首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study acoustic oscillations (eigenfrequencies, velocity distributions, damping times) of normal crusts of strange stars. These oscillations are very specific because of huge density jump at the interface between the normal crust and the strange matter core. The oscillation problem is shown to be self-similar. For a low (but non-zero) multipolarity l , the fundamental mode (without radial nodes) has a frequency of ∼300 Hz and mostly horizontal oscillation velocity; other pressure modes have frequencies ≳20 kHz and almost radial oscillation velocities. The latter modes are similar to radial oscillations (having approximately the same frequencies and radial velocity profiles). The oscillation spectrum of strange stars with crust differs from the spectrum of neutron stars. If detected, acoustic oscillations would allow one to discriminate between strange stars with crust and neutron stars and constrain the mass and radius of the star.  相似文献   

2.
The mass-radius relations for bare and crusted strange stars are calculated with the bag model. Comparing these relations with the observed one derived from the redshift of EXO 0748-676, we come to the conclusion that it is incorrect to say that EXO 0748 676 cannot be a strange star. Various strange star models can show that EXO 0748-676 could have a mass of (1.3 - 1.7)M⊙ and a radius of(8.4 - 11.4) km. It is proposed that a proportion of nascent strange stars could be bare and have masses - 0.1 M⊙, and their masses increased over a long period of accretion.  相似文献   

3.
We have examined the evolution of merged low-mass double white dwarfs which become low-luminosity (or high-gravity) extreme helium stars. We have approximated the merging process by the rapid accretion of matter, consisting mostly of helium, on to a helium white dwarf. After a certain mass is accumulated, a helium shell flash occurs, the radius and luminosity increase and the star becomes a yellow giant. Mass accretion is stopped artificially when the total mass reaches a pre-determined value. As the helium-burning shell moves inwards with repeating shell flashes, the effective temperature gradually increases as the star evolves towards the helium main sequence. When the mass interior to the helium‐burning shell is approximately 0.25 M, the star enters a regime where it is pulsationally unstable. We have obtained radial pulsation periods for these models.
These models have properties very similar to those of the pulsating helium star V652 Her. We have compared the rate of period change of the theoretical models with that observed in V652 Her, as well as with its position on the Hertzsprung–Russell diagram. We conclude that the merger between two helium white dwarfs can produce a star with properties remarkably similar to those observed in at least one extreme helium star, and is a viable model for their evolutionary origin. Such helium stars will evolve to become hot subdwarfs close to the helium main sequence. We also discuss the number of low-luminosity helium stars in the Galaxy expected for our evolution scenario.  相似文献   

4.
Strange stars are compact objects similar to neutron stars composed of strange matter. This paper investigates the observational effects of the strong interaction between quarks. We believe: 1) that the conversion of a neutron star to a strange star is a large “period glitch” which is determined by the strong interaction; 2) that the strong interaction results in effective damping of oscillation of hot strange stars, which could be a new mechanism of driving supernova explosions; 3) that the strong interaction increases the difference in rotation between strange and neutron stars under high temperatures, making the minimum period for strange stars lower than that for neutron stars.  相似文献   

5.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

6.
In this work, we first obtain the hydrostatic equilibrium equation in dilaton gravity. Then, we examine some of the structural characteristics of a strange quark star in dilaton gravity in the context of Einstein gravity. We show that the variations of dilaton parameter do not affect the maximum mass, but variations in the cosmological constant lead to changes in the structural characteristics of the quark star. We investigate the stability of strange quark stars by applying the MIT bag model with dilaton gravity. We also provide limiting values for the dilaton field parameter and cosmological constant. We also study the effects of dilaton gravity on the other properties of a quark star such as the mean density and gravitational redshift.We conclude that the last reported value for the cosmological constant does not affect the maximum mass of a strange quark star.  相似文献   

7.
Neutron stars are studied in the framework of the relativistic mean field theory of interacting nucleons, hyperons, and mesons. Within the hadronic freedom, the cores of neutron stars are found to be dominated by hyperons when the density is sufficiently high. The influence of hyperon coupling constants on the transition from a neutron star to a hyperon-dominated strange neutron star is also investigated. It is found that the transition density gets its minimum value when the ratio of hyperon coupling constant to nucleon's takes the value of 0.65, and the calculated maximum mass of the neutron star is 1.4 M which lies within the range of the observational results.  相似文献   

