首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An analytical expression is derived for the cutoff rigidity of cosmic rays arriving at a point in an arbitrary direction, when the main geomagnetic field is approximated by that of an eccentric dipole. This expression is used to determine changes in geomagnetic cutoffs due to secular variation of the geomagnetic field since 1835. Effects of westward drift of the quadrupole field and decrease in the effective dipole moment are seen in the isorigidity contours. On account of the immense computer time required to determine the cutoff rigidities more accurately using the particle trajectory tracing technique, the present formulation may be useful in estimating the transmission factor of the geomagnetic field in cosmic ray studies, modulation of cosmogenic isotope production by geomagnetic secular variation, and the contribution of geomagnetic field variation to long term changes in climate through cosmic ray related modulation of the current flow in the global electric circuit.  相似文献   

2.
Based on the multiplied neutron registration with the Magadan neutron monitor, the parameters of the spectrum of variations in the cosmic ray hardness and variation in geomagnetic cutoff rigidity for Forbush decreases and intensity increases, related to registration at a level of solar cosmic ray observation, have been determined using the spectrographic method. Results of an analysis indicate that the spectral index (represented in the power form) increases for Forbush decreases and decreases for increases in CR intensity. In the analyzed cases, geomagnetic cutoff rigidity decreases for intensity increases and Forbush decreases.  相似文献   

3.
地磁截止刚度是定量衡量地球磁场对高能粒子屏蔽效应的参数,描述了高能粒子穿越磁层到达指定观测点的带电粒子刚度阈值.人们一直研究垂直方向上的截止刚度,但对作为方向函数的截止刚度,缺少详细研究.我们使用单粒子方法,倒向追踪粒子的运动状态,计算了近地空间不同投掷角度的高能粒子地磁截止刚度,研究发现:(1)天顶方向或者垂直方向的...  相似文献   

4.
Over the last two decades, models of the Earth’s magnetospheric magnetic field have been continuously improved to describe more precisely the different magnetospheric current systems (magnetopause current, symmetric and partial ring currents, tail currents and field aligned currents). In this paper we compare the different Tsyganenko models and the Alexeev and Feldstein model in the context of cosmic ray physics. We compare the vertical cutoff rigidity and asymptotic direction of vertical incidence obtained with these models for the January 20, 2005, ground level enhancement and for the big magnetic storm of April 6, 2000. For the event of January 20, 2005, we study the impact of the differences in asymptotic direction obtained with the models on the radiation dose computation at aircraft altitude. For the magnetic storm of April 6, 2000, we discuss the importance of the different magnetospheric current systems in causing cutoff rigidity variations. Finally we summarise the advantages and drawbacks of the different models in the context of space weather.  相似文献   

5.
The variations in the geomagnetic cutoff rigidity in Irkutsk, Alma-Ata, and Beijing in October–November 2003 were calculated using ground-based measurements of cosmic ray intensity from the worldwide network of stations and GOES spacecraft. The calculated variations in geomagnetic cutoff rigidity are presented together with D st variations of the geomagnetic field. The obtained results are compared to calculations performed using the Tsyganenko model of the magnetosphere.  相似文献   

6.
Recent analysis of monthly mean cloud data from the International Satellite Cloud Climatology Project uncovered a strong correlation between low cloud and the cosmic ray flux for extensive regions of the Earth. Additional data have been recently released covering the period up to September 2001 with which we have made a new study of the geographical variation of the correlation between low cloud and predicted ionization level from cosmic rays at an altitude of 2 km. When analysed globally, we find that the correlations do not correspond to the latitude variation of cosmic ray flux and they are not field significant. Nonetheless they appear to be marginally field significant over broad latitude and longitude bands with a peak positive correlation at 50 degrees North and South and a tendency to negative correlation at lower latitudes. The correlation is strongest over the North and South Atlantic. Several of these features are consistent with the predictions of the electroscavenging process.We use a simple model to calculate the climatic impact should the correlation be confirmed. We show that, under the most favorable conditions, a reduction in low cloud cover since the late 19th century, combined with the direct forcing by solar irradiance can explain a significant part of the global warming over the past century, but not all. However, this computation assumes that there is no feedback or changes in cloud at other levels.  相似文献   

7.
Variations in the cosmic ray intensity (specifically, Forbush effects) and in the geomagnetic cutoff rigidity planetary system during powerful geomagnetic disturbances in cycle 23 were studied based on worldwide station network data by the global spectrographic survey method. The cosmic ray variation spectra during these periods and the spectral indices of these variations when the spectrum was approximated by the power function of the particle rigidity varying from 10 to 50 GV during different Forbush effect development phases are presented. It was indicated that the spectral indices of cosmic ray variations during spectrum approximation by the power function of the particle rigidity are larger during the maximal modulation phase than during the cosmic ray intensity decline and recovery phases. The fact that the amplitude of the second harmonic of the cosmic ray pitch angle anisotropy did not increase on November 20, 2003, confirms that the Earth fell into a Sun-independent spheromark magnetic cloud. The increased amplitudes of the second harmonic of the cosmic ray pitch angle anisotropy during other Forbush effects in July 2000, March–April 2001, October 2003, and November 2004 indicate that the Earth was in the coronal mass ejection region, in which the interplanetary magnetic field structure was loop-like during these periods.  相似文献   

