首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Climate change alters hydrological processes and results in more extreme hydrological events, e.g. flooding and drought, which threaten human livelihoods. In this study, the large-scale distributed variable infiltration capacity (VIC) model was used to simulate future hydrological processes in the Yarlung Zangbo River basin (YZRB), China, with a combination of the CMIP5 (Coupled Model Intercomparison Project, fifth phase) and MIROC5 (Model for Interdisciplinary Research on Climate, fifth version) datasets. The results indicate that the performance of the VIC model is suitable for the case study, and the variation in runoff is remarkably consistent with that of precipitation, which exhibits a decreasing trend for the period 2046–2060 and an increasing trend for 2086–2100. The seasonality of runoff is evident, and substantial increases are projected for spring runoff, which might result from the increase in precipitation as well as the increase in the warming-induced melting of snow, glaciers and frozen soil. Moreover, evapotranspiration exhibits an increase between 2006–2020 and 2046–2060 over the entire basin, and soil moisture decreases in upstream areas and increases in midstream and downstream areas. For 2086–2100, both evapotranspiration and soil moisture increase slightly in the upstream and midstream areas and decrease slightly in the downstream area. The findings of this study could provide references for runoff forecasting and ecological protection for similar studies in the future.  相似文献   

2.
This study investigates the impact of climate change on rainfall, evapotranspiration, and discharge in northern Taiwan. The upstream catchment of the Shihmen reservoir in northern Taiwan was chosen as the study area. Both observed discharge and soil moisture were simultaneously adopted to optimize the HBV‐based hydrological model, clearly improving the simulation of the soil moisture. The delta change of monthly temperature and precipitation from the grid cell of GCMs (General Circulation Models) that is closest to the study area were utilized to generate the daily rainfall and temperature series based on a weather generating model. The daily rainfall and temperature series were further inputted into the calibrated hydrological model to project the hydrological variables. The studies show that rainfall and discharge will be increased during the wet season (May to October) and decreased during the dry season (November to April of the following year). Evapotranspiration will be increased in the whole year except in November and December. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In accounting for uncertainties in future simulations of hydrological response of a catchment, two approaches have come to the fore: deterministic scenario‐based approaches and stochastic probabilistic approaches. As scenario‐based approaches result in a wide range of outcomes, the role of probabilistic‐based estimates of climate change impacts for policy formulation has been increasingly advocated by researchers and policy makers. This study evaluates the impact of climate change on seasonal river flows by propagating daily climate time series, derived from probabilistic‐based climate scenarios using a weather generator (WGEN), through a set of conceptual hydrological models. Probabilistic scenarios are generated using two different techniques. The first technique used probabilistic climate scenarios developed from statistically downscaled scenarios for Ireland, hereafter called SDprob. The second technique used output from 17 global climate models (GCMs), all of which participated in CMIP3, to generate change factors (hereafter called CF). Outputs from both the SDprob and the CF approach were then used in combination with WGEN to generate daily climate scenarios for use in the hydrological models. The range of simulated flow derived with the CF method is in general larger than those estimated with the SDprob method in winter and vice versa because of the strong seasonality in the precipitation signal for the 17 GCMs. Despite this, the simulated probability density function of seasonal mean streamflow estimated with both methods is similar. This indicates the usefulness of the SDprob or probabilistic approach derived from regional scenarios compared with the CF method that relies on sampling a diversity of response from the GCMs. Irrespective of technique used, the probability density functions of seasonal mean flow produced for four selected basins is wide indicating considerable modelling uncertainties. Such a finding has important implications for developing adaptation strategies at the catchment level in Ireland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Two approaches can be distinguished in studies of climate change impacts on water resources when accounting for issues related to impact model performance: (1) using a multi-model ensemble disregarding model performance, and (2) using models after their evaluation and considering model performance. We discuss the implications of both approaches in terms of credibility of simulated hydrological indicators for climate change adaptation. For that, we discuss and confirm the hypothesis that a good performance of hydrological models in the historical period increases confidence in projected impacts under climate change, and decreases uncertainty of projections related to hydrological models. Based on this, we find the second approach more trustworthy and recommend using it for impact assessment, especially if results are intended to support adaptation strategies. Guidelines for evaluation of global- and basin-scale models in the historical period, as well as criteria for model rejection from an ensemble as an outlier, are also suggested.  相似文献   

