首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
Summary  Mesosphere-Stratosphere-Troposphere (MST) Radar wind data for the period June through September 1996 have been examined to study vertical variation of Madden-Jullian Oscillations in wind and eddy kinetic energy (eke) in the normal monsoon season. The domain of analysis in the vertical is from 6 to 20 km with a height resolution of 150 m. Fast-Fourier-Transformation (FFT) has been applied to zonal (u), meridional(v) components of wind to extract the Madden-Jullian oscillations and eke. There are three dominant modes viz., 50–70, 30–40 and 10–20 day periodicity, which contain considerable fraction of energy and show high degree of vertical variability. The peak amplitude of 50–70 day mode in u, 30–40 mode in v and eke were observed at 16–17 km just below the tropopause level. The peak amplitudes of 30–40 day mode in u and 50–70 day mode in v were found in the height region of 13–16 km. To understand the origin and propagation of these waves, wave energy is calculated. The wave energy is higher at tropospheric heights than at lower stratospheric heights indicating that the origin of these waves is in the troposphere, and a part of the energy leaks into the stratosphere. Received September 17, 1998/Revised September 26, 1999  相似文献   

2.
基于秒级探空资料分析四川重力波统计特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用2014年6月-2017年9月的秒级探空资料,选取四川地区5个代表性站点研究重力波在对流层(2~10 km)和平流层(18~25 km)的时空特征。选取结果表明:重力波能量在四川地区各个高度均存在明显的季节变化,冬季强,夏季弱;在对流层由于地形影响,川西和川北高原地区的能量小于其他地区。垂直波长没有明显的时空变化,在对流层和平流层分别集中分布于1.5~3 km和1.5~3.5 km;水平波长则差别较大,分别分布于0~300 km和100~700 km,平均值分别为100 km和350 km。重力波固有频率在对流层有较大的区域差异,表现为在四川西北部的高原地区固有频率平均值为3f(f为地转参数),其他地区则仅为2.4f;平流层则没有明显的差异存在,均约为2f。四川地区重力波的垂直传播方向特征基本相同,在对流层约有50%的波动向上传播,平流层则有90%以上的波动向上传播。水平传播则存在明显的不确定性,特别是对流层;平流层水平传播方向存在明显的季节变化,表现为夏季重力波多向偏东方向传播,而其他季节则向偏西方向传播。  相似文献   

3.
Summary. ?A hydrostatic numerical model is used to simulate the lee wave event IOP3 (0000 GMT to 1200 GMT 15th October 1990) from the PYREX mountain experiment. Results from integrations at different horizontal resolutions are used to investigate the effect on surface pressure drag and the vertical flux of horizontal momentum due to orographically forced gravity waves. In particular, results showing the dependence on resolution of the partitioning between resolved and parametrized wave drag and fluxes are presented. With the model horizontal gridlength changing from 50 km to 10 km the majority of wave momentum flux changes from being parametrized to becoming resolved. More significantly, there is a change in the profile of flux with height. At 50 km resolution the largest inferred mean flow decelerations are at lower stratospheric level due to the parametrization scheme. At 10 km resolution this is shifted, with less deceleration high up and more wave deceleration lower down in the troposphere. Numerical weather prediction models are now beginning to take account of such low level drag with beneficial results. Received March 2, 1999/Revised July 15, 1999  相似文献   

4.
青藏高原红原站平流层下部重力波观测特征分析   总被引:2,自引:0,他引:2  
张灵杰  林永辉 《气象科技》2011,39(6):768-771
利用位处青藏高原的红原探空站2008年5月垂直高分辨率的无线电探空资料分析了其上空下平流层(19~26 km)重力波的波动特性.结果表明:重力波的垂直波长主要集中在2~4 km之间,平均值约为2.9 km;水平波长主要集中在100~600 km之间,平均值约为311 km;固有频率主要集中在1.5f~3.5f(f为科氏...  相似文献   

