首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 982 毫秒
1.
杉木人工林和水稻田土壤呼吸Q10值的影响因素初探   总被引:3,自引:0,他引:3  
通过实验室自然变温实验,利用LI-8100研究温度和培养时间对2种土地利用方式(杉木人工林和水稻田)的土壤呼吸温度敏感性的影响,培养时间为180 d.结果表明,指数模型较好地拟合了土壤呼吸速率与5 cm处土壤温度的关系,并且低温时段优于高温时段的拟合效果.土壤呼吸Q10值随5 cm处土壤温度的升高呈降低趋势,杉木人工林地土壤Q10值由3.18下降到1.40,而水稻田土壤Q10值则由2.97下降到1.51,且二者差异不显著(P>0.05),说明土地利用方式对土壤呼吸温度敏感性影响不大.回归分析表明,林地和水田的Q10值与培养时间均呈极显著的负相关关系,表明除温度外,Q10值的变化还与培养时间有关.  相似文献   

2.
通过室内培养实验,利用密闭红外气体分析方法(IRGA) 研究不同土地利用方式下的土壤呼吸及其对温度变化的响应.结果表明:在整个培养时段,林地的土壤呼吸速率始终高于水田,并且这种变化在培养前期更为明显.指数模型可以较好地拟合土壤呼吸和表层土壤(0-5cm)温度的关系.当土壤呼吸速率达到稳定后,Q10值表现为林地大于水田,且不同土地利用方式下的Q10值与培养时间均呈显著的二次方程关系.  相似文献   

3.
中亚热带山区不同土地利用方式土壤呼吸的日动态变化   总被引:3,自引:0,他引:3  
通过LI-8100土壤碳通量测定仪对中亚热带山区不同土地利用方式土壤呼吸进行测定与分析.结果表明,不同土地利用方式土壤温度变化趋势较为一致,峰值出现在16:00,但坡耕地均出现在14:00;不同土地利用方式土壤呼吸速率昼夜变化趋势大致呈单峰变化,呼吸速率在12:00-16:00之间达到一天的最大值,而在6:00达到最小值,但杉木林与木荷林土壤呼吸速率在夏季呈现出不规则的多峰变化,不同季节呼吸速率最大值出现的时间不同;杉木林与木荷林不同季节的土壤呼吸速率的日变化幅度较小,果园的最大;土壤呼吸速率的均值大小顺序为:经济林>木荷林>坡耕地>杉木林>果园,但不同土地利用方式间土壤呼吸速率差异不显著(P>0.05).不同土地利用方式土壤呼吸Q10值的季节变化中,杉木、木荷2种人工林用地冬季Q10值最大,最小值分别出现在夏季与秋季,而坡耕地、经济林与果园3种土地利用方式以春季的Q10值最大,秋季最小;Q10值随土壤碳质量的降低而增大.  相似文献   

4.
通过LI-8100土壤碳通量测定仪对中亚热带山区不同土地利用方式土壤呼吸进行测定与分析.结果表明,不同土地利用方式土壤温度变化趋势较为一致,峰值出现在16:00,但坡耕地均出现在14:00;不同土地利用方式土壤呼吸速率昼夜变化趋势大致呈单峰变化,呼吸速率在12:00—16:00之间达到一天的最大值,而在6:00达到最小值,但杉木林与木荷林土壤呼吸速率在夏季呈现出不规则的多峰变化,不同季节呼吸速率最大值出现的时间不同;杉木林与木荷林不同季节的土壤呼吸速率的目变化幅度较小,果园的最大;土壤呼吸速率的均值大小顺序为:经济林〉木荷林〉坡耕地〉杉木林〉果园,但不同土地利用方式间土壤呼吸速率差异不显著(P〉0.05).不同土地利用方式土壤呼吸Q10值的季节变化中,杉木、木荷2种人工林用地冬季Q10值最大,最小值分别出现在夏季与秋季,而坡耕地、经济林与果园3种土地利用方式以春季的Q10值最大,秋季最小;Q10值随土壤碳质量的降低而增大.  相似文献   

