首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
基于2011—2020年在龙门山地区发生的地震,分3个区段估算累积贝尼奥夫应变。结果表明,龙门山北段对九寨沟MS7.0地震存在阶跃,震后一年内累积贝尼奥夫应变抬升量约为2 000×10~8;龙门山中段对芦山MS7.0地震存在明显阶跃,震后一年内累积贝尼奥夫应变抬升量约为5 300×10~8。由此可以认为,龙门山中段与芦山地震有较高关联度,而其北段与九寨沟地震的关联度次之。这个抬升量是该区域构造运动与对应地震关联度的一个描述,这对于研究地震的动力源、孕震构造及发震机理有参考意义。另外,对累积贝尼奥夫应变时变斜率的研究结果还表明,累积贝尼奥夫应变的时变斜率在邻近地震前均存在降低的现象,这可能是震前应力松弛过程的表现,但这仅是一个初步研究,对其机理以及可否成为大地震孕育指标等问题还需要对更多震例作进一步研究。  相似文献   

2.
The distribution of the P and S velocities in the Benioff zone of central Kamchatka during the period of aftershocks (1997–2004) of the disastrous Kronotskii earthquake of 1997 (M = 7.9, MW = 7.7) has been determined. Based on the data for the foreshock period immediately preceding the earthquake (1991–1997), a sharp increase in the body wave velocities in the Benioff zone below the Kronotskii Peninsula (up to 9.5–9.7 km/s for V P and 5.1–5.3 km/s for V S) has been determined at depths of 55–140 km in the subvertical region. Based on observations during the period of aftershocks comparable with the last period of foreshocks (about 7 years), it has been established that the body wave velocities calculated for the Benioff zone below the Kronotskii Peninsula returned to the initial values typical of the beginning of that period. This indicates that stresses relaxed around the head part of the Kronotskii earthquake rupture zone after its origination. This conclusion is confirmed by a sharp decrease in the number of earthquakes with M = 2.3–4.9 in the Benioff zone below the Kronotskii Peninsula. Moreover, taking the velocity distribution during the period of aftershocks into account, it has been determined that a second stress relaxation zone is located at the southwestern flank of the Kronotskii earthquake rupture zone where the largest (M = 6.7) aftershock occurred. According to these data, it is concluded that two stress concentration centers could have existed during the preparation of the Kronotskii earthquake.  相似文献   

3.
Aftershock activity following the April 25, 1989 (M S =6.9) earthquake near San Marcos, Guerrero, Mexico, was monitored by a temporary network installed twelve hours after the mainshock and remaining in operation for one week. Of the 350 events recorded by this temporary array, 103 were selected for further analysis in order to determine spatial characteristics of the aftershock activity. An aftershock area of approximately 780 km2 is delimited by the best quality locations. The area of highest aftershock density lies inside an area delimited by the aftershocks of the latest large event in the region in 1957 (M S =7.5) and it partially overlaps the zone of maximum intensity of the earlier 1907 (M S =7.7) shock. Aftershocks also appear to cluster close to the mainshock hypocenter. This clustering agrees with the zone of maximum slip during the mainshock, as previously determined from strong motion records. A low angle Benioff zone is defined by the aftershock hypocenters with a slight tendency for the slab to follow a subhorizontal trajectory after a 110 km distance from the trench axis, a feature which has been observed in the neighboring Guerrero Gap. A composite focal mechanism for events close to the mainshock which also coincides with the zone of largest aftershock density, indicates a thrust fault similar to the mainshock fault plane solution.The San Marcos event took place in an area which could be considered as a mature seismic gap. Due to the manner in which strain release has been observed to previously occur, the occurrence of a major event, overlapping both the neighboring Guerrero Gap and the San Marcos Gap segments of the Mexican thrust, cannot be overlooked.  相似文献   

