首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   

2.
The Kwakshua Watersheds Observatory (KWO) is an integrative watersheds observatory on the coastal margin of a rain-dominated bog-forest landscape in British Columbia (BC), Canada. Established in 2013, the goal of the KWO is to understand and model the flux of terrestrial materials from land to sea – the origins, pathways, processes and ecosystem consequences – in the context of long-term environmental change. The KWO consists of seven gauged watersheds and a network of observation sites spanning from land to sea and along drainage gradients within catchments. Time-series datasets include year-round measurements of weather, soil hydrology, streamflow, aquatic biogeochemistry, microbial ecology and nearshore oceanographic conditions. Sensor measurements are recorded every 5 min and water samples are collected approximately monthly. Additional observations are made during high-flow conditions. We used remote sensing to map watershed terrain, drainage networks, soils and terrestrial ecosystems. The watersheds range in size from 3.2 to 12.8 km2, with varying catchment characteristics that influence hydrological and biogeochemical responses. Despite local variation, the overall study area is a global hotspot for yields of dissolved organic carbon, dissolved organic nitrogen and dissolved iron at the coastal margin. This observatory helps fill an important gap in the global network of observatories, in terms of spatial location (central coast of BC), climate (temperate oceanic), hydrology (very high runoff, pluvial regime), geology (igneous intrusive, glacially scoured), vegetation (bog rainforest) and soils (large stores of organic carbon).  相似文献   

3.
Suburban areas are subject to strong anthropogenic modifications, which can influence hydrological processes. Sewer systems, ditches, sewer overflow devices and retention basins are introduced and large surface areas are sealed off. The knowledge of accurate flow paths and watershed boundaries in these suburban areas is important for storm water management, hydrological modelling and hydrological data analysis. This study proposes a new method for the determination of the drainage network based on time efficient field investigations and integration of sewer system maps into the drainage network for small catchments of up to 10 km2. A new method is also proposed for the delineation of subcatchments and thus the catchment area. The subcatchments are delineated using a combination of an object‐oriented approach in the urban zone and geographical information system–based terrain analysis with flow direction forcing in the rural zone. The method is applied to the Chaudanne catchment, which belongs to the Yzeron river network and is located in the suburban area of Lyon, France. The resulting subcatchment map gives information about subcatchment response and contribution. The method is compared with six other automatic catchment delineation methods based on stream burning, flow direction forcing and calculation of subcatchments for inlet points. None of the automatic methods could correctly represent the catchment area and flow paths observed in the field. The watershed area calculated with these methods differs by as much as 25% from the area computed with the new method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The suitability of the physically based model SHETRAN for simulating sediment generation and delivery with a high degree of spatial (20 m) and temporal (sub‐hourly) resolution was assessed through application of the model to a 167‐km2 catchment leading to an estuary in New Zealand. By subdividing the catchment and conducting calculations on a computer cluster for a 6‐month hydrology initialisation period, it was possible to simulate a large rainfall event and its antecedent conditions in 24 h of computation time. The model was calibrated satisfactorily to catchment outlet flow and sediment flux for a large rainfall event in two subcatchments (~2 km2). Validation for a separate subcatchment was successful for flow (Nash–Sutcliff efficiency of 0.84) with a factor 2.1 over‐prediction for sediment load. Validation for sediment at full catchment scale using parameters from the subcatchment scale was good for flow but poor for sediment, with gross under‐estimation of the dominant stream sources of sediment. After recalibration at catchment scale, validation for a separate event gave good results for flow (Nash–Sutcliff efficiency of 0.93) and sediment load within a factor of two of measurements. An exploratory spatially explicit landslide model was added to SHETRAN, but it was not possible to test this fully because no landslides were observed in the study period. Application to climate change highlighted the non‐linear response to extreme rainfall. However, full exploration of land use and climate change and the evaluation of uncertainty were severely constrained by computational limitations. Subdivision of the catchment with separate stream routing is suggested as a way forward to overcome these limitations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The U.S. Department of Energy's (DOE) Colorado East River Community Observatory (ER) in the Upper Colorado River Basin was established in 2015 as a representative mountainous, snow-dominated watershed to study hydrobiogeochemical responses to hydrological perturbations in headwater systems. The ER is characterized by steep elevation, geologic, hydrologic and vegetation gradients along floodplain, montane, subalpine, and alpine life zones, which makes it an ideal location for researchers to understand how different mountain subsystems contribute to overall watershed behaviour. The ER has both long-term and spatially-extensive observations and experimental campaigns carried out by the Watershed Function Scientific Focus Area (SFA), led by Lawrence Berkeley National Laboratory, and researchers from over 30 organizations who conduct cross-disciplinary process-based investigations and modelling of watershed behaviour. The heterogeneous data generated at the ER include hydrological, genomic, biogeochemical, climate, vegetation, geological, and remote sensing data, which combined with model inputs and outputs comprise a collection of datasets and value-added products within a mountainous watershed that span multiple spatiotemporal scales, compartments, and life zones. Within 5 years of collection, these datasets have revealed insights into numerous aspects of watershed function such as factors influencing snow accumulation and melt timing, water balance partitioning, and impacts of floodplain biogeochemistry and hillslope ecohydrology on riverine geochemical exports. Data generated by the SFA are managed and curated through its Data Management Framework. The SFA has an open data policy, and over 70 ER datasets are publicly available through relevant data repositories. A public interactive map of data collection sites run by the SFA is available to inform the broader community about SFA field activities. Here, we describe the ER and the SFA measurement network, present the public data collection generated by the SFA and partner institutions, and highlight the value of collecting multidisciplinary multiscale measurements in representative catchment observatories.  相似文献   

