首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
本文利用常规探测资料计算和分析了1983年3月1日影响珠江三角洲的一次强对流天气过程的总动能收支。结果表明:就时间区域平均而言,动能制造项是总动能源;动能水平通量散度和次网尺度过程则消耗区域的功能;几乎所有的主要收支项数值,都在高空急流所在的对流层上层最大;网格尺度的垂直输送使动能由对流层中、低层向高层输送,但次网格尺度过程使动能下传。在风暴影响前后,各能量的收支项都有明显的改变。  相似文献   

2.
利用尺度分离方法将大气运动分离成天气尺度和中尺度运动两部分,给出了中尺试动能平衡方程。在此基础上,对盛夏发生在我国北方的一次大暴雨过程进行了动能收支分析。分析表明:暴雨发生时中尺度动能明显增加,尤其是对流层中、下部最突出。对中尺度动能增加贡献最大的是除中尺度动能制造项外,垂直输送项的作用表现最明显,这显然是与中尺度辐合和上升运动加强有关。  相似文献   

3.
本文对1982年7月14—18日一次巴湖低压活动过程进行了动能的收支分析。在巴湖低压活动的过程中,水平、垂直动能通量辐合(散)对动能收支贡献不大,主要是水平、垂直势能通量的辐合(散)项、势动能转换项和网格区域不能分辨的那些尺度运动对动能的供给(耗散)项作贡献。  相似文献   

4.
利用高分辨率(10km)数值模拟的结果,以登陆华南并引发特大暴雨的0601号台风为例,对台风中田尺度动能收支平衡进行了诊断分析。结果表明,中-β尺度系统动能收支水平项(水平通量散度项和水平产生项)很小,垂直项(垂直通量散度项和垂直产生项)是动能收支方程的主要部分;动能垂直通量散度在对流层低层是动能的汇,在对流层中高层为动能的源;动能垂直产生项在对流层各层都是动能的汇;浮力产生项在300hPa以下是动能的源,在对流层高层是动能的汇;平均动能的局地变化项,在对流层各层均小于零,暴雨期间对流层动能支大于收,且动能变化在对流层中低层最明显。就整个对流层的垂直总量而言,浮力产生项是主要的动能源,而垂直产生项是主要的动能汇。较强冷空气首先从对流层中层入侵台风环流系统,抑制动能制造和传输,是中田尺度对流系统不能维持、发展的主要原因,也是台风系统及其暴雨不能长久维持的关键。  相似文献   

5.
利用中、美、澳联合进行的澳大利亚季风试验(AMFX)第二阶段观测资料,对南半球热 带风暴Irma的发展,进行了环流背景和动能收支的分析。 Irma发生于南半球的ITCZ上,生成时的环流条件是ITCZ两侧偏东信风、偏西季风都在加强,尤其是对流层上部气流散开区移近,辐散强烈增加。同时,对流层下半部的R_1数出现最小值。 Irma迅速增加时,总动能增加主要来自制造项,说明这时有很强的非地转加速。而对制造的最大贡献者,是有效位能的释放。由此表明了内源和积云对流总体影响的重要性。 而Irma迅速增强时涡动能的增加,最重要的源是较小尺度运动或次网格尺度动能,主要贡献在对流层上部。少量的贡献来目区域平均气流动能的转换。因此,扰动的发展,从较大、较小两种尺度运动中都取得能量,但后者重要得多。制造项也有重要作用,但主要贡献在对流层下部。此外,扰动还向周围大气输出涡动动能,因此起着祸动动能制造并输出的作用。  相似文献   

6.
东北冷涡加强减弱过程的涡度收支和动能诊断   总被引:1,自引:0,他引:1  
对东北冷涡加强和减弱阶段的涡度和动能的收支进行诊断分析。结果表明:无论在加强还是减弱阶段,冷涡区域范围整层的涡度变化均很明显;涡度平衡方程中,散度项、水平平流项及余项均是主要项,正涡度的增长和减弱对冷涡加强和减弱有重要贡献;动能收支方程中的各项也有明显差异,且在对流层中上层均有较强的能量交换过程。  相似文献   

