首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For better insight into lunar radio emissions, observations of the Moon were made during the maximal Geminids meteor shower and during the lunar eclipse without external effects. Statistical processing of the obtained data was carried out. It was found that the lunar endogenous and exogenous processes are displayed in both the seismic-emission fields and lunar nonthermal electromagnetic emissions. Both types of signals demonstrate good correlation. The seismic and electromagnetic emission processes have common periodicities, some of which determine the internal structure of the Moon. Similar regularities are expected for other bodies of the Solar System.  相似文献   

2.
Analysis of seismic signals from man-made impacts, moonquakes, and meteoroid impacts has established the presence of a lunar crust, approximately 60 km thick in the region of the Apollo seismic network; an underlying zone of nearly constant seismic velocity extending to a depth of about 1000 km, referred to as the mantle; and a lunar core, beginning at a depth of about 1000 km, in which shear waves are highly attenuated suggesting the presence of appreciable melting. Seismic velocitites in the crust reach 7 km s–1 beneath the lower-velocity surface zone. This velocity corresponds to that expected for the gabbroic anorthosites found to predominate in the highlands, suggesting that rock of this composition is the major constituent of the lunar crust. The upper mantle velocity of about 8 km s–1 for compressional waves corresponds to those of terrestrial olivines, pyroxenites and peridotites. The deep zone of melting may simply represent the depth at which solidus temperatures are exceeded in the lower mantle. If a silicate interior is assumed, as seems most plausible, minimum temperatures of between 1450°C and 1600°C at a depth of 1000 km are implied. The generation of deep moonquakes, which appear to be concentrated in a zone between 600 km and 1000 km deep, may now be explained as a consequence of the presence of fluids which facilitate dislocation. The preliminary estimate of meteoroid flux, based upon the statistics of seismic signals recorded from lunar impacts, is between one and three orders of magnitude lower than previous estimates from Earth-based measurements.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

3.
Lunar seismic data from three Apollo seismometers are interpreted to determine the structure of the Moon's interior to a depth of about 100 km. The travel times and amplitudes ofP arrivals from Saturn IV B and LM impacts are interpreted in terms of a compressional velocity profile. The most outstanding feature of the model is that, in the Fra Mauro region of Oceanus Procellarum, the Moon has a 65 km thick layered crust. Other features of the model are: (i) rapid increase of velocity near the surface due to pressure effects on dry rocks, (ii) a discontinuity at a depth of about 25 km, (iii) near constant velocity (6.8 km/s) between 25 and 65 km deep, (iv) a major discontinuity at 65 km marking the base of the lunar crust, and (v) very high velocity (about 9 km/s) in the lunar mantle below the crust. Velocities in the upper layer of the crust match those of lunar basalts while those in the lower layer fall in the range of terrestrial gabbroic and anorthositic rocks.Lamant-Doherty Geological Observatory Contribution No. 1768.  相似文献   

4.
Density models for the Moon, including the effects of temperature and pressure, can satisfy the mass and moment of inertia of the Moon and the presence of a low density crust indicated by the seismic refraction results only if the lunar mantle is chemically or mineralogically inhomogeneous. IfC/MR 2 exceeds 0.400, the inferred density of the upper mantle must be greater than that of the lower mantle at similar conditions by at least 0.1 g cm–3 for any of the temperature profiles proposed for the lunar interior. The average mantle density lies between 3.4 and 3.5 g cm–3, though the density of the upper mantle may be greater. The suggested density inversion is gravitationally unstable, but the implied deviatoric stresses in the mantle need be no larger than those associated with lunar gravity anomalies. UsingC/MR 3=0.400 and the recent seismic evidence suggesting a thin, high density zone beneath the crust and a partially molten core, successful density models can be found for a range of temperature profiles. Temperature distributions as cool as several inferred from the lunar electrical conductivity profile would be excluded. The density and probable seismic velocity for the bulk of the mantle are consistent with a pyroxenite composition and a 100 MgO/(MgO+FeO) molecular ratio of less than 80.Communication presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