8.
1980年代中国地磁正常场图及其数学模式   总被引:6,自引:13,他引:6       下载免费PDF全文
本文介绍了1980.0年中国地磁正常场图的编绘和地磁正常场数学模式的建立使用不同年代观测的地磁三要素资料2000余个,经过通化改正,统统改正到1980.0这个特定年代。采用泰勒多项式和最小二乘法,分别建立1980.0年中国地磁正常场和地磁场长期变化数学模式,并计算其网格值,用于编绘1980.0年中国地磁正常场图。本文在建立地磁正常场数学模式时,采用三个独立的地磁要素建立模式的方法,解决了地磁场模式在地磁倾角为零的地方、而垂直强度不为零的问题。  相似文献   

9.
The cosmic ray geomagnetic cutoff rigidities are obtained by analytical calculations within an axisymmetric model of bounded magnetosphere, the magnetic field of which is created by the dipole field of the Earth and by two spheres located beyond the Earth with the currents that flow along the parallels and have a value proportional to the cosine of latitude. The inner sphere models the ring current flowing in the westerly direction; the outer sphere simulates the currents over the magnetopause, which flow in the easterly direction. The analytical results of calculations of variations in the geomagnetic cutoff rigidity for different levels of geomagnetic disturbances are given. The results are compared with the results of analytical calculations within the model of unbounded magnetosphere (when the outer sphere is absent).  相似文献   

10.
Using the spectrographic global survey method, variations in the rigidity spectrum and anisotropy of galactic cosmic rays (March 1991) have been studied using data from ground-based observations of cosmic rays (CR) at the worldwide network of stations. Variations in geomagnetic cutoff rigidity (GCR) have been calculated. The paper also presents latitudinal GCR variations at certain moments of the considered period for different geomagnetic field disturbance levels. Calculation results of GCR variations have been compared with those of effect of the westward current flowing with a strength proportional to the latitude cosine along parallels on the sphere, for different radii of the current ring in the dipole field.  相似文献   

11.
The data from terrestrial observations of cosmic rays at the global network of stations by the method of spectrographic global survey were used to analyze two Forbush decreases during the geomagnetic storms in March and June 2015. The spectra of cosmic ray variations, pitch angle anisotropy of cosmic rays at different phases of Forbush decrease development, and the changes in the planetary system of geomagnetic cutoff rigidities are presented. It is shown that, during the approximation of the spectra of variations by the power function of particle rigidity in the interval of 10–50 GV, the spectrum index is softer at the maximum modulation phase than during the phases of cosmic ray intensity decline and recovery. In the axisymmetric model of the bounded magnetosphere of the Earth, which takes into account the currents at the magnetopause and the ring current, the distance to the subsolar point and the radius of the ring current, as well as the contribution of the ring current to the changes in geomagnetic cutoff rigidity and to the Dst index during the studied events, are determined.  相似文献   

12.
The seasonal effect of the daily variations in the cosmic ray intensity on the conductivity of the Earth-high-conductivity layer column has been analyzed based on the observations of the cosmic ray intensity, atmospheric current, and electric field vertical component, performed from summer 2006 to spring 2007 at Apatity station. The method for correcting the measurements of the atmospheric current and electric field vertical component under complex tropospheric conditions by numerically simulating the spatial structure of the current and field lines in the observation region has been proposed. It has been indicated that cosmic rays are the main source of ions in the winter polar lower atmosphere and are responsible for the type of daily variations in the conductivity, whereas the daily variations in the atmospheric current more depends on the conductivity rather than on the vertical electric field.  相似文献   

13.
本文介绍了国家气候中心发展的一个全球海洋碳循环环流模式,并分析评估了该模式的基本性能.该模式是在美国地球物理流体动力学实验室(GFDL,Geophysical Fluid Dynamics Laboratory)的全球海洋环流模式MOM4(Modular Ocean Model Version 4)基础上发展的一个垂直方向40层、包含生物地球化学过程的全球三维海洋碳循环环流模式,简称为MOM4_L40(Modular Ocean Model Version 4 With 40Levels).该模式在气候场强迫下长期积分1000年,结果分析表明,与观测相比,模式较好地模拟了海洋温度、盐度、总二氧化碳、总碱、总磷酸盐的表面和垂直分布特征.模拟的海洋总二氧化碳分布与观测基本相符,表层为低值区,其下为高值区,高值区域位于10°S—60°N之间,但2000m以上模拟值较观测偏小,2000m以下模拟值较观测偏大.总体来说,MOM4_L40模式是一个可信赖的海洋碳循环过程模拟研究工具.  相似文献   