7.
1998年南海、孟加拉湾夏季风期间动能收支特征   总被引:1,自引:0,他引:1       下载免费PDF全文
该文采用1998年加密观测资料经同化处理后得到的客观分析格点资料, 对南海地区和孟加拉湾地区的动能收支进行了诊断分析和对比, 得出: B区夏季风爆发, 其850 hPa区域平均总动能表现为爆发性增长, C区则表现为一个逐步增长的过程.越赤道气流通过南边界的动能输送对B区夏季风建立贡献很大, 西边界动能输入对C区夏季风建立也起了十分显著的作用.季风盛行期, B区夏季风动能的发展维持主要是动能水平通量散度的贡献, 其中西边界动能的流入贡献最大, 孟加拉湾夏季风的变化主要为印度季风影响所致; C区夏季风动能主要是依靠其区域内动能制造来维持.对于850 hPa层, B区主要通过斜压过程制造动能, 正压过程破坏更多的动能, C区主要是正压过程制造动能.两区对流层高层都为动能主要流出区, 而对流层低层, B区为动能流入区, C区为动能流出区.  相似文献   

8.
梅雨期间次天气尺度扰动的动能平衡   总被引:1,自引:3,他引:1  
谢安  肖文俊  陈受钧 《气象学报》1980,38(4):351-359
计算了梅雨期间产生暴雨的次天气尺度扰动的动能分布及其乎衡。结果表明:1)在动能计算中不能略去风的散度部分;2)暴雨期间,扰动向周围大气输送动能;3)旋转风的动能产生率为负值,散度风在对流层下层和上层产生动能,两者之和仍是消耗动能。这样,次网格尺度对流在动能平衡中起着重要的作用。即在条件性不稳定的大气中,发展起来的温对流是湿斜压大气中重要的一种过程。上述结果有助于了解扰动的机制和改进数值模式的设计。  相似文献   

9.
利用WRF模式和NCEP再分析资料,对一次梅雨暴雨个例进行了数值模拟,基于高分辨率的模拟结果计算了水平动能谱、涡旋动能谱及辐散动能谱,诊断了动能收支谱方程。结果表明:在暴雨发展阶段,各个高度上都有中尺度动能增长,其显著增加始于中尺度低端,这导致了在中尺度波段出现谱转折特征,但在不同高度转折尺度不同;对流层高层涡旋动能大于辐散动能,平流层低层反之;不同降水阶段、不同高度和不同尺度上动能的来源不同,对流层高层,中尺度动能倾向由非线性项和气压项贡献;平流层低层,气压项的作用更为明显。  相似文献   

10.
本文讨论了西南季风活跃期华南区域平均对流层运动学特征和热量水汽,动量的收支。计算表明,我国西南季风活跃期对流层特征既不同于冷空气活动期也不同南海季风活跃期。此时华南整层对流层处反气旋流场中,无辐散层位于700毫巴,下层辐散上层辐合。西南季风层为下沉运动,上层为上升运动。热量收支表明,季风层为视热汇和视水汽源,东风层为视热源。切变层以上水汽源汇数值很小,不起明显作用。水热源汇主要由垂直运动造成。动量收支表明,在季风层动量基本上是准平衡的,只有在对流层上层和近地面层有动量盈亏,动量收支主要来自地转偏差。最后,我们简单讨论了次网格尺度涡旋对水热平衡的贡献,认为西南季风期垂直涡旋输送十分活跃,其输送水热的作用超过气团变性过程所起的作用。   相似文献   

11.
辛宝恒  刘红 《气象学报》1990,48(2):242-247
应用FGGE-Ⅲ_b资料对1979年11月24日—25日一次快速发展并造成渤海二号船翻沉事故的次天气尺度渤海气旋进行了局地动能收支分析。 气旋发展期间通过垂直气柱侧边界的动能、势能净通量是辐散的,气旋发展的能源主要依赖于动能产生项、动能转换项以及网格区域不能分辨的尺度运动作用。气旋控制期间边界层风场的增强,其外部能源主要依赖于通过侧边界的动能、势能净通量辐合,内部主要依赖于动能产生项和动能转换项。 与前人所研究过的天气尺度气旋相比较,这次气旋在发展阶段的动能产生和剩余源项[E]的数值都较大。  相似文献   