5.
Seismic data from the Apollo Passive Seismic Network stations are analyzed to determine the velocity structure and to infer the composition and physical properties of the lunar interior. Data from artificial impacts (S-IVB booster and LM ascent stage) cover a distance range of 70–1100 km. Travel times and amplitudes, as well as theoretical seismograms, are used to derive a velocity model for the outer 150 km of the Moon. TheP wave velocity model confirms our earlier report of a lunar crust in the eastern part of Oceanus Procellarum.The crust is about 60 km thick and may consist of two layers in the mare regions. Possible values for theP-wave velocity in the uppermost mantle are between 7.7 km s–1 and 9.0 km s–1. The 9 km s–1 velocity cannot extend below a depth of about 100 km and must decrease below this depth. The elastic properties of the deep interior as inferred from the seismograms of natural events (meteoroid impacts and moonquakes) occurring at great distance indicate that there is an increase in attenuation and a possible decrease of velocity at depths below about 1000 km. This verifies the high temperatures calculated for the deep lunar interior by thermal history models.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

6.
In this study, transfer trajectories from the Earth to the Moon that encounter the Moon at various flight path angles are examined, and lunar approach trajectories are compared to the invariant manifolds of selected unstable orbits in the circular restricted three-body problem. Previous work focused on lunar impact and landing trajectories encountering the Moon normal to the surface, and this research extends the problem with different flight path angles in three dimensions. The lunar landing geometry for a range of Jacobi constants is computed, and approaches to the Moon via invariant manifolds from unstable orbits are analyzed for different energy levels.  相似文献   

7.
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping “hot” component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.  相似文献   

8.
《Planetary and Space Science》1999,47(3-4):397-409
The efficiency of a seismic network in providing information on the rate of seismicity, and on the inner structure of Mars, is estimated through a statistical analysis which takes into account the possible existence of a liquid core, the expected low rate of seismicity of Mars when compared to the Earths, and the attenuating properties of the mantle. The tests are performed for two frequency ranges (0.1–1.0 Hz and 0.5–2.5 Hz), for three instrumental noise amplitude densities ranging from 5 to 500×10−10 m s−2 Hz−1/2, and for three network configurations consisting of 4, 12 and 16 stations. Travel time tables are computed for P, S, PcP, ScS, and PKP phases using a simplified three layer model. Present-day estimates of liquid core radius induce a 25° wide shadow zone beginning at epicentral distances larger than 110°. Consequently, the best detection efficiency which can be expected from any network is of the order of 60% for mantle body waves. The detection efficiency is primarily controlled by the instrumental noise level. Since the amplitude of mantle body waves rapidly decreases with epicentral distance, high noise level instruments can only detect local events. Therefore, the detection score attained by 4 highly sensitive stations can be up to 30 and 7 times better than the score attained by 12 high noise level sensors, for mantle P and S waves, respectively. If crustal scattering is negligible, the record of mantle P waves on a network consisting of four low noise level instruments would permit to sample Mars mantle down to the core-mantle boundary. Conversely, the deepest penetration of rays recorded by a network of 12 high noise level sensors would hardly reach 300 km. In fact, strong crustal scattering might be the most important difficulty to be encountered in a seismic exploration of Mars. A possibility to deal with this problem would be to associate each of the four low noise instruments with three medium noise level sensors. This network strategy might permit to sample P and S mantle waves travelling down to 400–600 km, even if a lot of seismic energy is lost through crustal scattering.  相似文献   

9.
I discuss the relation between the internal structure of the Moon and the radial distribution of the moonquake foci. I believe that the important factor conditioning the radial distribution is the fact that the rigidity of the lunar material decreases with increasing depth. Using a two-layer model, solutions of the elasticity equations are found for the cases of a uniform surface load and of a uniform radial body force. The results show that when the inner sphere is less rigid than the outer shell, the maximum sheer stress is located near the boundary of the two components, thus explainning why the moonquakes are mostly deep quakes. The results also suggest that a liquid core exists in the Moon.  相似文献   