6.
The Turkey Lakes Watershed (TLW) study is a federal, interdepartmental study established in 1979 to investigate the effects of acid rain on terrestrial and aquatic ecosystems. The 10.5 km2 watershed, located in the Eastern Temperate Mixed Forest on the Canadian Shield, has been the site of multidisciplinary studies on biogeochemical and ecological processes conducted across plot to catchment scales. The whole-ecosystem investigative approach was adopted from the outset and has allowed research to evolve from its original (and continuing) acidification focus to include investigations on the effects of climate change, forest harvesting and other forest ecosystem perturbations. The extensive scientific and support infrastructure allows for collection of a comprehensive data record essential for understanding long-term environmental trends. Data include atmospheric deposition, meteorology, stream hydrology and chemistry, soil, pore and ground water properties, understory and overstory vegetation, lake and outflow physical and chemical properties, and aquatic macroinvertebrate and fish community composition and abundance. These data have contributed to over 400 published research papers and graduate theses. The watershed has also figured prominently in many continent-wide comparisons advancing fundamental watershed theory. The knowledge gained at TLW has influenced pollutant emission and natural resource management policies provincially, nationally and internationally.  相似文献   

7.
Climate change is causing drastic landscape changes in the Arctic, but how these changes modify stream biogeochemistry is not clear yet. We examined how catchment properties influence stream nitrogen (N) and dissolved organic carbon concentrations (DOC) in a high-Arctic environment. We sampled two contrasting headwater streams (10–15 stations over 4.8 and 6.8 km, respectively) in Northeast Greenland (74°N). We characterized the geomorphology (i.e., bedrock, solifluction and alluvial types) and the vegetation (i.e., barren, fell field, grassland and tundra types) cover of each subcatchment area draining into each sampling station and collected water samples for hydrochemistry characterization. The two sampled streams differed in geomorphology and vegetation cover in the catchment. Aucellaelv catchment was mostly covered by a ‘bedrock’ geomorphology (71%) and ‘fellfield’ vegetation (51%), whereas Kæerelv was mostly covered by ‘alluvial’ geomorphology (65%) and ‘grassland’ and ‘tundra’ vegetation (42% and 41% respectively). Hydrochemistry also differed between the two study streams, with higher concentrations of inorganic N forms in Aucellaelv and lower DOC concentrations, compared to Kærelv. The results from the linear mixed model selection showed that vegetation and geomorphology had contrasting effects on stream hydrochemistry. Subcatchments with higher solifluction sheets and limited vegetation had higher nitrate concentrations but lower DOC concentrations. Interestingly, we also found high variability on the production and removal of nitrate across subcatchments. These results indicate landscape controls to nutrient and organic matter exports via flow paths, soil organic matter stocks and nutrient retention via terrestrial vegetation. Moreover, the results suggest that climate change induced alterations to vegetation cover and soil physical disturbance in high-Arctic catchments will affect stream hydrochemistry, with potential effects in stream productivity, trophic relations as well as change of solute export to downstream coastal areas.  相似文献   