4.
—Gephart and Forsyth’s (1984) algorithm for stress inversion of earthquake fault-plane solutions has been applied to a set of ninety intermediate and deep events occurring in the southern Tyrrhenian region between 1976 and 1995. P- and S-wave data from local seismic networks in southern Italy, the Italian National Network and international bulletins, have been used for hypocenter and focal mechanism computations. Stress inversion runs performed after accurate selection and weighting of fault-plane solutions have allowed us to identify stress space variations at a higher level of detail than available from all previous investigations carried out in the study area. The maximum compressive stress has been shown to follow the depth-decreasing dip of the Wadati-Benioff zone, along the entire zone from a depth of 90 km, to the depth of the deepest events (about 500 km). Variations to such a stress pattern have been found, possibly related to mantle dynamics and the complex composition of the subducting structure. The diffused state of down-dip compression suggests that the Tyrrhenian subduction has already evolved to the point where the lower end of the slab has reached high-strength mantle materials, the load of the excess mass is entirely supported from below and most of the subducted slab is under compression. In agreement with the lack of large, shallow thrusting events in the immersion zone, the findings of the present study appear to agree well with geodynamic models assuming a passive subduction process with eastward roll-back of the Ionian lithosphere in the study area. In this context, the depth-decrease of the slab dip may also find a reasonable explanation.  相似文献   

5.
Discrimination functions based on major element distribution (Pearce, 1976) can be used to define the different basalt types of the Tyrrhenian and Perityrrhenian areas in an attempt to clarify their geodynamic significance.The future Tyrrhenian and Perityrrhenian areas have been affected since Oligocene by either compressional (subduction related) or transitional processes which produced well-defined orogenic and anorogenic magmas. A local development of «transitional» magma types, characteristic of «anomalous» volcanic arcs, also occurred with geochemical features that are intermediate between within-plate and orogenic magmas.The eruption of orogenic rock suites (calcalkaline, shoshonitic and leucite-bearing rocks) took place along the Apennine border on the east and southeast of the Tyrrhenian basin from Upper Miocene to Quaternary (Aeolian and neighbouring seamounts; Campania; Latium; Capraia Island). Absence of spatial zonation and interlayering of products with a various potassic character are the peculiar features of these rocks that appear to be originated from a heterogeneous and variously metasomatized mantle source by the influx of fluids (H2O andLile enrichment) from the subduction zone affecting the Apennine-Maghrebides collisional front during Tertiary times.In the central Tyrrhenian area oceanic tholeiitic magmatism and creation of a new oceanic crust occurred from Upper Miocene. This activity was probably accomplished by Lower Pliocene when a within-plate volcanism produced the seamounts of the Batial Plain (Magnaghi, Vavilov, base of the Marsili Smts.).Etna and Ustica volcanisms occurring along the Perityrrhenian border on the south and west the Aeolian volcanism respectively, show geochemical characteristics that are transitional between anorogenic and orogenic magmas which could indicate some influence of fluids subduction-related to their mantle sources.The complex magmatic situation of the Tyrrhenian and Perityrrhenian areas may be caused by magma-producing events either from unmodified (anorogenic) or variously modified mantle sources (transitional to orogenic) depending on their proximity to and influenced by the Cainozoic subduction zone which developed along the Apennines-Maghrebides collisional front.  相似文献   

6.
On 24 November 1983, a major earthquake occurred at 180 km depth beneath the Banda Sea. In the focal mechanism solution the pressure axis is almost horizontal, (azimuth 191°, plunge 02°) and the tension axis nearly vertical (plunge 88°). A comparison with the foreshock-aftershock pattern suggests that shear failure took place within the north-north-westerly dipping Benioff zone by thrust faulting along a southerly dipping plane. The focal mechanism solution does not conform to the usual pattern of the tension or compression axis being roughly parallel to the dip of the Benioff zone. Consequently the faulting could not have been caused by down-dip tension or compression within a sinking slab.  相似文献   