12.
利用中尺度WRF模式对于2007年7月一次典型的梅雨锋暴雨过程进行了高分辨率数值模拟,对于边界层内的热通量输送和湍流动能的时空变化特征,以及湍流动能各收支项的分布及变化特征进行了分析。结果表明,降水发生时段内边界层热通量和湍流动能的时空分布特征与晴空日变化特征表现出显著不同,潜热通量随高度自下而上呈现"正—负—正"的分布,感热通量以负值为主,负值中心高度与潜热通量由负转正的高度相对应,湍流动能的发展高度与持续时间都有所增加,降水区近地面湍流动能弱于其他区域,但是在468 m以上高度则显著强于其他区域。降水区湍流动能的来源主要是平均风切变所产生的机械湍流,浮力作用与粘性耗散在降水期间消耗湍流动能,湍流输送作用将低层的湍流动能输送至较高的高度,使低层减小而高层增大,临界高度与湍流动能的大值中心高度对应。  相似文献   

13.
张琳娜  冉令坤  李娜  杜佳  周璇  孟悦 《大气科学》2018,42(1):178-191
2014年5月31日北京发生一次雷暴大风过程。以雷达资料同化结果为初始场,对此次过程进行高分辨率数值模拟。采用非静力平衡和非地转平衡的经向动量方程和质量权重动能方程,利用模拟资料,对雷暴大风过程中经向动量和质量权重动能进行收支分析,以此来研究雷暴过程中对流层中低层动量通量和动能通量输送特征,讨论地面大风的可能成因。分析结果表明,在对流层中低层,经向动量通量散度是影响经向动量局地变化的主要强迫项。雷暴系统后部的入流把中低层的经向动量倾斜向下输送,系统前部对流云区中低层的下沉气流也向下输送经向动量。这两支下传动量通量先后与近地面经向动量的水平通量汇合,向系统前沿输送经向动量。在北京西北部地形阻挡作用下,经向动量通量在系统前端近地面辐合,促进那里的经向动量局地增长,有利于增强那里的南风。质量动能收支的特征与经向动量收支类似,在近地面层质量动能的局地变化主要是由质量动能通量散度引起的。系统后部入流把中层质量动能向下传输到近地面层,然后与近地面质量动能的水平通量汇合,向系统前沿输送质量动能。相对来说,近地面层经向动量和质量动能的水平通量比下传通量更重要,这主要与低层较强的东南急流有关。  相似文献   

14.
利用1998年南海季风试验(SCSMEX)资料和区域动能收支方程,对南海南部和北部两个区域该年夏季风爆发前后的区域总动能和区域扰动动能收支进行了诊断分析。结果表明,南海北区夏季风爆发前后动能主要在高层制造,大部分动能被摩擦消耗,南区夏季风爆发前后动能主要在高层被破坏,摩擦项充当动能源。扰动动能主要在高层和部分在低层制造。在此期间,南海地区一直向邻近区域输出动能。  相似文献   

15.
东北冷涡加强减弱过程的涡度收支和支能诊断   总被引:1,自引:0,他引:1  
对东北冷涡加强和减弱阶段的涡度和动能的收支进行诊断分析。结果表明:无论在加强还是减弱阶段,冷涡区域范围整层的涡度变化均很明显;涡度平衡方程中,散度项,水平平流项及余项均是主要项,正涡度的增长和减弱对冷涡加强和减弱有重要贡献;动能收支方程中的各项也有明显差异,且在对流层中上层均有较强的能量交换过程。  相似文献   