8.
9.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Wetlands play a significant role on the hydrological cycle, reducing flood peaks through water storage functions and sustaining low flows through slow water release ability. However, their impacts on water resources availability and flood control are mainly driven by wetland type (e.g. isolated wetland—IW—and riparian wetland—RW) and location within a watershed. Consequently, assessing the qualitative and quantitative impact of wetlands on hydrological regimes has become a relevant issue for scientists as well as stakeholders and decision‐makers. In this study, the distributed hydrological model, HYDROTEL, was used to investigate the role and impact of the geographic distribution of isolated and RWs on stream flows of the Becancour River watershed of the St Lawrence Lowlands, Quebec, Canada. The model was set up and calibrated using available datasets (i.e. DEM, soil, wetland distribution, climate, land cover, and hydrometeorological data for the 1969–2010 period). Different wetland theoretical location tests (WTLT) were simulated. Results were used to determine whether stream flow parameters, related to peak flows and low flows, were related to: (i) geographic location of wetlands, (ii) typology of wetlands, and (iii) seasonality. The contribution of a particular wetland was assessed using intrinsic characteristics (e.g. surface area, typology) and extrinsic factors (e.g. location in the watershed landscape and seasonality). Through these investigations, the results suggest, to some extent, that both IWs and RWs impact landscape hydrology. The more IWs are located in the upper part of the watershed, the greater their effect on both on high flow damping and low flow support seems to be. The more RWs are connected to a main stream, the greater their effect is. Our modelling results indicate that local landscape conditions may influence the wetland effect; promoting or limiting their efficiency, and thus their impacts on stream flows depend on a combined effect of wetland and landscape attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Land‐use change is one of the main drivers of watershed hydrology change. The effect of forestry related land‐use changes (e.g. afforestation, deforestation, agroforestry) on water fluxes depends on climate, watershed characteristics and spatial scale. The Soil and Water Assessment Tool (SWAT) model was calibrated, validated and used to simulate the impact of agroforestry on the water balance in the Mara River Basin (MRB) in East Africa. Model performance was assessed by Nash–Sutcliffe Efficiency (NSE) and Kling–Gupta Efficiency (KGE). The NSE (and KGE) values for calibration and validation were: 0.77 (0.88) and 0.74 (0.85) for the Nyangores sub‐watershed, and 0.78 (0.89) and 0.79 (0.63) for the entire MRB. It was found that agroforestry in the watershed would generally reduce surface runoff, mainly because of enhanced infiltration. However, it would also increase evapotranspiration and consequently reduce baseflow and overall water yield, which was attributed to increased water use by trees. Spatial scale was found to have a significant effect on water balance; the impact of agroforestry was higher at the smaller headwater catchment (Nyangores) than for the larger watershed (entire MRB). However, the rate of change in water yield with an increase in area under agroforestry was different for the two and could be attributed to the spatial variability of climate within the MRB. Our results suggest that direct extrapolation of the findings from a small sub‐catchment to a larger watershed may not always be accurate. These findings could guide watershed managers on the level of trade‐offs that might occur between reduced water yields and other benefits (e.g. soil erosion control, improved soil productivity) offered by agroforestry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Stream temperatures in urban watersheds are influenced to a high degree by changes in landscape and climate, which can occur at small temporal and spatial scales. Here, we describe a modelling system that integrates the distributed hydrologic soil vegetation model with the semi‐Lagrangian stream temperature model RBM. It has the capability to simulate spatially distributed hydrology and water temperature over the entire network at high time and space resolutions, as well as to represent riparian shading effects on stream temperatures. We demonstrate the modelling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model was able to produce realistic streamflow and water temperature predictions that are consistent with observations. We use the modelling construct to characterize impacts of land use change and near‐stream vegetation change on stream temperatures and explore the sensitivity of stream temperature to changes in land use and riparian vegetation. The results suggest that, notwithstanding general warming as a result of climate change over the last century, there have been concurrent increases in low flows as a result of urbanization and deforestation, which more or less offset the effects of a warmer climate on stream temperatures. On the other hand, loss of riparian vegetation plays a more important role in modulating water temperatures, in particular, on annual maximum temperature (around 4 °C), which could be mostly reversed by restoring riparian vegetation in a fairly narrow corridor – a finding that has important implications for management of the riparian corridor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Predicting inter-catchment groundwater flow (IGF) is essential because IGF greatly affects stream water discharge and water chemistry. However, methods for estimating sub-annual IGF and clarifying its mechanisms using minimal data are limited. Thus, we quantified the sub-annual IGF and elucidated its driving factors using the short-term water balance method (STWB) for three forest headwater catchments in Japan (named here catchment A, B and As). Our previous study using the chloride mass balance indicated that annual IGF of catchment A (49.0 ha) can be negligible. Therefore, we calculated the daily evapotranspiration (ET) rate using the Priestley–Taylor expression and the 5-year water balance in catchment A (2010–2014). The sub-annual IGF of the three catchments was then calculated by subtracting the ET rate from the difference between rainfall and stream discharge during the sub-annual water balance periods selected using the STWB. The IGF rates of catchment B (7.0 ha), which is adjacent to catchment A, were positive in most cases, indicating that more groundwater flowed out of the catchment than into it, and exhibited positive linear relationships with rainfall and stream discharge. This suggested that as the catchments became wetter, more groundwater flowed out of catchment B. Conversely, the IGF rates of catchment As (5.3 ha), included in catchment A, were negative in most cases, indicating that more groundwater flowed into the catchment than out from it, and exhibited negative linear relationships with rainfall and stream discharge. Given the topography of the catchments studied, infiltration into the bedrock was the probable reason for the IGF outflow from catchment B. We hypothesized that in catchment As, the discrepancy between the actual hydrological boundary and the surface topographic boundary could have caused an IGF inflow. This study provides a useful tool for determining an IGF model structure to be incorporated into rainfall-runoff models.  相似文献   