7.
The distribution of the focal mechanisms of the shallow and intermediate depth (h>40 km) earthquakes of the Aegean and the surrounding area is discussed. The data consist of all events of the period 1963–1986 for the shallow, and 1961–1985 for the intermediate depth earthquakes, withM s 5.5. For this purpose, all published fault plane solutions for each event have been collected, reproduced, carefully checked and if possible improved accordingly. The distribution of the focal mechanisms of the earthquakes in the Aegean declares the existence of thrust faulting following the coastline of southern Yugoslavia, Albania and western Greece extending up to the island of Cephalonia. This zone of compression is due to the collision between two continental lithospheres (Apulian-Eurasian). The subduction of the African lithosphere under the Aegean results in the occurrence of thrust faulting along the convex side of the Hellenic arc. These two zones of compression are connected via strike-slip faulting observed at the area of Cephalonia island. TheP axis along the convex side of the arc keeps approximately the same strike throughout the arc (210° NNE-SSW) and plunges with a mean angle of 24° to southwest. The broad mainland of Greece as well as western Turkey are dominated by normal faulting with theT axis striking almost NS (with a trend of 174° for Greece and 180° for western Turkey). The intermediate depth seismicity is distributed into two segments of the Benioff zone. In the shallower part of the Benioff zone, which is found directly beneath the inner slope of the sedimentary arc of the Hellenic arc, earthquakes with depths in the range 40–100 km are distributed. The dip angle of the Benioff zone in this area is found equal to 23°. This part of the Benioff zone is coupled with the seismic zone of shallow earthquakes along the arc and it is here that the greatest earthquakes have been observed (M s 8.0). The deeper part (inner) of the Benioff zone, where the earthquakes with depths in the range 100–180 km are distributed, dips with a mean angle of 38° below the volcanic arc of southern Aegean.  相似文献   

8.
The Hokkaido-Nansei-Oki earthquake (M w 7.7) of July 12, 1993, is one of the largest tsunamigenic events in the Sea of Japan. The tsunami magnitudeM t is determined to be 8.1 from the maximum amplitudes of the tsunami recorded on tide gauges. This value is larger thanM w by 0.4 units. It is suggested that the tsunami potential of the Nansei-Oki earthquake is large forM w . A number of tsunami runup data are accumulated for a total range of about 1000 km along the coast, and the data are averaged to obtain the local mean heightsH n for 23 segments in intervals of about 40 km each. The geographic variation ofH n is approximately explained in terms of the empirical relationship proposed byAbe (1989, 1993). The height prediction from the available earthquake magnitudes ranges from 5.0–8.4 m, which brackets the observed maximum ofH n , 7.7 m, at Okushiri Island.  相似文献   

9.
The results of detailed seismological observations with bottom seismographs in the Central Kurile segment in August-September, 2006 are discussed. The system of six bottom seismographs was placed on the island slope of the Kurile deep-sea trench southeast of Urup Island and southwest of the Bussol Strait. Over 230 earthquakes with M LH = 0.5–5.5 were registered in the area with a radius of 150 km around the center of the observation system at depths up to 300 km during 16 days. Records of 80 earthquakes with hypocenters in the earth crust (h = 0–30 km) beneath the island slope of the Kurile deep-sea trench were first obtained by bottom seismographs. These data are inconsistent with previous concepts of aseismicity of this zone. The discovery of the unique morphological structure of the Benioff zone beneath the central Kurile Arc represents the most important result of detailed seismological observations. The zone consists of an inner seismoactive subzone, which is located beneath the island slope of the arc at depths of 15–210 km, being characterized by an angle of incline of 50° under the latter and crosses the ocean bottom approximately 80 km away from the trench axis, and outer low-activity subzone. The latter is traceable beyond the trench almost parallel to the inner zone beginning from a depth of 50 km below the sea bottom up to a depth of approximately 300 km. Due to the slightly lower incline (∼45°) of the outer subzone, both subzones gradually converge downward. The integral thickness of the Benioff zone varies from 150 km in its upper part to 125 km at depths of 210–260 km. The medium sandwiched between these subzones is practically aseismic. The reality of this defined structure is confirmed by the distribution of aftershocks of the earthquake that occurred on November 15, 2006 (M = 8.3). These seismic events served as foreshocks for the subsequent strong earthquake of January 13, 2007 (M = 8.1) with the hypocenter located beyond the trench under the ocean bottom. Such a structure of this zone within the central Kurile Arc segment is unique, having no analogues either in the flanks of the Kurile-Kamchatka Arc or other arcs. The results of detailed seismological observations obtained two months before the first of the catastrophic Central Kurile earthquakes appeared to be typical for the period of foreshocks (the lower seismic activity of the Simushir block, which hosted the hypocenter of the earthquake that occurred on November 15, 2006, particularly at depths of 0–50 km, the gentler incline of the recurrence plot, and other features).  相似文献   