5.
This paper presents the results of an investigation into the problems associated with using downscaled meteorological data for hydrological simulations of climate scenarios. The influence of both the hydrological models and the meteorological inputs driving these models on climate scenario simulation studies are investigated. A regression‐based statistical tool (SDSM) is used to downscale the daily precipitation and temperature data based on climate predictors derived from the Canadian global climate model (CGCM1), and two types of hydrological model, namely the physically based watershed model WatFlood and the lumped‐conceptual modelling system HBV‐96, are used to simulate the flow regimes in the major rivers of the Saguenay watershed in Quebec. The models are validated with meteorological inputs from both the historical records and the statistically downscaled outputs. Although the two hydrological models demonstrated satisfactory performances in simulating stream flows in most of the rivers when provided with historic precipitation and temperature records, both performed less well and responded differently when provided with downscaled precipitation and temperature data. By demonstrating the problems in accurately simulating river flows based on downscaled data for the current climate, we discuss the difficulties associated with downscaling and hydrological models used in estimating the possible hydrological impact of climate change scenarios. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Thirty UK Climate Projections 2009 (UKCP09) scenarios are simulated using a MIKE SHE/MIKE 11 model of a restored floodplain in eastern England. Annual precipitation exhibits uncertainty in direction of change. Extreme changes (10 and 90% probability) range between ?27 and +30%. The central probability projects small declines (相似文献   

7.
Land‐cover/climate changes and their impacts on hydrological processes are of widespread concern and a great challenge to researchers and policy makers. Kejie Watershed in the Salween River Basin in Yunnan, south‐west China, has been reforested extensively during the past two decades. In terms of climate change, there has been a marked increase in temperature. The impact of these changes on hydrological processes required investigation: hence, this paper assesses aspects of changes in land cover and climate. The response of hydrological processes to land‐cover/climate changes was examined using the Soil and Water Assessment Tool (SWAT) and impacts of single factor, land‐use/climate change on hydrological processes were differentiated. Land‐cover maps revealed extensive reforestation at the expense of grassland, cropland, and barren land. A significant monotonic trend and noticeable changes had occurred in annual temperature over the long term. Long‐term changes in annual rainfall and streamflow were weak; and changes in monthly rainfall (May, June, July, and September) were apparent. Hydrological simulations showed that the impact of climate change on surface water, baseflow, and streamflow was offset by the impact of land‐cover change. Seasonal variation in streamflow was influenced by seasonal variation in rainfall. The earlier onset of monsoon and the variability of rainfall resulted in extreme monthly streamflow. Land‐cover change played a dominant role in mean annual values; seasonal variation in surface water and streamflow was influenced mainly by seasonal variation in rainfall; and land‐cover change played a regulating role in this. Surface water is more sensitive to land‐cover change and climate change: an increase in surface water in September and May due to increased rainfall was offset by a decrease in surface water due to land‐cover change. A decrease in baseflow caused by changes in rainfall and temperature was offset by an increase in baseflow due to land‐cover change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) is unique due to its extremely rapid weathering rates. The watershed is incised into a quartz diorite that has developed a large knickzone defining the river profile. Regolith thickness within the watershed generally decreases from 20 to 30 m at the ridges to several meters in the quartz diorite-dominated valley to tens of centimeters near the major river knickpoint, as determined from previous studies. Above the knickzone, we observe spheroidal corestones, but below this weathering is much less apparent. Measured erosion rates from previous studies are also high in the knickzone compared with upper elevations within the river profile. A suite of near-surface geophysical methods (i.e. ground penetrating radar and terrain conductivity) capable of fast data acquisition in rugged landscapes, was deployed at kilometer scales to characterize critical zone structure. Concentrations of chaotic ground penetrating radar (GPR) reflections and diffraction hyperbolas with low electrical conductivity were observed in vertical zones that outcrop at the land surface as areas of intense fracturing and spheroidally weathered corestones. The width of these fractured and weathered zones showed an increase with proximity to the knickpoint, and was attributed to dilation of these sub-vertical fractures near the knickpoint, as postulated theoretically by a stress model calculated for the topographic variability across the knickzone in the Rio Icacos, and that shows a release of compressive stress near the knickpoint. We hypothesize that erosion rates increase in the knickzone because of this inferred dilation of fractures. Specifically, opened fractures could enhance access of water and in turn promote spalling, erosion, and spheroidal weathering. This study shows that ground-based hydrogeophysical methods used at the landscape-scale (traditionally applied at smaller scales) can be used to explore critical zone architecture at the scales needed to explain the extreme variability in erosion rates across river profiles. © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