5.
Height, time, and latitude dependences are analyzed of zonal mean vertical component of wind velocity for the period of 1992–2006 from the UKMO atmospheric general circulation model. It is shown that the ascending wind speed can provide vertical transport, against gravity, of rather large (up to 3–5μm) aerosol particles with density to 1.0–1.5 g/cm3 in the stratosphere and mesosphere. The wind velocity vertical component is supposedly a significant factor of particle motion up to 30–40–km levels and can affect sedimentation rate and residence time of the aerosol particles in the stratosphere. Structure of the mean vertical component of wind velocity allows occurrence of dynamically stable aerosol layers in the middle stratosphere.  相似文献   

6.
Using the monthly mean NCEP/NCAR reanalysis dataset, the three-dimensional Eliassen-Palm (EP) fluxes of quasi-stationary wave propagation in the lower stratosphere were computed for each month from November to March for the period from 1958 to 2007. It is shown that the upward planetary wave propagation from the troposphere to the stratosphere generally occurs over the northern Eurasia, while their weak downward propagation is observed in Labrador and southern Greenland regions in the lower stratosphere. Interannual variations of the vertical EP fluxes also have the dipole-like spatial pattern with the opposite anomalies in the West and East hemispheres which are most prominent in January–February. Significant differences in the interaction of the zonal circulation of the stratosphere in the beginning of winter (November–December) and mid-to-late winter (January–March) are revealed. Intensification of the planetary waves’ penetration into the stratosphere in December causes changes in the stratospheric dynamics, creating the “preconditions” for the stratospheric warming appearances in January, but such a mechanism is not detected in February. In the years with the cold polar vortex, the “stratospheric bridge” is formed with the strengthening of the upward EP flux over the northern Eurasia and downward EP flux over the North Atlantic.  相似文献   

7.
Characteristics and sources of inertia-gravity waves are investigated using high-resolution radiosonde data observed at ten stations in Korea during 15 June to 15 July 2007. The wave analyses are performed in the lower stratospheric region (Z = 17–30 km). The average intrinsic frequency, vertical wavelength, and horizontal wavelength for the observed waves are 2.77f (where f is the Coriolis parameter), 2.58 km, and 620.11 km, respectively. The average eastward and westward momentum fluxes are 0.005 m2 s?2 and ?0.003 m2 s?2, respectively, and the average northward and southward momentum fluxes are 0.007 m2 s?2 and ?0.002 m2 s?2, respectively. To understand the propagation and the sources of the observed gravity waves, a three-dimensional ray-tracing model is used. The observed gravity waves are classified into two groups based on the existence of convection when and where the rays reach altitudes of 6–13 km. Sources are mostly located in the northeast and southeast of the observation stations below Z = 5 km for the convection-related cases (CONV), while those for the other cases (NCONV) are located in the northeast and southeast of the observation stations above Z = 20 km. The average intrinsic frequency and vertical wavelength of the CONV cases are somewhat larger than those of the NCONV cases. The average potential, kinetic, and total wave energies of the CONV cases are less than those of the NCONV cases.  相似文献   