14.
Abstract

The impact of climate and land-use changes on hydrological processes and sediment yield is investigated in the Be River catchment, Vietnam, using the Soil and Water Assessment Tool (SWAT) hydrological model. The sensitivity analysis, model calibration and validation indicated that the SWAT model could reasonably simulate the hydrology and sediment yield in the catchment. From this, the responses of the hydrology and sediment to climate change and land-use changes were considered. The results indicate that deforestation had increased the annual flow (by 1.2%) and sediment load (by 11.3%), and that climate change had also significantly increased the annual streamflow (by 26.3%) and sediment load (by 31.7%). Under the impact of coupled climate and land-use changes, the annual streamflow and sediment load increased by 28.0% and 46.4%, respectively. In general, during the 1978–2000 period, climate change influenced the hydrological processes in the Be River catchment more strongly than the land-use change.
Editor Z.W. Kundzewicz; Associate editor Q. Zhang

Citation Khoi, D.N. and Suetsugi, T., 2014. Impact of climate and land-use changes on hydrological processes and sediment yield—a case study of the Be River catchment, Vietnam. Hydrological Sciences Journal, 59 (5), 1095–1108.  相似文献   

15.
Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth because of its proximity to the Greater Toronto area. This has led to extensive land use changes that have impacted its water resources and altered run‐off patterns in some rivers draining to the lake. Here, we use a paired‐catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most urban‐impacted catchment. Annual run‐off from Lovers Creek increased from 239 to 442 mm/year in contrast to the reference catchment (Black River at Washago) where run‐off was relatively stable with an annual mean of 474 mm/year. Increased annual run‐off from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992–1997; pre‐major development) and late (2004–2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to run‐off flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible run‐off simulations in Lovers Creek because of greater scatter between the parameters in canonical space. Separation of early and late‐period parameter sets for the reference catchment was based on climate and snowmelt‐related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment, whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1–5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing. The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.  相似文献   