10.
Laboratory measurements of seismic wave velocities and electrical properties of Apollo lunar samples and similar material of terrestrial origin are discussed in this paper. Measurements of the electrical properties show that in the frequency range above a few hundred Hz the outer region of the Moon may be considered as a low loss dielectric. This observation supports a longstanding speculation that dry, powdered rocks in which the dielectric loss tangent is frequency-independent over a wide range of frequency are present in the uppermost lunar surface layers. The surface layers of the Moon are likely to have an extremely low electrical conductivity. Thus future electromagnetic probing of the Moon to a few hundred kilometer depth is possible in the few kHz frequency range. Based on ultrasonic experiments with pressure as a variable, we next present the elastic constants and equations of state of lunar materials and characteristic dispersion of seismic wave velocities of the Moon. We find thatP andS wave velocities increase sharply within the first 30 km depth and then level off gradually. Combining this observation with lunar seismic and geophone data, we believe that the first 30 km of the Moon may be interpreted as a scattering region. If H2O exists on the Moon, H2O may occur at some shallow depth beneath the outermost surface layer in solid ice interlocking cracks and pores and mineral grains. The rocks in this permafrost state have relatively low seismic velocity and highQ. If permafrost does exist, we would expect a wide range of electrical conductivity and dielectric constant. Future electromagnetic probing of the Moon should yield very usefull information on the physical state of the lunar interior; when this electrical information is combined with the seismic information, we should learn much more about the internal constitution and the state of the Moon than is known today.  相似文献   

11.
The lunar interior is comprised of two major petrological provinces: (1) an outer zone several hundred km thick which experienced partial melting and crystallization differentiation 4.4–4.6 b.y. ago to form the lunar crust together with an underlying complementary zone of ultramafic cumulates and residua, and (2) the primordial deep interior which was the source region for mare basalts (3.2–3.8 b.y.) and had previously been contaminated to varying degrees with highly fractionated material derived from the 4.4–4.6 b.y. differentiation event. In both major petrologic provinces, basaltic magmas have been produced by partial melting. The chemical characteristics and high-pressure phase relationships of these magmas can be used to constrain the bulk compositions of their respective source regions.Primitive low-Ti mare basalts (e.g., 12009, 12002, 15555 and Green Glass) possessing high normative olivine and high Mg and Cr contents, provide the most direct evidence upon the composition of the primordial deep lunar interior. This composition, as estimated on the basis of high pressure equilibria displayed by the above basalts, combined with other geochemical criteria, is found to consist of orthopyroxene + clinopyroxene + olivine with total pyroxenes > olivine, 100 MgO/(MgO + FeO) = 75–80, about 4% of CaO and Al2O3 and 2× chondritic abundances of REE, U and Th. This composition is similar to that of the earth's mantle except for a higher pyroxene/olivine ratio and lower 100 MgO/(MgO + FeO).The lunar crust is believed to have formed by plagioclase elutriation within a vast ocean of parental basaltic magma. The composition of the latter is found experimentally by removing liquidus plagioclase from the observed mean upper crust (gabbroic anorthosite) composition, until the resulting composition becomes multiply saturated with plagioclase and a ferromagnesian phase (olivine). This parental basaltic composition is almost identical with terrestrial oceanic tholeiites, except for partial depletion in the two most volatile components, Na2 and SiO2. Similarity between these two most abundant classes of lunar and terrestrial basaltic magmas strongly implies corresponding similarities between their source regions. The bulk composition of the outer 400 km of the Moon as constrained by the 4.6-4.4 b.y. parental basaltic magma is found to be peridotitic, with olivine > pyroxene, 100 MgO/ (MgO + FeO) 86, and about 2× chondritic abundances of Ca, Al and REE. The Moon thus appears to have a zoned structure, with the deep interior (below 400 km) possessing somewhat higher contents of FeO and SiO2 than the outer 400 km. This zoned model, derived exclusively on petrological grounds, provides a quantitative explanation of the Moon's mean density, moment of inertia and seismic velocity profile.The bulk composition of the entire Moon, thus obtained, is very similar to the pyrolite model composition for the Earth's mantle, except that the Moon is depleted in Na (and other volatile elements) and somewhat enriched in iron. The similarity in major element composition extends also to the abundances of REE, U and Th. These compositional similarities, combined with the identity in oxygen isotope ratios between the Moon and the Earth's mantle, are strongly suggestive of a common genetic relationship.  相似文献   

12.
Data relevant to the shallow structure of the Moon obtained at the Apollo seismic stations are compared with previously published results of the active seismic experiments. It is concluded that the lunar surface is covered by a layer of low seismic velocity (V p ? 100 m s?1), which appears to be equivalent to the lunar regolith defined previously by geological observations. This layer is underlain by a zone of distinctly higher seismic velocity at all of the Apollo landing sites. The regolith thicknesses at the Apollo 11, 12, and 15 sites are estimated from the shear-wave resonance to be 4.4, 3.7, and 4.4 m, respectively. These thicknesses and those determined at the other Apollo sites by the active seismic experiments appear to be correlated with the age determinations and the abundances of extralunar components at the sites.  相似文献   