10.
通过地震分布及地震机制解所反映的日本海-鄂霍次克海俯冲带的形态及应力状态,研究了俯冲带深部形变及650km间断面的穿透问题.日本海Benioff带较直,连续性较好;鄂霍次克海Benioff带弯度稍大,220-320km深度之间地震很少.两俯冲带在浅部及深部地震密集,100-200km深度之间有双地震层.应力状态随深度变化,200km深度以下P,T轴方向相对集中,P轴接近俯冲方向,在约100-200km深度附近,P,T轴均接近俯冲方向.观测和理论地震图拟合分析表明,地震断层面走向接近俯冲带走向,断裂的结果使俯冲带在深部倾角变小.  相似文献   

11.
马婷  邓莉  王晓山  宋程  谭毅培 《中国地震》2021,37(2):415-429
地震序列发震构造研究是区域地震活动性和地震危险性分析的重要基础。2017年3月渤海海域发生地震序列活动,该序列发生在郯城-庐江断裂带与张家口-渤海地震带的交汇部位,区域构造较为复杂。然而在渤海海域,连续运行的固定地震监测仪器难以布设,导致地震监测能力相对较弱。本文首先采用模板匹配方法对序列遗漏地震进行检测,再使用波形互相关震相检测进行震相校正,基于校正后的震相到时数据对序列进行精定位,并计算序列中2次最大地震的震源机制解。通过计算共检测到目录遗漏地震32个,约为台网目录中地震数量的1.8倍。根据波形互相关聚类分析发现渤海地震序列可分为2组,一组为M_L4.4地震及其余震序列,一组为最大震级M_L3.5的震群,另有一个M_L1.6地震与其他地震波形相似度较低,可能为一个孤立的地震事件。精定位和震源机制结果显示,2组地震均为NE走向,M_L4.4地震发生在低倾角正断层,M_L3.5地震发生在高倾角走滑断层。最后结合区域地质构造相关研究成果,认为M_L4.4地震及其余震序列发震构造为渤中凹陷内NE向低倾角的伸展性正断层,M_L3.5震群发震构造为NE向倾角较陡的次级走滑断层。  相似文献   

12.
利用基于GPU加速的匹配定位法和双差定位法,对江苏盐城及邻区18个台站记录的2009~2018年共10年的连续地震资料进行分析。首先从台网目录中挑选211个地震事件作为模板事件,使用匹配定位技术对江苏盐城附近连续10年的地震进行检测和识别,共识别出1349个地震事件,约为台网目录地震事件的3倍,最小完备震级由台网目录的ML1.9降为ML1.2。然后利用双差定位法对检测到的地震事件进行精定位,精定位的结果揭示:建湖地区的地震密集带与洪泽-沟墩断裂有关,震源深度优势分布为5~20km,断裂两侧震源深度有显著差异,断裂带倾向NW;射阳震群震源深度比建湖震群有所加深,优势分布为10~25km,震源深度由南东向西北逐渐变浅;宝应地区地震丛集分布;东台地区由于模板事件相对较少,扫描定位后,地震事件在陈家堡-小海断裂带附近零星分布。研究结果为研究盐城地区的地震活动性、发震断层的深部构造提供了基础数据支撑。  相似文献   