5.
黑河中游不同土地覆被类型土壤呼吸及对水热因子的响应   总被引:1,自引:0,他引:1  
以黑河中游6种典型土地覆被类型(百年灌溉农田、新垦灌溉农田、人工杨树林、人工樟子松林、人工梭梭灌木林和天然荒漠草地)为研究对象,对土壤呼吸及其对土壤含水量和土壤温度的响应进行测定。结果表明:灌溉农田的土壤呼吸速率显著大于人工樟子松林地和杨树林地,人工林地显著大于荒漠草地和梭梭灌木林地。6种土地覆被类型土壤呼吸速率与土壤温度显著正相关性,Q10值1.14~1.31,表明该地区土壤呼吸速率对土壤温度的敏感性低于世界平均水平;土壤呼吸速率与土壤含水量呈显著的指数关系。这表明6种土地覆被类型的土壤呼吸特征存在显著差异,且不同土地覆被类型的土壤呼吸特征与水热因子关系密切,以人类活动为主导的土地覆被变化深刻影响着荒漠绿洲生态系统水土气生的相互作用。  相似文献   

6.
森林转换对不同土层土壤碳氮含量及储量的影响   总被引:2,自引:0,他引:2  
森林转换是影响森林碳氮储量的重要因素。研究森林转换对土壤碳氮的影响,对明确生态系统碳氮循环动态具有重要意义。对由中亚热带常绿阔叶天然林转换而成的阔叶天然次生林(BL)与杉木人工林(CF)不同土层的有机碳(SOC)、氮(TN)含量以及储量进行研究,探讨森林转换对地下土壤碳氮储量的影响及其影响因素。结果表明:(1)相同土层,阔叶天然次生林的SOC含量、TN含量高于杉木人工林,分别在0~40 cm各土层与0~20 cm各土层之间均具有显著性,相同森林类型下SOC含量与TN含量垂直拟合关系均以幂函数拟合效果最好,R~2均达到0.9以上,可以为当地碳氮含量估算提供依据,土壤碳氮比(C/N)均随土层深度增加而下降。(2)森林转换后0~100 cm碳氮储量(SCM、SNM)阔叶天然次生林高于杉木人工林。土壤碳氮在2种林分的差异主要集中在0~10 cm,且阔叶天然次生林显著高于杉木人工林。(3)相关分析显示土壤SOC、 TN含量与土壤容重呈显著负相关,与C/N之间呈极显著正相关(P0.01)。研究表明:森林土壤碳氮储量主要集中在0~10 cm土层,天然林转换为杉木人工林后,土壤碳氮含量降低,不利于森林碳氮储量的积累,因此要加大对天然林的保护。  相似文献   

7.
为了解中亚热带地区不同植被类型土壤真菌生物量特征及影响因子,采用玻璃珠细胞破碎提取麦角甾醇法对福建省建瓯市万木林自然保护区内米槠天然林和杉木人工林土壤真菌进行研究,结果表明:1)米槠天然林和杉木人工林0~10 cm土层真菌生物量均显著高于10~20 cm土层。2)相同植被类型,随着海拔高度增加,米槠天然林0~10 cm和10~20 cm土层真菌生物量分别由1.34 mg·g^-1和0.63 mg·g^-1增加到3.28 mg·g^-1和1.46 mg·g^-1,增幅分别达到144.8%和131.7%,但只有0~10 cm土层差异显著。3)不同植被类型,米槠天然林0~10 cm和10~20 cm土层真菌生物量均显著高于杉木人工林相应土层,分别是杉木人工林的1.65和1.91倍。真菌生物量与土壤理化因子的相关分析结果表明:中亚热带地区森林土壤真菌生物量主要受pH值、土壤有机碳、硝态氮、总氮和C/N的影响,表现为真菌生物量与总氮呈显著正相关,与土壤有机碳和C/N呈极显著正相关,与pH值和硝态氮呈极显著负相关。  相似文献   

8.
为探讨紫色土旱坡地土壤异养呼吸速率特征,采用静态暗箱-气相色谱法于2010年12月至2011年10月观测了土壤异养呼吸日变化、季节性变化及土壤温度和湿度.结果表明:土壤异养呼吸速率日变化特征呈单峰型曲线,其最大值和最小值分别出现在16:00和08:00;土壤异养呼吸速率季节变化明显,冬季低,夏季高,最大值为654.2 mg CO2/(m2 h),最低值为38.1 mg CO2/(m2 h),平均值为325.2 mg CO2/(m2h),小麦季土壤异养呼吸CO2排放总量为307.9 g C/m2,玉米季为384.8 g C/m2,全年为692.7 g C/m2,玉米季土壤异养呼吸CO2排放总量显著高于小麦季(P<0.05);小麦季土壤异养呼吸敏感性参数Q10值高于玉米季,说明小麦季土壤异养呼吸速率对温度变化较玉米季敏感.地表温度和土壤5 cm温度的Q10值分别为3.16和3.22,土壤5 cm温度对土壤异养呼吸速率的影响较地表温度敏感;当土壤湿度(WFPS)高于60%时,土壤湿度和土壤异养呼吸速率为显著的负相关(R=-0.550,P=0.02),60%以下二者无显著关系,该研究可为调控紫色土旱坡地有机碳气态支出过程提供参考.  相似文献   