13.
In a series of previous papers, a petrological model for the Moon has been developed based on the assumption that the Moon is a globe of differentiated terrestrial mantle material which fissioned from the Earth. One of the major constraints which this model matches is the hypothesis that the lunar upper mantle is dominated by pyroxene. However, it has been recently shown that olivine is most probably the major constituent of the lunar upper mantle and that, at least that part of the Moon has a composition which is very similar to that of pyrolite - the proposed composition of the Earth's mantle. As a result of this new model constraint, the previously proposed differentiation scheme for a Moon of fission origin is reviewed and found to be inadequate, despite modification, for explaining the near pyrolite composition of the lunar upper mantle. As a result, a solidification sequence, which has been proposed to explain the rhythmic banding in terrestrial ultra mafic complexes, is investigated and found to be able to account for the high olivine content of the upper mantle, assuming a pyrolite composition for the Moon.  相似文献   

14.
T.V. Gudkova  Ph. Lognonné 《Icarus》2011,211(2):1049-1065
Meteoroid impacts are important seismic sources on the Moon. As they continuously impact the Moon, they are a significant contribution to the lunar micro-seismic background noise. They also were associated with the most powerful seismic sources recorded by the Apollo seismic network. We study in this paper the largest impacts. We show that their masses can be estimated with a rather simple modeling technique and that high frequency seismic signals have reduced amplitudes due to a relatively low (about 1 s) corner frequency resulting from the duration of the impact process and the crater formation. If synthetic seismograms computed for a spherical model of the Moon are unable to match the waveforms of the observations, they nevertheless provide an approximate measure of the energy of seismic waves in the coda. The latter can then be used for an estimation of the mass of the impactors, when the velocity of the impactor is known. This method, for the artificial impacts of the LM and SIVB Apollo upper stages, allows us to retrieve the mass within 20% of relative error. The estimated mass of the largest impacts observed during the 7 years of activity of the Apollo seismic network provides an explanation for the non-detection of surface waves on the seismograms. The specifications of future Moon seismometers, in order to provide the detection of surface waves, are given in conclusion.  相似文献   

15.
In the present study an investigation of the collision orbits of natural satellites of the Moon (considered to be of finite dimensions) is developed, and the tendency of natural satellites of the Moon to collide on the visible or the far side of the Moon is studied. The collision course of the satellite is studied up to its impact on the lunar surface for perturbations of its initial orbit arbitrarily induced, for example, by the explosion of a meteorite. Several initial conditions regarding the position of the satellite to collide with the Moon on its near (visible) or far (invisible) side is examined in connection to the initial conditions and the direction of the motion of the satellite. The distribution of the lunar craters-originating impact of lunar satellites or celestial bodies which followed a course around the Moon and lost their stability - is examined. First, we consider the planar motion of the natural satellite and its collision on the Moon's surface without the presence of the Earth and Sun. The initial velocities of the satellite are determined in such a way so its impact on the lunar surface takes place on the visible side of the Moon. Then, we continue imparting these velocities to the satellite, but now in the presence of the Earth and Sun; and study the forementioned impacts of the satellites but now in the Earth-Moon-Satellite system influenced also by the Sun. The initial distances of the satellite are taken as the distances which have been used to compute periodic orbits in the planar restricted three-body problem (cf. Gousidou-Koutita, 1980) and its direction takes different angles with the x-axis (Earth-Moon axis). Finally, we summarise the tendency of the satellite's impact on the visible or invisible side of the Moon.  相似文献   