8.
We develop equations and obtain solutions for the structure and evolution of a protodisc region that is initially formed with no radial motion and super-Keplerian rotation speed when wind material from a hot rotating star is channelled towards its equatorial plane by a dipole-type magnetic field. Its temperature is around 107 K because of shock heating and the inflow of wind material causes its equatorial density to increase with time. The centrifugal force and thermal pressure increase relative to the magnetic force and material escapes at its outer edge. The protodisc region of a uniformly rotating star has almost uniform rotation and will shrink radially unless some instability intervenes. In a star with angular velocity increasing along its surface towards the equator, the angular velocity of the protodisc region decreases radially outwards and magnetorotational instability (MRI) can occur within a few hours or days. Viscosity resulting from MRI will readjust the angular velocity distribution of the protodisc material and may assist in the formation of a quasi-steady disc. Thus, the centrifugal breakout found in numerical simulations for uniformly rotating stars does not imply that quasi-steady discs with slow outflow cannot form around magnetic rotator stars with solar-type differential rotation.  相似文献   

9.
We report the discovery, in an Extreme Ultraviolet Explorer ( EUVE ) short-wavelength spectrum, of an unresolved hot white dwarf companion to the 5th magnitude B5Vp star HR 2875. This is the first time that a non-interacting white dwarf+B star binary has been discovered: previously, the earliest type of star known with a white dwarf companion was Sirius (A1V). As the white dwarf must have evolved from a main-sequence progenitor with a mass greater than that of a B5V star (≯6.0 M⊙), this places a lower limit on the maximum mass for white dwarf progenitors, with important implications for our knowledge of the initial–final mass relation. Assuming a pure-hydrogen atmospheric composition, we constrain the temperature of the white dwarf to be between 39 000 and 49 000 K. We also argue that this degenerate star is likely to have a mass significantly greater than the mean mass for white dwarf stars (≈0.55 M⊙). Finally, we suggest that other bright B stars (e.g. θ Hya) detected in the extreme ultraviolet surveys of the ROSAT Wide Field Camera and EUVE may also be hiding hot white dwarf companions.  相似文献   

10.
We use the Cambridge stellar evolution code stars to model the evolution of 5 and  7 M  zero-metallicity stars. With enhanced resolution at the hydrogen- and helium-burning shell in the asymptotic giant branch (AGB) phases, we are able to model the entire thermally pulsing AGB (TP-AGB) phase. The helium luminosities of the thermal pulses are significantly lower than in higher metallicity stars so there is no third dredge-up. The envelope is enriched in nitrogen by hot-bottom burning of carbon that was previously mixed in during second dredge-up. There is no s -process enrichment owing to the lack of third dredge-up. The thermal pulses grow weaker as the core mass increases and they eventually cease. From then on the star enters a quiescent burning phase which lasts until carbon ignites at the centre of the star when the CO core mass is  1.36 M  . With such a high degeneracy and a core mass so close to the Chandrasekhar mass, we expect these stars to explode as type 1.5 supernovae, very similar to type Ia supernovae but inside a hydrogen-rich envelope.  相似文献   

11.
大质量双星系统的非守恒演化   总被引:1,自引:0,他引:1  
由于大质量双星系统有强大的星风物质损失,因而在研究其结构和演化时必须考虑星风物质损失,动量损失,物质交换以及由以上原因引起的轨道参量的变化,此外,天文观测又证实,一些大质量双星系统中存在星风冲击波,有X射线辐射以及有致密天体(白矮星,中子星)的存在,因此在研究大质量双星的演化时,又会遇到在星风冲击波理论及其对演化的影响,双星系统何时会演化成为公共外壳的系统,以及双星系统中如果发生超新星爆发,是否会  相似文献   

12.
考虑到混杂星既具有奇异夸克物质核,又具有中子星固体壳层的特殊结构,运用完全自洽的二级修正方法,研究了在低温极限下(T<109K)混杂星的体粘滞耗散时标,并利用该时标计算了混杂星的临界旋转频率,发现其最小值为704.42 Hz(对应1.42 ms脉冲周期).与中子星和奇异星比较,更好地解释了观测数据.  相似文献   