14.
非洲磁异常对地磁场结构及其长期变化的控制作用   总被引:1,自引:1,他引:1       下载免费PDF全文
地球非偶极磁场在主磁场结构及其长期变化中起着重要作用.非偶极磁场主要表现为行星尺度磁异常,它们是南大西洋磁异常、非洲磁异常、欧亚大陆磁异常、澳洲磁异常和北美磁异常.在这5块磁异常中,非洲磁异常对磁赤道的形状和位置以及全球长期变化特征有极大的影响.非洲磁异常的重要性主要表现在3方面:第一,由于异常区位于赤道这一特殊的地理位置,所以它极大地影响磁赤道的形状和位置.相对于偶极场的地磁赤道而言,异常区所在的中北非洲和中大西洋地区的磁赤道向北移动,最大移动量可达约15°.第二,非洲磁异常的快速西漂对全球长期变化的分布起着决定性作用,它在该异常区西边的中美洲形成了全球最主要的长期变化区,在1900~2005年期间,最大年变率Zmax超过200 nT/a.第三,非洲负磁异常区与其南面的南大西洋正磁异常区相结合,〖HJ〗它们的变化使西半球地磁场强度大大减弱,也使全球磁场发生显著畸变.这两块磁异常与深部的反极性斑区有着成因联系.  相似文献   

15.
The variations in the rigidity spectrum and anisotropy of cosmic rays in December 2006 have been studied based on the surface measurements of the cosmic ray intensity at the global network of stations, using the method of global spectrographic survey. It has been indicated that the highest degree of anisotropy (to ~50%) with the maximal intensity of particles with a rigidity of 4 GV in the direction from the Sun (an asymptotic direction of about ?25° and 160°) was observed at 0400 UT on December 13. The parameters of the cosmic ray rigidity spectrum, which reflect the electromagnetic characteristics of the heliospheric fields during the studied period, have been determined when the surface and satellite measurements of protons in the energy range from several megaelectronvolts to several tens of gigaelectronvolts were jointly analyzed. The observed anisotropy and variations in cosmic rays in a wide energy range have been explained based on an analysis of the results.  相似文献   

16.
1980.0年东亚地区地磁场的勒让德多项式模型   总被引:1,自引:2,他引:1       下载免费PDF全文
根据中国、原苏联等地区的地磁复测点和地磁台资料,利用勒让德多项式方法,计算出1980.0年东亚地区的地磁场模型,绘制出总强度(F)、磁偏角(D)和磁倾角(I)地磁图.地磁场模型的均方偏差分别为:总强度144.6nT,磁偏角19.1′,磁倾角8.5′.将勒让德多项式模型与DGRF1980进行了比较,并绘制出总强度的差值分布图.本文计算出来的地磁场勒让德多项式模型能较好地表示东亚地区地磁场的分布.  相似文献   

17.
18.
1950-1980年中国地区主磁场模型的建立及分析   总被引:3,自引:10,他引:3  
本文根据丰富的地磁资料,用泰勒多项式方法推算出1950.0、1960.0、1970.0和1980.0年中国地区的主磁场模型,绘制出各个年代地磁要素的等值线图,分析研究了局部地区地磁场泰勒多项式模型的特点.  相似文献   

19.
Cosmic ray (CR) fluxes, which penetrate into the Earth??s magnetosphere and atmosphere from the interplanetary space, are an important factor of space weather. The geomagnetic field allows or forbids CR particles to enter into a given point in the magnetosphere depending on their energy. The geomagnetic cutoff rigidity regulates the distribution of CR fluxes in the magnetosphere. The geomagnetic cutoff rigidity (geomagnetic threshold) determination accuracy is closely related to the accuracy of the magnetospheric model used in calculations. Using a method for tracing of charged CR particle trajectories in the magnetic field of a model magnetosphere, we obtained geomagnetic thresholds for two magnetosphere empirical models (Ts01 and Ts04), constructed based on the same initial database. The Ts01 model describes the middle magnetosphere for certain conditions in the solar wind and interplanetary field. The Ts04 model pays the main attention to describing the large-scale evolution of magnetospheric currents during a storm. The theoretically obtained geomagnetic thresholds have been compared with experimental thresholds, calculated using the spectrographic global survey method based on data from the global network of CR stations. The study has been performed for the period of a strong geomagnetic storm that occurred in November 2003.  相似文献   

20.
The cause of the correlation of low cloud cover with the sunspot cycle, and the associated cosmic ray intensity, is still the subject of controversy. Insofar as ‘clouds’ come in different types with, doubtless, different sensitivities to the cloud condensation nuclei (charged or otherwise) it is useful to search for differences in the correlation between cloud types. Here, we examine the major cloud components: stratiform and cumuliform, the latter with its much higher upthrust velocities being expected to be less efficient as cosmic ray induced cloud generation. No difference is found between the two types of cloud, in the sense that there is no dependence on the fraction of cloud of stratiform type for the various parameters studied. This result is true over the Globe as a whole and as a function of cosmic ray cutoff rigidity. Once more there is no support for the cosmic ray hypothesis for cloud modulation. There is no obvious implication for the alternative hypotheses of solar irradiance modulation, but this is probably still the more likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号