8.
Summary Umkehr observations taken during the 1957–2000 period at 15 stations located between 19 and 52° N have been reanalyzed using a significantly improved algorithm-99, developed by DeLuisi and Petropavlovskikh et al. (2000a,b). The alg-99 utilizes new latitudinal and seasonally dependent first guess ozone and temperature profiles, new vector radiative transfer code, complete aerosol corrections, gravimetric corrections, and others. Before reprocessing, all total ozone values as well as the N-values (radiance) readings were thoroughly re-evaluated. For the first time, shifts in the N-values were detected and provisionally corrected. The re-evaluated Umkehr data set was validated against satellite and ground based measurements. The retrievals with alg-99 show much closer agreement with the lidar and SAGE than with the alg-92. Although the latitudinal coverage is limited, this Umkehr data set contains ∼ 44,000 profiles and represent the longest (∼ 40 years) coherent information on the ozone behavior in the stratosphere of the Northern Hemisphere. The 14-months periods following the El-Chichon and the Mt. Pinatubo eruptions were excluded from the analysis. Then the basic climatological characteristics of the vertical ozone distribution in the 44–52° N and more southern locations are described. Some of these characteristics are not well known or impossible to be determined from satellites or single stations. The absolute and relative variability reach their maximum during winter–spring at altitudes below 24 km; the lower stratospheric layers in the middle latitudes contain ∼ 62% of the total ozone and contribute ∼ 57% to its total variability. The layer-5 (between ∼ 24 and 29 km) although containing 20% of the total ozone shows the least fluctuations, no trend and contributes only ∼ 11% to the total ozone variability. Meridional cross-sections from 19 to 52° N of the vertical ozone distribution and its variability illustrate the changes, and show poleward-decreasing altitude of the ozone maximum. The deduced trends above 33 km confirm a strong ozone decline since the mid-1970s of over 5% per decade without significant seasonal differences. In the mid-latitude stations, the decline in the 15–24 km layer is nearly twice as strong in the winter-spring season but much smaller in the summer and fall. The effect of including 1998 and 1999 years with relatively high total ozone data reduces the overall-declining trend. The trends estimated from alg-99 retrievals are statistically not significantly different from those in WMO 1998a; however, they are stronger by about 1% per decade in the lower stratosphere and thus closer to the estimates by sondes. Comparisons of the integrated ozone loss from the Umkehr measurements with the total ozone changes for the same periods at stations with good records show complete concurrence. The altitude and latitude appearances of the long-term geophysical signals like solar (1–2%) and QBO (2–7%) are investigated. Received April 12, 2001 Revised September 19, 2001  相似文献   

9.
A climatology of the stratosphere is determined from a 20-year integration with the stratospheric version of the Atmospheric General Circulation Model LMDz. The model has an upper boundary at near 65 km, uses a Doppler spread non-orographic gravity waves drag parameterization and a subgrid-scale orography parameterization. It also has a Rayleigh damping layer for resolved waves only (not the zonal mean flow) over the top 5 km. This paper describes the basic features of the model and some aspects of its radiative-dynamical climatology. Standard first order diagnostics are presented but some emphasis is given to the model’s ability to reproduce the low frequency variability of the stratosphere in the winter northern hemisphere. In this model, the stratospheric variability is dominated at each altitudes by patterns which have some similarities with the arctic oscillation (AO). For those patterns, the signal sometimes descends from the stratosphere to the troposphere. In an experiment where the parameterized orographic gravity waves that reach the stratosphere are exaggerated, the model stratosphere in the NH presents much less variability. Although the stratospheric variability is still dominated by patterns that resemble to the AO, the downward influence of the stratosphere along these patterns is near entirely lost. In the same time, the persistence of the surface AO decreases, which is consistent with the picture that this persistence is linked to the descent of the AO signal from the stratosphere to the troposphere. A comparison between the stratospheric version of the model, and its routinely used tropospheric version is also done. It shows that the introduction of the stratosphere in a model that already has a realistic AO persistence can lead to overestimate the actual influence of the stratospheric dynamics onto the surface AO. Although this result is certainly model dependent, it suggests that the introduction of the stratosphere in a GCM also call for a new adjustment of the model parameters that affect the tropospheric variability.  相似文献   

10.
The effect of the stratospheric ozone depletion on the thermal and dynamical structure of the middle atmosphere is assessed using two 5-member ensembles of transient GCM simulations; one including linear trends in ozone, the other not, for the 1980–1999 period. Simulated temperatures and observations are in good agreement in terms of mean values, autocorrelations and cross correlations. Annual-mean and seasonal temperature trends have been calculated using the same statistical analysis. Simulations show that ozone trends are responsible for reduced wave activity in the Arctic lower stratosphere in February and March, confirming both the role of dynamics in controlling March temperatures and a recently proposed mechanism whereby Arctic ozone depletion causes the reduction in wave activity entering the lower stratosphere. Changes in wave activity are consistent with an intensification of the polar vortex at the time of ozone depletion and with a weakened Brewer–Dobson circulation: A decrease of the dynamical warming/cooling associated with the descending/ascending branch of the wintertime mean residual circulation at high/low latitudes has been obtained through the analysis of temperature observations (1980–1999). Ozone is responsible of about one third of the decrease of this dynamical cooling at high latitudes. An increase in the residual mean circulation is seen in the observations for the 1965–1980 period.  相似文献   