16.
应用欧洲中期预报中心的FGGEⅢ-b个客观分析资料计算了1979年7月热带大气的动能平衡。热带环流系统的动能主要集中在定常涡旋部分。对流层下层,105°E和150°E为两半球间瞬变涡旋的通道。对流层上层,瞬变涡旋的通道和洋中槽相联系,位于150°E和30°W附近。 索马里急流是对流层下层制造动能的主要环流系统。对流层上层,南亚东风急流入口区制造动能,出口区破坏动能,其动能收支与中纬度西风急流相似。 非洲-阿拉伯海季风区和孟加拉湾—南海季风区的动能平衡很不相同。动能的垂直输送可能在季风环流中很重要。  相似文献   

17.
梅雨锋次天气尺度涡旋旋转风和辐散风动能收支   总被引:2,自引:3,他引:2  
汪钟兴  刘勇 《高原气象》1994,13(1):28-34
本文选取1991年7月5日20:00-6日20:00梅雨锋上移动性次天气尺度涡旋引起的长江中下游特大暴雨为实例。采用准拉格朗日球坐标系的旋转风和辐散风动能方程,计算得到次天气尺度涡旋发展和成熟两个阶段对流层各层旋转风动能和辐散风动能的收支特征为:在对流层高层(100-400hPa)两个阶段的旋转风动能源汇相同,辐散风动能源汇有异,即水平动能通量项和“摩擦”项符号相反;在中层(400-700hPa)  相似文献   

18.
一次强沙尘暴过程中尺度平均动能变率诊断   总被引:4,自引:4,他引:0  
利用MM5中尺度气象模式嵌套数值模拟的输出结果,计算并分析了一次强沙尘暴天气过程的中尺度动能收支,揭示了沙尘暴过程中的起沙、扬沙和输送的能量来源以及随高度的分布和演变过程。结果表明:(1)沙尘暴天气期间中尺度能量过程活跃;(2)沙尘暴过程因消耗局地动能而启动和发展,能量来源在于高空的动能转化;(3)沙尘暴天气过程中,非地转运动造成的气流穿越等压线运动是沙尘暴能量平衡过程中次重要的能汇项;(4)水平通量散度项为沙尘暴天气过程中主要的中尺度能汇;(5)垂直通量散度项为沙尘暴天气过程中的能源项。随着系统的演变,能源中心从高层向中层转移,直至后期的高层出现能汇;(6)摩擦消耗和次网格尺度效应以及计算误差R在沙尘暴天气过程中总体表现为能源项。  相似文献   

19.
我国北方地区对流层中下层臭氧收支   总被引:1,自引:0,他引:1       下载免费PDF全文
为了揭示我国北方地区对流层中下层臭氧(O3) 的形成机理以及周边地区的污染输送对我国北方地区对流层中下层O3收支的影响, 在与外场观测数据比较分析的基础上, 利用全球化学输送模式(MOZART-2) 采用收支分析方法定量分析了影响我国北方地区对流层中下层O3的各个物理化学过程。结果表明:我国北方地区对流层下层O3最重要的来源是光化学生成作用, 约占总来源的58.3%(41.5 Tg), 光化学生成反应中HO2对于O3生成的贡献最大; 最大的汇是干沉降过程, 约占总汇的43.2%(26.2Tg); 水平净输送作用对我国北方地区对流层中下层O3收支的影响非常大, 在我国北方地区对流层下层, 41.6%左右的O3来自水平净输送, 随高度增加, 水平输送影响增大, 我国北方地区对流层中层大约81.5%的O3来自水平净输送。  相似文献   

20.
在第(一)部分的基础上,进一步讨论辐散风动能和旋转风动能的收支以及这两种动能之间的转换过程。结果表明,尽管辐散风动能在总动能中所占比重很小,但它的变化与强对流天气过程的发生发展有着更为密切的关系。计算结果表明,在辐散风动能与旋转风动能的转换函数{KD,KR)中,B项(代表垂直运动与旋转风动能的垂直变化的耦合)是最大的转换项;在强对流区,反映涡管伸缩机制的A项也是一个很重要的转换项。就区域时间平均而言,有旋转风动能向辐散风动能(KR→KD)转换。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号