Rainfall events largely control hydrological processes occurring on and in the ground, but the performance of climate models in reproducing rainfall events has not been investigated enough to guide selection among the models when making hydrological projections. We proposed to compare the durations, intensities, and pause periods, as well as depths of rainfall events when assessing the accuracy of general circulation models (GCMs) in reproducing the hydrological characteristics of observed rainfall. We also compared the sizes of design storm events and the frequency and severity of drought to demonstrate the consequences of GCM selection. The results show that rainfall and extreme hydrological event projections could significantly vary depending on climate model selection and weather stations, suggesting the need for a careful and comprehensive evaluation of GCM in the hydrological analysis of climate change. The proposed methods are expected to help to improve the accuracy of future hydrological projections for water resources planning.  相似文献   

11.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, the Cold Regions Hydrological Modelling platform was used to create an alpine snow model including wind redistribution of snow and energy balance snowmelt to simulate the snowpack over the period 1996–2009 in a small (33 ha) snow‐dominated basin in the Spanish Pyrenees. The basin was divided into three hydrological response units (HRUs), based on contrasting physiographic and aerodynamic characteristics. A sensitivity analysis was conducted to calculate the snow water equivalent regime for various combinations of temperature and precipitation that differed from observed conditions. The results show that there was large inter‐annual variability in the snowpack in this region of the Pyrenees because of its marked sensitivity to climatic conditions. Although the basin is small and quite homogeneous, snowpack seasonality and inter‐annual evolution of the snowpack varied in each HRU. Snow accumulation change in relation to temperature change was approximately 20% for every 1 °C, and the duration of the snowpack was reduced by 20–30 days per °C. Melting rates decreased with increased temperature, and wind redistribution of snow was higher with decreased temperature. The magnitude and sign of changes in precipitation may markedly affect the response of the snowpack to changes in temperature. There was a non‐linear response of snow to individual and combined changes in temperature and precipitation, with respect to both the magnitude and sign of the change. This was a consequence of the complex interactions among climate, topography and blowing snow in the study basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario → global circulation model → downscaling approach (DA) → bias correction → impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerability of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV‐light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long‐term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Much attention has been focused on investigating the effects of precipitation and temperature changes on runoff; however, the influence of wind speed, relative humidity and total solar radiation on hydrological components needs to be studied further. Hydrological responses to climate variations in a minimally disturbed mountainous watershed in the period 1971–2012 are identified and evaluated by statistical analysis and hydrological simulation. The results indicate that the impact of climate component changes on the hydrological process cannot be discounted. The temperature and relative humidity exhibit significant upward trends, while the wind speed exhibits a clear downward trend. The potential and actual evapotranspiration dramatically increased, but the observed pan evaporation substantially decreased. The surface water, soil water, baseflow and water yield are positively correlated with precipitation and relative humidity but negatively correlated with the temperature, wind speed and solar radiation.  相似文献   