11.
The present study for the first time reports the global gravity wave activity in terms of their potential energy derived from TIMED/SABER observations right from the stratosphere to the mesosphere lower thermosphere (MLT) region. The potential energy profiles obtained from SABER temperature are validated by comparing them with ground based LIDAR observations over a low latitude site, Gadanki (13.5° N, 79.2° E). The stratospheric and mesospheric global maps of gravity wave energy showed pronounced maxima over high and polar latitudes of the winter hemisphere. The interannual variability of the stratospheric gravity wave activity exhibited prominent annual oscillation over mid-latitudes. The equatorial gravity wave activity exhibited quasi-biennial oscillation in the lower stratosphere and semi-annual oscillation in the upper stratosphere. The MLT region maps revealed summer hemispheric maxima over polar latitudes and secondary maxima over the equatorial region. The results are discussed in the light of present understanding of global gravity wave observations. The significance of the present study lies in emphasizing the importance of satellite measurements in elucidating gravity waves, which is envisaged to have profound impact on parameterizing these waves.  相似文献   

12.
The momentum flux of stratospheric gravity waves generated by Typhoon Ewiniar (2006) is examined using a Weather Research and Forecasting (WRF) model. In the stratosphere, zonal momentum flux with a positive sign by eastward-propagating waves is significant during the northward moving of the typhoon, while both zonal and meridional momentum fluxes with positive signs are significant during the typhoon decaying stage in which the typhoon moves northeastward. The magnitude of the momentum flux is greater during the mature stage of the typhoon than the decaying stage, and the phase speeds of the dominant momentum flux are less than 30 m s?1 with a peak at 10–16 m s?1. Positive momentum flux decreases with height overall in the stratosphere for both zonal and meridional components. The resultant gravity-wave drag forcing plays a role to decelerate the easterly background wind in the stratosphere. This drag forcing is relatively large above z = 40 km and below z = 20 km, and lower stratospheric wave drag is expected to affect the typhoon dynamics by modifying the background wind shear and inducing the secondary circulation in the troposphere.  相似文献   

13.
Summary The application of principal components and cluster analysis to vertical ozone concentration profiles in Tsukuba, Japan, has been explored. Average monthly profiles and profiles of the ratio between standard deviation and the absolute ozone concentration (SDPR) of 1 km data were calculated from the original ozone concentration data. Mean (first) and gradient (second) components explained more than 80% of the variation in both the 0–6 km tropospheric and 11–20 km troposphere–stratosphere (interspheric) layers. The principal components analysis not only reproduced the expected inverse relationship between mean ozone concentration and tropopause height (r 2 = 0.41) and that in the tropospheric layer this is larger in spring and summer, but also yielded new information as follows. The larger gradient component score in summer for the interspheric layer points to the seasonal variation of the troposphere–stratosphere exchange. The minimum SDPR was at about 3 km in the tropospheric layer and the maximum was at about 17 km in the interspheric layer. The tropospheric SDPR mean component score was larger in summer, possibly reflecting the mixing of Pacific maritime air masses with urban air masses. The cluster analysis of the monthly ozone profiles for the 1970s and 2000s revealed different patterns for winter and summer. The month of May was part of the winter pattern in the 1970s but part of the summer pattern during the 2000s. This statistically detected change likely reflects the influence of global warming. Thus, these two statistical analysis techniques can be powerful tools for identifying features of ozone concentration profiles. Authors’ addresses: S. Yonemura, S. Kawashima, S. Inoue, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0031, Japan; H. Matsueda, Y. Sawa, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan; H. Tanimoto, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.  相似文献   