13.
We analyse spectral ratio of the coda of doublets of microearthquakes. Our purpose is to find evidence for temporal changes of the attenuation in the crust before a large magnitude earthquake. A Moving Window Cross Spectral analysis of the coda of doublets gives a plot of the spectral ratio as a function of lapse time along the seismogram, for several frequency bands (SR(T, f) plot). From a certain pattern in theSR(T, f) plot, we should infer a temporal change in coda attenuation. Several doublets recorded in Central California by the USGS network are analysed.Using events very close in time from one another, we show that the radiation pattern can be different enough to induce important variations in the spectral ratio of the first arrivals and of the coda.Another doublet exhibits a strong variation of the low frequencies for stations in the region of Hollister (California), wherePhillips andAki (1986) have noted a strong amplification of low frequencies, that they attribute to site effects on unconsolidated sediments in the fault zone. These variations could be related to slight changes in local conditions (creep, or water table).On the other hand, some doublets, in the vicinity and close in time to the August 1979 Coyote Lake Earthquake (M=5.9), show no variation inSR(T, f) related to this earthquake: this proves that there was no major change in attenuation in the crust preceding this large shock. If a change occurred, it should have been confined to a very limited region, which was not sampled by the many paths we studied.The employed method probably provides today the most accurate estimation of spectral ratio in the coda of microearthquakes. It shows that there are numerous kinds of variations and that it is not straightforward to relate them to coda attenuation changes only. Also, we must be circumspect when dealing with the coda of microearthquakes in relation to forecasting earthquakes.  相似文献   

14.
Earthquake activity in the Aswan region,Egypt   总被引:3,自引:0,他引:3  
The November 14, 1981 Aswan earthquake (M L= 5.7), which was related to the impoundment of Lake Aswan, was followed by an extended sequence of earthquakes, and is investigated in this study. Earthquake data from June 1982 to late 1991, collected from the Aswan network, are classified into two sets on the basis of focal depth (i.e., shallow, or deeper than 10 km). It is determined that (a) shallow seismicity is characterized by swarm activity, whereas deep seismicity is characterized by a foreshock-main shock-aftershock sequence; (b) the b value is equal to 0.77 and 0.99 for the shallow and deep sequences, respectively; and (c) observations clearly indicate that the temporal variations of shallow seismic activity were associated with a high rate of water-level fluctuation in Lake Aswan; a correlation with the deeper earthquake sequence, however, is not evident. These features, as well as the tomographic characteristics of the Aswan region (Awad andMizoue, this issue), imply that the Aswan seismic activity must be regarded as consisting of two distinct earthquake groups.We also relocated the largest 500 earthquakes to determine their seismotectonic characteristics. The results reveal that the epicenters are well distributed along four fault segments, which constitute a conjugate pattern in the region. Moreover, fault-plane solutions are determined for several earthquakes selected from each segment, which, along with the 14 November 1981 main shock, demonstrate a prominent E-W compressional stress.  相似文献   