9.
采用LI-COR8150多通道土壤碳通量观测系统对塔克拉玛干沙漠北缘肖塘地区盐碱地和流沙地土壤的冬季呼吸速率、土壤温度、含水量的日变化动态进行定位连续监测,并深入分析土壤水热因子对呼吸速率的影响。结果表明:(1)肖塘地区盐碱地和流沙地的土壤呼吸速率较低,具有明显的日变化规律,并会因土壤类型的不同而有微弱差异,总体上均呈不对称"钟形"的单峰型曲线。(2)夜间及凌晨2类土壤的呼吸速率多为负值,表明该时段土壤成为碳元素的汇集区,然而在日尺度上沙漠地区仍属于碳源,但相对较为微弱。(3)盐碱地和流沙地的土壤呼吸速率与土壤表层0~5cm平均温度均具有较为一致的昼夜变化趋势,且分别存在极显著的线性和指数回归关系。温度敏感性指数Q10在2类土壤中均较小,其中盐碱地Q10相对较大。(4)土壤呼吸速率与土壤表层0~5cm平均含水量在盐碱和流沙两地昼夜变化趋势均较为一致,且存在极显著的线性关系。(5)相对于单因素影响下的一维回归方程,土壤温度和含水量对土壤呼吸速率的二维回归方程能够更好地解释土壤呼吸随时间的变化情况,且土壤温度和含水量对于土壤呼吸速率均表现出明显的时滞效应。  相似文献   

10.
杉木人工林皆伐火烧后土壤呼吸研究   总被引:1,自引:0,他引:1  
通过静态碱吸收法对福建三明27年生杉木人工林皆伐火烧后土壤呼吸进行为期1年多的定位研究.研究发现,林地皆伐火烧后土壤呼吸速率季节变化呈单峰曲线,对照地和皆伐地最大值均出现在6月,火烧地最大值出现在4月和5月之间,3块样地最小值均出现在12月.1年中对照地、皆伐地和火烧地土壤呼吸速率(释放CO2)变化范围分别在86.1~367.9 mg m -2 h -1、62.2~211.7 mg m -2 h -1和42.6~150 mg m -2 h -1之间.用指数模型和双因素模型对土壤呼吸进行拟合显示,温度和湿度是对照地的主要影响因子,但温度和湿度不能很好地解释皆伐地和火烧地土壤呼吸速率的变化.双因素模型中,土壤呼吸温度敏感性因子Q10对照地为2.1,皆伐地和火烧地分别为1.3和1.1,小于已报道范围.  相似文献   

11.
利用LI-6400便携式光合作用测量系统和LI-6400-09土壤呼吸室,对不同地形和不同植被条件下土壤呼吸速率及其影响因子进行测定。结果表明:科尔沁沙地土壤呼吸速率日变化均表现出上午逐渐增大,下午逐渐减小、凌晨最小的趋势。沙地土壤呼吸变化具有明显的空间异质性,土壤呼吸由大到小变化依次为:背风坡(1.95±0.21 μmolCO2·m-2·s-1)>坡顶(1.05±0.14 μmolCO2·m-2·s-1)>迎风坡(0.74±0.08 μmolCO2·m-2·s-1)>丘间低地(0.62±0.09 μmolCO2·m-2·s-1)。沙地土壤呼吸与植物生长条件具有密切关系,狗尾草(0.86±0.11 μmolCO2·m-2·s-1)>小叶锦鸡儿(0.69±0.06 μmolCO2·m-2·s-1)。土壤呼吸日变化速率与空气温度呈正相关,与空气相对湿度呈负相关关系,并且与土壤温度呈指数相关。沙丘内部不同地形、植被的[WTBX]Q10[WTBZ]差异不大。  相似文献   

