似文献   

19.
甘肃岷县寨上金钨矿床中钨矿特征及找矿标志   总被引:1,自引:0,他引:1  
寨上矿床属于以金为主、伴生钨的多金属矿床。目前已发现15条钨矿化体,其中主要的6条钨矿体均与金矿体相重合。寨上矿区9处异常中有7处Au、W异常相重合。Au、W元素相伴生存在,局部地区形成金、钨矿化体共生的局面。钨矿物主要为白钨矿,极少量黑钨矿。白钨矿也是重要的载金矿物,金与钨关系密切。矿体主要产于碳质板岩、泥质板岩、钙质板岩等较软弱岩性地层。矿脉受控于层间或顺层断裂破碎带。矿区的主要蚀变类型有硅化、黄铁矿化,其次为碳酸盐化、绢云母化。低阻高极化异常能较准确的反映矿化带和矿脉的延伸位置。钨的水系沉积物异常和土壤异常均呈带状低值异常特征,与已知矿带吻合较好。研究成果及勘查实践证明,在该金矿化(带)体中寻找钨矿化体是最简捷的方法。  相似文献   

20.
卡特里西铜锌矿是近年在新疆南部昆仑山一带发现的、规模最大的有色金属矿床.矿床产于下石炭统托库孜达坂群火山岩地层中,矿体分布明显受地层控制.含矿岩性为双峰式火山岩建造上部的灰绿色基性凝灰岩,矿体多呈平行层状、似层状、透镜状分布于灰岩中及灰岩与含碳粉砂岩的接触处.该矿为海相火山岩型铜矿.主成矿元素为铜、锌,伴生元素为银、铅、硫,共有14个矿体,其中Ⅵ、Ⅷ号矿体为主矿体,矿石品位较富,目前估算铜、锌资源量均超过中型.通过进一步的地质、地球化学、地球物理工作表明,矿床主矿体向深部仍有较大延深,预测该矿床规模有望达到大型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号