15.
It is a common opinion that only crustal earthquakes can occur in the Crimea–Black Sea region. Since the existence of deep earthquakes in the Crimea–Black Sea region is extremely important for the construction of a geodynamic model for this region, an attempt is made to verify the validity of this widespread view. To do this, the coordinates of all earthquakes recorded by the stations of the Crimean seismological network are reinterpreted with an algorithm developed by one of the authors. The data published in the seismological catalogs and bulletins of the Crimea–Black Sea region for 1970–2012 are used for the analysis. To refine the coordinates of hypocenters of earthquakes in the Crimea–Black Sea region, in addition to the data from stations of the Crimean seismological network, information from seismic stations located around the Black Sea coast are used. In total, the data from 61 seismic stations were used to determine the hypocenter coordinates. The used earthquake catalogs for 1970–2012 contain information on ~2140 events with magnitudes from–1.5 to 5.5. The bulletins provide information on the arrival times of P- and S-waves at seismic stations for 1988 events recorded by three or more stations. The principal innovation of this study is the use of the original author’s hypocenter determination algorithm, which minimizes the functional of distances between the points (X, Y, H) and (x, y, h) corresponding to the theoretical and observed seismic wave travel times from the earthquake source to the recording stations. The determination of the coordinates of earthquake hypocenters is much more stable in this case than the usual minimization of the residual functional for the arrival time of an earthquake wave at a station (the difference between the theoretical and observed values). Since determination of the hypocenter coordinates can be influenced by the chosen velocity column beneath each station, special attention is focused on collecting information on velocity profiles. To evaluate the influence of the upper mantle on the results of calculating the velocity model, two different low-velocity and high-velocity models are used; the results are compared with each other. Both velocity models are set to a depth of 640 km, which is fundamentally important in determining hypocenters for deep earthquakes. Studies of the Crimea–Black Sea region have revealed more than 70 earthquakes with a source depth of more than 60 km. The adequacy of the obtained depth values is confirmed by the results of comparing the initial experimental data from the bulletins with the theoretical travel-time curves for earthquake sources with depths of 50 and 200 km. The sources of deep earthquakes found in the Crimea–Black Sea region significantly change our understanding of the structure and geotectonics of this region.  相似文献   

16.
亚洲地区Benioff应变释放和强震活动的周期性特征研究   总被引:2,自引:0,他引:2  
蒋长胜  赵祎喆  王行舟 《地震》2010,30(3):72-80
为研究亚洲地区强震Benioff应变释放和周期性活动特征, 本研究采用了1900—1999年的IASPEI百年目录和2000—2008年的全球CMT目录组成的混合目录, 分别考察了亚洲地区1900—2008年MW6.9以上强震的Benioff应变释放时间演化、 深浅源地震的累积Benioff应变线性偏离和MW8.0以上强震周期性活动的Rydelek-Sacks检验三方面内容。结果表明, Benioff应变释放整体上大致存在30年左右的强弱起伏; 深、 浅源地震的累积Benioff应变线性偏离具有不同的周期性活动, 其中深源地震约为40年左右, 浅源地震具有更长的活动周期; MW8.0以上强震的发生存在33±2年的周期性活动。作为结果的外推, 亚洲地区未来10年的强震活动正处于以1990—2020年为活动周期的后三分之一阶段, 应变释放水平相对2000—2010年较低, 可能与1990—2000年的水平相当。  相似文献   

17.
The presence of a phenomenological relationship between high velocity regions in the Benioff zone and sources of relatively strong earthquakes (M ≥ 6) was established for the first time from the comparison of such earthquakes with the velocity structure of central Kamchatka in the early 1970s. It was found that, in the region with P wave velocities of 8.1–8.5 km/s, the number of M ≥ 6 earthquakes over 1926–1965 was 2.5 times greater than their number in the region with velocities of 7.5–8.0 km/s. Later (in 1979), within the southern Kurile area, Sakhalin seismologists established that regions with V P = 7.3–7.7 km/s are associated with source zones of M = 7.0–7.6 earthquakes and regions with V P = 8.1–8.4 km/s are associated with M = 7.9–8.4 earthquakes. In light of these facts, we compared the positions of M = 7.0–7.4 earthquake sources in the Benioff zone of southern Kamchatka over the period 1907–1993 with the distribution of regions of high P velocities (8.0–8.5 to 8.5–9.0 km/s) derived from the interpretation of arrival time residuals at the Shipunskii station from numerous weak earthquakes in this zone (more than 2200 events of M = 2.3–4.9) over the period 1983–1995. This comparison is possible only in the case of long-term stability of the velocity field within the Benioff zone. This stability is confirmed by the relationship between velocity parameters and tectonics in the southern part of the Kurile arc, where island blocks are confined to high velocity regions in the Benioff zone and the straits between islands are confined to low velocity regions. The sources of southern Kamchatka earthquakes with M = 7.0–7.4, which are not the strongest events, are located predominantly within high velocity regions and at their boundaries with low velocity regions; i.e., the tendency previously established for the strongest earthquakes of the southern Kuriles and central Kamchatka is confirmed. However, to demonstrate more definitely their association with regions of high P wave velocities, a larger statistics of such earthquakes is required. On the basis of a direct correlation between P wave velocities and densities, the distributions of density, bulk modulus K, and shear modulus μ in the upper mantle of the Benioff zone of southern Kamchatka are obtained for the first time. Estimated densities vary from 3.6–3.9 g/cm3 in regions of high V P values to 3.0–3.2 g/cm3 for regions of low V P values. The bulk modulus K in the same velocity regions varies from (1.4–1.8) × 1012 to (0.8–1.1) × 1012 dyn/cm2, respectively, and the shear modulus μ varies from (0.8–1.0) × 1012 to (0.5–0.7) × 1012 dyn/cm2, respectively. Examination of the spatial correlation of the source areas of southern Kamchatka M = 7.0–7.4 earthquakes with the distribution of elastic moduli in the Benioff zone failed to reveal any relationship between their magnitudes and the moduli because of the insufficient statistics of the earthquakes used.  相似文献   