15.
Recent decades have seen a change in the runoff characteristics of the Suntar River basin in the mountainous, permafrost, hard-to-reach region of Eastern Siberia. This study aims to investigate and simulate runoff formation processes, including the factors driving recent changes in hydrological response of the Suntar River, based on short-term historical observations of a range of hydrological, climatological and landscape measurements conducted in 1957–1959. The hydrograph model is applied as it has the advantage of using observed physical properties of landscapes as its parameters. The developed parametrization of the goltsy landscape (rocky-talus) is verified by comparison of the results of simulations of variable states of snow and frozen ground with observations carried out in 1957–1959. Continuous simulations of streamflow on a daily time step are conducted for the period 1957–2012 in the Suntar River (area 7680 km2, altitude 828–2794 m) with mean and median values of Nash–Sutcliff criteria reaching 0.58 and 0.67, respectively. The results of simulations have shown that the largest component of runoff (about 70%) is produced in the high-altitude area which comprises only 44% of the Suntar River basin area. The simulated streamflow reproduces the patterns of recently observed changes, including the increase in low flows, suggesting that the increase in the proportion of liquid precipitation in autumn due to air temperature rise is an important factor in driving streamflow changes in the region. The data presented are unique for the vast mountainous parts of North-Eastern Eurasia which play an important role in the global climate system. The results indicate that parameterizing a hydrological model based on observations allows the model to be used in studying the response of river basins to climate change with greater confidence.  相似文献   

16.
Climate change and human activities are two major driving forces affecting the hydrologic cycle, which further influence the stationarity of the hydrologic regime. Hydrological drought is a substantial negative deviation from the normal hydrologic conditions affected by these two phenomena. In this study, we propose a framework for quantifying the effects of climate change and human activities on hydrological drought. First, trend analysis and change‐point test are performed to determine variations of hydrological variables. After that, the fixed runoff threshold level method (TLM) and the standardized runoff index (SRI) are used to verify whether the traditional assessment methods for hydrological drought are applicable in a changing environment. Finally, two improved drought assessment methods, the variable TLM and the SRI based on parameter transplantation are employed to quantify the impacts of climate change and human activities on hydrological drought based on the reconstructed natural runoff series obtained using the variable infiltration capacity hydrologic model. The results of a case study on the typical semiarid Laohahe basin in North China show that the stationarity of the hydrological processes in the basin is destroyed by human activities (an obvious change‐point for runoff series is identified in 1979). The traditional hydrological drought assessment methods can no longer be applied to the period of 1980–2015. In contrast, the proposed separation framework is able to quantify the contributions of climate change and human activities to hydrological drought during the above period. Their ranges of contributions to hydrological drought calculated by the variable TLM method are 20.6–41.2% and 58.8–79.4%, and the results determined by the SRI based on parameter transplantation method are 15.3–45.3% and 54.7–84.7%, respectively. It is concluded that human activities have a dominant effect on hydrological drought in the study region. The novelty of the study is twofold. First, the proposed method is demonstrated to be efficient in quantifying the effects of climate change and human activities on hydrological drought. Second, the findings of this study can be used for hydrological drought assessment and water resource management in water‐stressed regions under nonstationary conditions.  相似文献   

17.
Identification of factors controlling sediment dynamics under natural flow regimes can establish a baseline for quantifying effects of present day hydrological alteration and future climate change on sediment delivery and associated flooding. The process-based INCA-Sediment model was used to simulate Ganga River sediment transport under baseline conditions and to quantify possible future changes using three contrasting climate scenarios. Construction of barrages and canals has significantly altered natural flow regimes, with profound consequences for sediment transport. Projected increases in future monsoonal precipitation will lead to higher peak flows, increasing flood frequency and greater water availability. Increased groundwater recharge during monsoon periods and greater rates of evaporation due to increased temperature complicate projections of water availability in non-monsoon periods. Rainfall and land surface interaction in high-relief areas drive uncertainties in Upper Ganga sediment loads. However, higher monsoonal peak flows will increase erosion and sediment delivery in western and lower reaches.  相似文献   