16.
Moonquakes and lunar tectonism   总被引:1,自引:0,他引:1  
With the succesful installation of a geophysical station at Hadley Rille, on July 31, 1971, on the Apollo 15 mission, and the continued operation of stations 12 and 14 approximately 1100 km SW, the Apollo program for the first time achieved a network of seismic stations on the lunar surface. A network of at least three stations is essential for the location of natural events on the Moon. Thus, the establishment of this network was one of the most important milestones in the geophysical exploration of the Moon. The major discoveries that have resulted to date from the analysis of seismic data from this network can be summarized as follows:
  1. Lunar seismic signals differ greatly from typical terrestrial seismic signals. It now appears that this can be explained almost entirely by the presence of a thin dry, heterogeneous layer which blankets the Moon to a probable depth of few km with a maximum possible depth of about 20 km. Seismic waves are highly scattered in this zone. Seismic wave propagation within the lunar interior, below the scattering zone, is highly efficient. As a result, it is probable that meteoroid impact signals are being received from the entire lunar surface.
  2. The Moon possesses a crust and a mantle, at least in the region of the Apollo 12 and 14 stations. The thickness of the crust is between 55 and 70 km and may consist of two layers. The contrast in elastic properties of the rocks which comprise these major structural units is at least as great as that which exists between the crust and mantle of the earth. (See Toks?zet al., p. 490, for further discussion of seismic evidence of a lunar crust.)
  3. Natural lunar events detected by the Apollo seismic network are moonquakes and meteoroid impacts. The average rate of release of seismic energy from moonquakes is far below that of the Earth. Although present data do not permit a completely unambiguous interpretation, the best solution obtainable places the most active moonquake focus at a depth of 800 km; slightly deeper than any known earthquake. These moonquakes occur in monthly cycles; triggered by lunar tides. There are at least 10 zones within which the repeating moonquakes originate.
  4. In addition to the repeating moonquakes, moonquake ‘swarms’ have been discovered. During periods of swarm activity, events may occur as frequently as one event every two hours over intervals lasting several days. The source of these swarms is unknown at present. The occurrence of moonquake swarms also appears to be related to lunar tides; although, it is too soon to be certain of this point.
These findings have been discussed in eight previous papers (Lathamet al., 1969, 1970, 1971) The instrument has been described by Lathamet al. (1969) and Sutton and Latham (1964). The locations of the seismic stations are shown in Figure 1.  相似文献   

17.
In this article, we discuss four fundamental scientific problems of lunar research: (1) lunar chronology, (2) the internal structure of the Moon, (3) the lunar polar regions, and (4) lunar volcanism. After formulating the scientific problems and their components, we proceed to outlining a list of technical solutions and priority lunar regions for research. Solving the listed problems requires investigations on the lunar surface using lunar rovers, which can deliver a set of analytical equipment to places where geological conditions are known from a detailed analysis of orbital information. The most critical research methods, which can answer some of the key questions, are analysis of local geological conditions from panoramic photographs, determination of the chemical, isotopic, and mineral composition of the soil, and deep seismic sounding. A preliminary list is given of lunar regions with high scientific priority.  相似文献   

18.
We developed a seismometer system for a hard landing “penetrator” probe in the course of the former Japanese LUNAR-A project to deploy new seismic stations on the Moon. The penetrator seismometer system (PSS) consists of two short-period sensor components, a two-axis gimbal mechanism for orientation, and measurement electronics. To carry out seismic observations on the Moon using the penetrator, the seismometer system has to function properly in a lunar environment after a hard landing (impact acceleration of about 8000 G), and requires a signal-to-noise ratio to detect lunar seismic events. We evaluated whether the PSS could satisfactorily observe seismic events on the Moon by investigating the frequency response, noise level, and response to ground motion of our instrument in a simulated lunar environment after a simulated impact test. Our results indicate that the newly developed seismometer system can function properly after impact and is sensitive enough to detect seismic events on the Moon. Using this PSS, new seismic data from the Moon can be obtained during future lunar missions.  相似文献   

19.
This study uses experimentally determined plagioclase‐melt D values to estimate the trace element concentrations of Sr, Hf, Ga, W, Mo, Ru, Pd, Au, Ni, and Co in a crystallizing lunar magma ocean at the point of plagioclase flotation. Similarly, experimentally determined metal‐silicate partition experiments combined with a composition model for the Moon are used to constrain the concentrations of W, Mo, Ru, Pd, Au, Ni, and Co in the lunar magma ocean at the time of core formation. The metal‐silicate derived lunar mantle estimates are generally consistent with previous estimates for the concentration of these elements in the lunar mantle. Plagioclase‐melt derived concentrations for Sr, Ga, Ru, Pd, Au, Ni, and Co are also consistent with prior estimates. Estimates for Hf, W, and Mo, however, are higher. These elements may be concentrated in the residual liquid during fractional crystallization due to their incompatibility. Alternatively, the apparent enrichment could reflect the inappropriate use of bulk anorthosite data, rather than data for plagioclase separates.  相似文献   

20.
The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be ~12.5 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15° × 15 ° region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3° east along the ecliptic per night. Preliminary modeling results suggest the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution. Future observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号