14.
重力波参数气候特征是确定大气模式中重力波参数化方案的重要条件之一,高垂直分辨率探空资料扰动场是获取重力波参数气候特征的基础数据;目前,获取扰动场的方法较多,但基于不同方法计算的扰动场对重力波参数气候特征影响的研究较少。基于2014—2017年山西太原气象台高垂直分辨率探空资料,利用2—4阶曲线拟合方法获取下平流层(17—24 km高度)温度扰动场、纬向风扰动场和经向风扰动场,经统计发现2阶与3阶曲线拟合方法的扰动场相似程度较高;在此选取相似度较高的2阶、3阶曲线拟合方法的扰动场分别计算大气重力波参数,并对大气重力波参数间的气候差异特征进行研究。结果表明:(1)不同阶曲线拟合方法扰动场的变化振幅及随高度变化趋势存在差异,且扰动场间的相关较弱;(2)2阶、3阶曲线拟合方法扰动场得到的重力波参数大小、年内变化趋势及在不同区间范围内占有率均存在差异,且相关较弱;(3)1—12月,相对3阶曲线拟合方法的扰动场,基于2阶曲线拟合方法的扰动场得到的重力波群速、水平波长、垂直波长、周期、固有相速均较大,而重力波能量上传百分比在某些月份较大。因此,不同阶曲线拟合方法扰动场间存在差异,会导致计算得到的大气重力波参数气候特征存在差异,最终对研制大气模式中的大气重力波参数化方案产生影响。   相似文献   

15.
Summary.  Using 9 years (1985–1993) data, final stratospheric warmings in the Southern Hemisphere are studied. Interannual variations in the onset date and the temperatures are noted. In 1985 the stratosphere was colder by about 5 K and the wave activity was less. This year the final warming got delayed. In contrast in 1988 the final warming occurred earlier when compared with the mean picture and the wave activity was more. An examination of Eliassen-Palm fluxes showed the important role of planetary waves in the wave-mean flow interaction. In the energetics the most spectacular change is the reduction of zonal kinetic energy. Before the warming the energy exchanges were Pz → Pe → Ke → Kz ← Pz and after the warming they were Pz ← Pe ← Ke → Kz ← Pz. The dramatic reduction of zonal kinetic energy seems to be due to two effects: the reduction in Ke → Kz conversion and the weakening of direct meridional circulation. Received October 3, 2001; revised June 5, 2002  相似文献   

16.
本文采用一个关于大气定常波的16层线性化原始方程三维谱模式,研究了冬季平流层大气对于对流层各种定常大尺度热力强迫的响应。研究结果表明,对流层中的热力强迫作用对于冬季平流层中垂直向上传播的行星定常波的维持有显著的贡献,平流层中强迫扰动的水平结构及其与对流层中扰动的差异与加热场的垂直结构有密切的关系。相对于强度和空间结构相同的强迫源而言,中纬强迫对于平流层的作用比低纬强迫更为显著。  相似文献   

17.
 NCEP/NCAR and ECMWF daily reanalyses are used to investigate the synoptic variability of easterly waves over West Africa and tropical Atlantic at 700 hPa in northern summer between 1979–1995 (1979–1993 for ECMWF). Spectral analysis of the meridional wind component at 700 hPa highlighted two main periodicity bands, between 3 and 5 days, and 6 and 9 days. The 3–5-day easterly wave regime has already been widely investigated, but only on shorter datasets. These waves grow both north and south of the African Easterly Jet (AEJ). The two main tracks, noted over West Africa at 5 °N and 15 °N, converge over the Atlantic on latitude 17.5 °N. These waves are more active in August–September than in June–July. Their average wavelength/phase speed varies from about 3000 km/8 m s-1 north of the jet to 5000 km/12 m s-1 south of the jet. Rainfall, convection and monsoon flux are significantly modulated by these waves, convection in the Inter-Tropical Convergence Zone (ITCZ) being enhanced in the trough and ahead of it, with a wide meridional extension. Compared to the 3–5-day waves, the 6–9-day regime is intermittent and the corresponding wind field pattern has both similar and contrasting characteristics. The only main track is located north of the AEJ along 17.5 °N both over West Africa and the Atlantic. The mean wavelength is higher, about 5000 km long, and the average phase speed is about 7 m s-1. Then the wind field perturbation is mostly evident at the AEJ latitude and north of it. The perturbation structure is similar to that of 3–5-days in the north except that the more developed circulation centers, moving more to the north, lead to a large modulation of the jet zonal wind component. South of the AEJ, the wind field perturbation is weaker and quite different. The zonal wind core of the jet appears to be an almost symmetric axis in the 6–9-day wind field pattern, a clockwise circulation north of the AEJ being associated with a counter-clockwise circulation south of the jet, and vice versa. These 6–9-day easterly waves also affect significantly rainfall, convection and monsoon flux but in a different way, inducing large zonal convective bands in the ITCZ, mostly in the trough and behind it. As opposed to the 3–5-day wave regime, these rainfall anomalies are associated with anomalies of opposite sign over the Guinea coast and the Sahelian regions. Over the continent, these waves are more active in June–July, and in August–September over the ocean. GATE phase I gave an example of such an active 6–9-day wave pattern. Considered as a sequence of weak easterly wave activity, this phase was also a sequence of high 6–9-day easterly wave activity. We suggest that the 6–9-day regime results from an interaction between the 3–5-day easterly wave regime (maintained by the barotropic/baroclinic instability of the AEJ), and the development of strong anticyclonic circulations, north of the jet over West Africa, and both north and south of the jet over the Atlantic, significantly affecting the jet zonal wind component. The permanent subtropical anticyclones (Azores, Libya, St Helena) could help initiation and maintenance of such regime over West Africa and tropical Atlantic. Based on an a priori period-band criterion, our synoptic classification has enabled us to point out two statistical and meteorological easterly wave regimes over West Africa and tropical Atlantic. NCEP/NCAR and ECMWF reanalyses are in good agreement, the main difference being a more developed easterly wave activity in the NCEP/NCAR reanalyses, especially for the 3–5-day regime over the Atlantic. Received: 28 May 1998 / Accepted: 2 May 1999  相似文献   