18.
ABSTRACT

Climate change projections of precipitation and temperature suggest that Serbia could be one of the most affected regions in southeastern Europe. To prepare adaptation measures, the impact of climate changes on water resources needs to be assessed. Pilot research is carried out for the Lim River basin, in southeastern Europe, to predict monthly flows under different climate scenarios. For estimation of future water availability, an alternative approach of developing a deterministic-stochastic time series model is chosen. The proposed two-stage time series model consists of several components: trend, long-term periodicity, seasonality and the stochastic component. The latter is based on a transfer function model with two input variables, precipitation and temperature, as climatic drivers. The Nash-Sutcliffe model efficiency for the observed period 1950–2012 is 0.829. The model is applied for the long-term hydrological prediction under the representative concentration pathway (RCP) emissions scenarios for the future time frame 2013–2070.  相似文献   

19.
Changes in climate and land use can significantly influence the hydrological cycle and hence affect water resources. Understanding the impacts of climate and land‐use changes on streamflow can facilitate development of sustainable water resources strategies. This study investigates the flow variation of the Zamu River, an inland river in the arid area of northwest China, using the Soil and Water Assessment Tool distributed hydrological model. Three different land‐use and climate‐change scenarios were considered on the basis of measured climate data and land‐use cover, and then these data were input into the hydrological model. Based on the sensitivity analysis, model calibration and verification, the hydrological response to different land‐use and climate‐change scenarios was simulated. The results indicate that the runoff varied with different land‐use type, and the runoff of the mountain reaches of the catchment increased when grassland area increased and forestland decreased. The simulated runoff increased with increased precipitation, but the mean temperature increase decreased the runoff under the same precipitation condition. Application of grey correlation analysis showed that precipitation and temperature play a critical role in the runoff of the Zamu River basin. Sensitivity analysis of runoff to precipitation and temperature by considering the 1990s land use and climate conditions was also undertaken. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Understanding climate change impacts on hydrological regime and assessing future water supplies are essential to effective water resources management and planning, which is particularly true for the Tibetan Plateau (TP), one of the most vulnerable areas to climate change. In this study, future climate change in the TP was projected for 2041–2060 by a high‐resolution regional climate model, RegCM4, under 3 representative concentration pathways (RCPs): 2.6, 4.5, and 8.5. Response of all key hydrological elements, that is, evapotranspiration, surface run‐off, baseflow, and snowmelt, to future climate in 2 typical catchments, the source regions of Yellow and Yangtze rivers, was further investigated by the variable infiltration capacity microscale hydrological model incorporated with a 2‐layer energy balance snow model and a frozen soil/permafrost algorithm at a 0.25°×0.25° spatial scale. The results reveal that (a) spatial patterns of precipitation and temperature from RegCM4 agree fairly well with the data from China Meteorological Forcing Dataset, indicating that RegCM4 well reproduces historical climatic information and thus is reliable to support future projection; (b) precipitation increase by 0–70% and temperature rise by 1–4 °C would occur in the TP under 3 RCPs. A clear south‐eastern–north‐western spatial increasing gradient in precipitation would be seen. Besides, under RCP8.5, the peak increase in temperature would approach to 4 °C in spring and autumn in the east of the TP; (c) evapotranspiration would increase by 10–60% in 2 source regions due to the temperature rise, surface run‐off and baseflow in higher elevation region would experience larger increase dominantly due to the precipitation increase, and streamflow would display general increases by more than 3% and 5% in the source regions of Yellow and Yangtze rivers, respectively; (d) snowmelt contributes 11.1% and 16.2% to total run‐off in the source regions of Yellow and Yangtze rivers, respectively, during the baseline period. In the source region of Yangtze River, snowmelt run‐off would become more important with increase of 17.5% and 18.3%, respectively, under RCP2.6 and RCP4.5 but decrease of 15.0% under RCP8.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号