12.
杉木人工林皆伐火烧后土壤呼吸研究   总被引:1,自引:0,他引:1  
通过静态碱吸收法对福建三明27年生杉木人工林皆伐火烧后土壤呼吸进行为期1年多的定位研究.研究发现,林地皆伐火烧后土壤呼吸速率季节变化呈单峰曲线,对照地和皆伐地最大值均出现在6月,火烧地最大值出现在4月和5月之间,3块样地最小值均出现在12月.1年中对照地、皆伐地和火烧地土壤呼吸速率(释放CO2)变化范围分别在86.1~367.9mg m^-2h^-1、62.2~211.7mg m^-2h^-1和42.6~150mg m^-2h^-1之间.用指数模型和双因素模型对土壤呼吸进行拟合显示,温度和湿度是对照地的主要影响因子,但温度和湿度不能很好地解释皆伐地和火烧地土壤呼吸速率的变化.双因素模型中,土壤呼吸温度敏感性因子Q10对照地为2.1,皆伐地和火烧地分别为1.3和1.1,小于已报道范围.  相似文献   

13.
土壤呼吸的温度敏感性   总被引:14,自引:0,他引:14  
土壤呼吸是指土壤释放CO2 的过程,它所释放出的CO2 是生物圈向大气圈释放CO2 的主要来源之一。土壤呼吸速率对温度变化的敏感性是陆地生态系统碳循环过程中一个十分重要的环节。由于许多大尺度碳循环模型中都涉及土壤呼吸的温度敏感性这一问题,因此对该问题的回答有助于提高对当前陆地生态系统碳通量的估算和对 未来气候变化预测的准确性。本文就目前土壤呼吸速率对温度变化的敏感性的主要问题进行了综述,从温度、水分、呼吸底物的数量和质量、酶促反应动力学等几个不同的方面,概述了土壤呼吸温度敏感性的变异范围较大的原因,以及这些因素对土壤呼吸的温度敏感性影响的机理。土壤呼吸是酶促的化学反应,因此其温度敏感性不仅取决于呼吸底物的质量,同样也取决于底物的有效性。  相似文献   

14.
温度对武夷山不同海拔土壤有机碳矿化的影响   总被引:1,自引:0,他引:1  
采用碱吸收法测定武夷山不同海拔土壤分别在15℃、25℃、35℃下培养35d时土壤有机碳矿化速率及矿化量的变化.结果表明,土壤有机碳矿化速率随培养时间延长而逐渐降低,尤以培养3d~7d时下降最为明显.各海拔土壤累积矿化量均随培养温度升高而逐渐增加.培养35d时15℃和35℃下土壤累积矿化量随海拔升高而增加,但25℃下黄红壤的累积矿化量高于红壤和黄壤而低于山地草甸土.各培养温度下,土壤有机碳平均矿化速率均以山地草甸土最高,红壤最低.而对于各海拔土壤,不同温度下土壤有机碳平均矿化速率大小顺序为:15℃〈25℃〈35℃.培养3d时温度为15℃/25℃黄壤的Q10值显著高于其他海拔土壤(P〈0.05),但培养35d时15℃/25℃下的土壤Q10值以黄红壤的最高.培养3d和35d时,25℃/35℃下不同海拔土壤Q10值差异均不显著(P〉0.05).根据土壤平均矿化速率计算的Q10值在温度范围为15℃/25℃时以黄壤的最高,但25℃/35℃时红壤的Q10值最大.  相似文献   

15.
三江平原不同土地利用方式下湿地土壤CO2通量研究   总被引:6,自引:0,他引:6  
利用暗箱-气相色谱法,同步测量了三江平原几种主要生态类型湿地土壤原始的小叶章草甸白浆土、毛果苔草泥炭沼泽土、已垦旱作草甸白浆土和人工水田草甸白浆土,进行CO2排放通量的对比研究.结果表明不同土地利用方式下,旱作草甸白浆土土壤CO2排放通量最大,平均值为775.38mg/(m2@h);小叶章草甸白浆土土壤次之,平均值为439.02mg/(m2@h);人工水稻田草甸白浆土土壤CO2通量最小,平均值为128.96mg/(m2@h);毛果苔草泥炭沼泽土土壤CO2排放通量介于小叶章草甸白浆土土壤和水稻田草甸白浆土土壤之间,平均值为247.08mg/(m2@h).湿地开垦为旱田,使湿地"碳汇"功能减弱或丧失,变成"碳源";湿地开垦为水田,是比较合理的湿地农业利用方式.  相似文献   