17.
Over the past 35 years, the Upper Penticton Creek (UPC) Watershed Experiment has supported forest hydrology research in south-central British Columbia (BC), Canada. This paper provides a synthesis of research results, highlights the challenges facing UPC and identifies new research directions. Clearcutting approximately 50% of two small, snow-dominated (Dfb Koppen classification) watersheds advanced the timing of snowmelt-generated high flows and decreased late-summer low flows, relative to predictions based on pre-treatment regressions. Changes in high flows did not have a significant effect on stream channels due to low stream power, coarse substrate, and limited riparian disturbance. Changes in summer low flows reduced modelled useable fish habitat by 20%–50%. Evaporation averaged 52% of the annual precipitation in the mature forest, was reduced to 30% in a clearcut, and recovered to 40% and 47% in a 10 and 25 year-old stand, respectively. Groundwater recharge to the bedrock was estimated at 19% of annual precipitation, indicating that, even with the large uncertainty associated with this estimate, deep groundwater should not be ignored in the water balance. Suspended sediment, turbidity, and colour increased post-logging; however, chemical surface water quality did not change. Aquatic community structure changed post-logging; and although this affected the processing of organic matter, the effects on habitat quality were considered minimal. The information gained at UPC has supported provincial policies, management guidelines, forest stewardship plans and watershed risk assessments. The undisturbed control watershed, re-growing treatment watersheds and ongoing long-term hydrometric monitoring continue to provide opportunities for future research addressing issues such as the effects of young forests on streamflow and hydrologic recovery, and the influence of climate change on the hydrologic regime.  相似文献   

18.
The Marcell Experimental Forest (MEF) in northern Minnesota, USA, with hydrological research and monitoring of peatland catchments in a low-topographic relief landscape, contrasts with the mountainous terrain that typifies most research catchments. Six research catchments were instrumented and hydrological and meteorological monitoring was initiated during 1960. Paired-catchment studies, which started during 1969, have been used to assess land management and environmental change effects on forests, water availability, and biogeochemistry. Over the decades, the research and collaborations have proliferated to include new monitoring and ecosystem experiments. We provide an overview of available datasets and access information for hydrological and meteorological data. Data on streamflow, water table elevation, precipitation, snow, ground frost, air temperature, soil moisture, upland runoff, and water chemistry are discoverable with associated metadata and are archived through several Web-based, community repositories. The research programme is ongoing and we anticipate updates on an annual or more frequent basis. Additionally, we aim to release other physical, chemical, and isotopic measurements associated with long-term catchment monitoring and studies at the MEF.  相似文献   

19.
This study demonstrates that comprehensive hydrologic‐response simulation can be a useful tool for studying cumulative watershed effects. The simulations reported here were conducted with the Integrated Hydrology Model (InHM). The location of the 473 ha study site is the North Fork of the Caspar Creek Experimental Watershed, near Fort Bragg, California. Existing information from a long‐term monitoring programme and new soil‐hydraulic property measurements made for this study were used to parameterize InHM. Long‐term continuous wet‐season simulations were conducted for the North Fork catchments and main stem for second‐growth, clear‐cut and new‐growth scenarios. The simulation results show that the increases and decreases, respectively, for throughfall and potential evapotranspiration related to clear‐cutting had quantifiable impacts on the simulated hydrologic response at both the catchment and watershed scales. Model performance was best for the new‐growth simulation scenarios. To improve upon the simulations reported here would require additional soil‐hydraulic property information from across the study area. Although principally focused on the integrated hydrologic response, the effort reported here demonstrates the potential for characterizing distributed responses with physics‐based simulation. The search for a comprehensive understanding of hydrologic response will require both data‐intensive discovery and concept‐development simulation, from both integrated and distributed perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The Lamprey River Hydrological Observatory (LRHO) is a lowland coastal watershed in southeastern New Hampshire (USA). The LRHO offers a platform to investigate the effects of suburbanization and changing seasonality on watershed hydrology, biogeochemistry, and nutrient export to an estuarine ecosystem. The LRHO utilizes a nested-watershed design to examine headwater stream and main-stem river dynamics distributed across a mixed land-use environment. Data sets from the LRHO now comprise over 20 years of weekly grab sample data as well as 7 years of high-frequency sensor data. Collectively these data sets include measures of discharge, dissolved organic matter, nutrients, cations and anions, greenhouse gases, and other physio-chemical properties. Here we share information on the setting and motivating questions of the LRHO and data availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号