13.
We suggest that the mass of four compact stars SAX J1808.4-3658, KS 1731-260, SAX J1750.8-2900 and IGR J17191-2821 can be determined from the difference in the observed kiloHertz quasi periodic oscillations (kHz QPO-s) of these stars. The stellar radius is very close to the marginally stable orbit Rms as predicted by Einstein’s general relativity. It may be noted that the first of these stars was suggested to be a strange star more than a decade back by Li et al. (1999a) from the unique millisecond X-ray pulsations with an accurate determination of its rotation period. It showed kHz QPO-s eight years back and so far it is the only set that has been observed. This is the first time we give an estimate of the mass of the star and of three other compact stars in low-mass X-ray binaries using their observed kHz QPO-s.  相似文献   

14.
We have investigated the influence of the r-mode instability on hypercritically accreting neutron stars in close binary systems during their common envelope phases, based on the scenario proposed by Brown et al. On the one hand, neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency.
The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning up of the star, the final rotational frequency of which is well below the mass-shedding limit, in fact typically as low as 10 per cent of that of the mass-shedding state. On a very short time-scale the rotational frequency tends to approach a certain constant value and saturates there, as long as the amount of accreted mass does not exceed a certain limit to collapse to a black hole. This implies that a similar mechanism of gravitational radiation to that in the so-called 'Wagoner star' may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by gravitational wave detectors such as LIGO II.  相似文献   

15.
We studied the evolution of isolated strange stars (SSs) synthetically, considering the influence of r -mode instability. Our results show that the cooling of SSs with non-ultrastrong magnetic fields is delayed by heating due to r -mode damping for millions of years, while the spin-down of the stars is dominated by gravitational radiation (GR). Especially for the SSs in a possible existing colour–flavour locked (CFL) phase, the effect of r -mode instability on the evolution of stars becomes extremely important because the viscosity, neutrino emissivity and specific heat involving pairing quarks are blocked. It leads to the cooling of these colour superconducting stars being very slow and the stars can remain at high temperature for millions of years, which differs completely from previous understanding. In this case, an SS in CFL phase can be located at the bottom of its r -mode instability window for a long time, but does not spin-down to a very low frequency for hours.  相似文献   

16.
The Herbig Ae/Be stars are intermediate mass pre‐main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X‐shooter to address this issue from a multi‐wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near‐infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 μm line (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The first star formation in the Universe is expected to take place within small protogalaxies, in which the gas is cooled by molecular hydrogen. However, if massive stars form within these protogalaxies, they may suppress further star formation by photodissociating the H2. We examine the importance of this effect by estimating the time-scale on which significant H2 is destroyed. We show that photodissociation is significant in the least massive protogalaxies, but becomes less so as the protogalactic mass increases. We also examine the effects of photodissociation on dense clumps of gas within the protogalaxy. We find that while collapse will be inhibited in low-density clumps, denser ones may survive to form stars.  相似文献   

18.
The electrostatic potential of electrons near the surface of static strange stars at zero temperature is studied within the frame of the MIT bag model. We find that for QCD parameters within rather wide ranges, if the nuclear crust on the strange star is at a density leading to neutron drip, then the electrostatic potential will be insufficient to establish an outwardly directed electric field, which is crucial for the survival of such a crust. If a minimum gap width of 200 fm is brought in as a more stringent constraint, then our calculations will completely rule out the possibility of such crusts. Therefore, our results argue against the existence of neutron-drip crusts in nature.  相似文献   

19.
We introduce a set of stellar models for massive stars whose evolution has been affected by mass transfer in a binary system, at a range of metallicities. As noted by other authors, the effect of such mass transfer is frequently more than just rejuvenation. We find that, whilst stars with convective cores which have accreted only H-rich matter rejuvenate as expected, those stars which have accreted He-rich matter (e.g. at the end stages of conservative mass transfer) evolve in a way that is qualitatively similar to rejuvenated stars of much higher metallicity. Thus, the effects of non-conservative evolution depend strongly on whether He-rich matter is amongst the portion accreted or ejected. This may lead to a significant divergence in binary evolution paths with only a small difference in initial assumptions. We compare our models to observed systems and find approximate formulae for the effect of mass accretion on the effective age and metallicity of the resulting star.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号