18.
A special earth shock event was recorded at 22 counties of the 7 provinces of eastern China on October 6, 1597, and 2 volcanic eruptions and seismic activities were recorded in Sanshui county, Xianjingbeidao, Korea at that day and the 3rd day. Because of the large range of this shock, low intensity, slow attenuation and no extreme-earthquake area, its epicenter and focus could not be determined onthe scientific-technological conditions at that time. In the Seismological Catalogue of China (GU, 1983) published in 1983, its epicenter was determined to be in the Bo Sea (38.5°N, 120.0°E), its magnitude was 7; and it was changed into 7.5 in the later Seismological Catalogue of Beijing; someone estimated it over 7(HUAN, 1989); someone thought that, it was a very large earthquake, might be a extraordinarily serious large one according to the scale of sensational range, reaching 8 (SHI, et al, 1985). The authors think that, the disputes on its magnitude and epicenter, and on deep or shallow earthquake show the complicities of this problem; further discussions about it will be helpful to the study on the seismic activity of the northern China area.  相似文献   

19.
日本海及中国东北地震的深度分布及其应力状态   总被引:25,自引:1,他引:24       下载免费PDF全文
本文分析了日本海及中国东北的地震深度分布。证实了日本本州北部至中国东北的贝尼奥夫带(Benioff)基本是连续的,该带的倾向约为北85°西,倾角约为29°,深度在150公里以下贝尼奥夫带厚度约为20公里。研究了日本本州北部至中国东北的震级M_b≥5.0地震的震源机制解,发现中国东北地壳应力场与日本海地壳的应力场方向一致,来源于太平洋板块的挤压。在俯冲带上,深度在100公里到200公里之间的情况较为复杂,大多数地震显示的主压应力方向与贝尼奥夫带的倾向、倾角一致,有的T轴取向与贝尼奥夫带的倾向、倾角一致,有的特征方向与贝尼奥夫带倾向、倾角均不一致。深度在200公里至500公里之间,主压应力方向近于水平,并与贝尼奥夫带走向垂直,张应力轴相对集中。深度大于500公里时,主压应力方向与贝尼奥夫带的倾向、倾角一致,张应力轴相对集中  相似文献   

20.
张北—尚义地震区的壳幔构造   总被引:2,自引:0,他引:2  
通过对河北张家口地区的深地震测深宽角反射/折射剖面资料的研究表明:近东西向的张北—崇礼地壳断裂带与北西西向的张家口—渤海地壳深断裂带在张北62级地震区交汇。在这里延伸至莫霍面的地壳深断裂带和壳内界面的不连续处是汉诺坝大面积玄武岩溢出的通道。震区中上地壳内的局部速度逆转和下地壳内异常的低速带预示着岩浆活动仍较强烈。张家口—渤海地壳深断裂带近期活动可能是张北地震发生的主要因素  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号