18.
The main goals of this work are climatological analysis of characteristics of vertical wind in the stratosphere and estimation of potential opportunities of its influence on stratospheric aerosol particles. High-altitude, temporal, and latitude dependences of zonal mean vertical wind velocity for the period of 1992?C2006 from the UKMO atmospheric general circulation model are analyzed. It is shown that monthly averaged amplitudes of the vertical wind are approximately ±5?mm/s, while annual averaged ones are ±1?mm/s. The upward wind can provide the vertical lifting against gravity for sufficiently large (up to 3?C5???m) aerosol particles with a density up to 1.0?C1.5?g/cm3 at stratospheric and mesospheric altitudes. The vertical wind, probably, is a substantial factor for particle motion up to altitudes of 30?C40?km and can change essentially the sedimentation velocities and the residence times of stratospheric aerosols. The structure of the averaged fields of vertical wind supposes the opportunity of formation of dynamically stable aerosol layers in the middle stratosphere. With the problem regarding the action of a permanent source of monodisperse particles near the stratopause taken as an example, it is shown that if the action of the averaged vertical component is taken into account along with the gravitational sedimentation and turbulent diffusion, the standard vertical profiles of the relative concentration of particles change cardinally. Estimations for the levitation heights for particles of different densities and sizes in the stratosphere under action of gravity and vertical wind pressure are presented.  相似文献   

19.
孙淑清 《气象学报》1964,34(4):397-408
本文利用平流层平均温压场的资料,用定常情况下的热力方程计算了1958年1月份北半球平流层各层(10—200毫巴)的冷热源分布。发现平流层中层的冷热源分布和流场一样,是以波数为1,2的超长波系统占优势的。文中还讨论了这些大尺度冷热源的地理分布以及它们和气压系统相互配置的关系。 为了计算平流层中与垂直运动相平衡的加热分量,本文提出了一个把涡度方程自大气顶向下逐层积分的计算垂直运动的新方法。结果证明,这种计算方法对于计算平流层的垂直运动是比较适宜的。  相似文献   

20.
Using a database of spectra collected with an airborne infrared spectrometer between 1978 and 2005, the longest record of this type, we have searched for a temporal trend in the stratospheric OCS amount. The total column above 200 hPa, in latitudes from 30° to 60°N, shows a change of about 0.77 ± 0.80% per year relative to the 2010 value which is 1.34 × 1015 molecules cm−2; thus not a significant change. Observations are made from the base of the stratosphere and are uniquely suited to determining the stratospheric OCS abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号