16.
采用Li-8100对亚热带马尼拉草坪生态系统呼吸及其分室昼夜动态进行研究,结果表明,草坪生态系统呼吸、土壤呼吸和植物地上部分呼吸速率的昼夜变化均表现为单峰曲线,呼吸速率日最高值出现在中午13:00~14:00;草坪生态系统的呼吸速率最低值只出现在6月的7:00左右,其他月份的最低值出现在23:00~2:00;土壤呼吸速率的最低值出现在4月和6月的7:00左右,8月则在2:00达最低值,11月土壤呼吸速率波动不大,极值不太明显.生态系统呼吸速率始终表现为白天高于夜间.4月、6月、8月和11月生态系统呼吸的日排放C量分别为27.30、43.94、44.79和25.18g m^2d^-1.6月、8月和11月土壤日呼吸量占整个生态系统日呼吸总量的比例大约为50%,远小于4月的74%.除11月外,生态系统、土壤总呼吸速率的昼夜变化均与5cm土温呈显著的指数相关.草坪生态系统呼吸的Q10值大小顺序为4月〉11月〉6月〉8月,土壤总呼吸的Q10值大小顺序为6月〉4月〉8月〉11月;除11月外,土壤呼吸的Q10值大于生态系统呼吸.  相似文献   

17.
土壤呼吸的微小变化会对大气CO2浓度产生重大影响,尤其在极端干旱区。通过对黑河下游额济纳旗四道桥的混合林、胡杨、柽柳、农田及裸地的土壤呼吸进行研究,结果表明:2014 年夏季5 种不同植被类型的土壤呼吸速率大小排序:胡杨柽柳混合林 > 柽柳 > 农田 > 胡杨 > 裸地,各类型的5 cm处土壤温度和湿度无明显变化规律,土壤温度在22~35 ℃,土壤湿度集中在13%~61%的变化范围。探究了5 种不同植被类型的土壤呼吸速率与土壤温度、土壤湿度、地表温度、空气温度及空气湿度的线性相关关系,发现它们的土壤呼吸速率与土壤温度、土壤湿度、空气温度、空气湿度之间无显著相关(P>0.05),表明水热因子对土壤呼吸的影响具有很大的不确定性。  相似文献   

18.
 采用开路式自动土壤碳通量测量系统(LI-8100)测定了准噶尔盆地荒漠梭梭群落生长季的土壤呼吸速率,并分析了温度和土壤水分对土壤呼吸的影响,结果表明:土壤CO2释放速率有明显的日变化和季节动态,日最大排放速率出现在13:00—15:00时,最小排放速率在8:00时。土壤CO2释放速率日变幅最大值为0.90 μmol·m-2·s-1、最小值为0.24 μmol·m-2·s-1、平均速率是(0.548±0.076)μmol·m-2·s-1;土壤呼吸作用在生长季中的动态呈单峰曲线,顺序为6月>7月>8月>9月>5月>10月。相关性分析表明,土壤呼吸速率与气温、地表温度和5 cm、10 cm、15 cm、20 cm、25 cm、30 cm、35 cm、40 cm、50 cm层土壤温度呈极显著和显著正相关关系,土壤呼吸速率与地表温度间的线性关系为Y=0.017X+0.033,(R2=0.566, P<0.001),并得出Q10值为1.65。土壤含水量与土壤呼吸速率间的相关性不显著。  相似文献   

19.
放牧对内蒙古羊草群落土壤呼吸的影响   总被引:11,自引:0,他引:11  
马涛  董云社  齐玉春  徐福利  彭琴  金钊 《地理研究》2009,28(4):1040-1046
采用静态暗箱法,比较测定了放牧对内蒙古锡林河流域羊草群落土壤呼吸的影响以及水热等相关环境因子与土壤呼吸的关系。结果表明:放牧没有改变羊草群落土壤呼吸的季节性变化特征,但降低了土壤呼吸速率的年幅度;生长季放牧样地土壤呼吸速率显著低于封育样地,非生长季两样地土壤呼吸强度均处于较低水平,而且出现负通量的现象,放牧使羊草群落土壤呼吸年总量下降了约33.95%;从全年来看,无论是围栏还是放牧样地,封育样地和放牧样地土壤呼吸与温度因子均显著正相关(p<0.01,n=15),其中与10cm处地温相关性最好,但放牧降低了土壤呼吸对温度变化的敏感性;生长季水分影响作用高于温度,围栏封育样地0~10cm土壤含水量的变化可以解释土壤呼吸变异的87.4%,放牧样地10~20cm和20~30cm土壤含水量的变化共同可以解释土壤呼吸变异的74.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号