首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
氨氮胁迫对刺参几种免疫酶活性的影响   总被引:3,自引:0,他引:3  
以养殖刺参(Apostichopus japonicus)为研究对象,对不同浓度的氨氮处理及病菌感染条件下刺参体腔液免疫酶的变化进行了测定.结果表明:随着氨氮处理强度的增加,刺参体腔液中超氧化物歧化酶(SOD)、碱性磷酸酶(ALP)、谷胱甘肽过氧化物酶(GPx)及溶菌酶(LSZ)活性呈现先升高后降低的趋势,而同时感染病菌的情况下,较低质量浓度的氨氮胁迫可使SOD、GPx、ALP及LSZ活性上升,但在较高浓度氨氮处理时,酶活性的诱导则受到抑制.说明适宜浓度的氨氮处理可增强刺参的免疫力,从而减轻病菌感染对刺参造成的免疫功能损伤和提高刺参抗病力.刺参在感染病原菌假交替单胞菌(Pseudoalte-romonas sp)的条件下,3 mg/L、4 mg/L和6 mg/L浓度的氨氮处理第6天,刺参的累积发病死亡率分别为44.4%、55.6%和72.2%,高于对照组,表明较高浓度的氨氮胁迫能够显著降低刺参的免疫力,增加对病原菌的易感性.因此,在刺参养殖过程中,氨氮浓度的调控具有重要的意义.  相似文献   

2.
氨氮胁迫对刺参生理健康指标的影响   总被引:1,自引:0,他引:1  
研究了氨氮胁迫对刺参(Apostichopus japonicas)免疫和抗氧化指标的影响,氨氮染毒梯度设置为:对照组(自然海水)、0.5、1.25mg/L处理组,取样时间为0、2、6、12、24和48h,分别取刺参体腔液和体壁组织,测定体腔液总体腔细胞数量、凝集活性、溶菌和抗菌活力以及体壁、体腔液总抗氧化活力(TAOC)、超氧化物歧化酶(SOD)活力、还原型谷胱甘肽(GSH)含量、还原型/氧化型谷胱甘肽含量比值(GSH/GSSG)。结果表明:氨氮胁迫对刺参免疫和抗氧化指标影响显著(P0.05),而对照组无明显变化。各处理组总体腔细胞数量、溶菌活力分别在48、12h内呈峰值变化,分别于12、6h达到最小值和最大值,然后恢复至对照组水平,各处理组抗菌活力、凝集活性随胁迫时间呈下降趋势,1.25mg/L染毒组抗菌活力在12h后明显低于对照组水平。各处理组体壁T-AOC、SOD活力和GSH含量、GSH/GSSG分别在48、12h内呈峰值变化,均于6h时达到最大值,分别于48h时和24h后显著低于或恢复至对照组水平;各处理组体腔液T-AOC、SOD活力和GSH含量实验时间内呈下降趋势,分别在6、12和6h后显著低于对照组水平,然后保持稳定,而GSH/GSSG与对照组无明显差异。由此可见,氨氮对刺参免疫和抗氧化指标具有明显的抑制效应,其中体壁、体腔液T-AOC、SOD活力和体腔液GSH含量表现出显著的时间-剂量效应,可作为刺参在氨氮胁迫下生理健康的评价指标。  相似文献   

3.
褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响   总被引:2,自引:0,他引:2  
研究刺参基础饲料中添加0.1%的褐藻寡糖对刺参体腔液和体壁中过氧化物酶(Peroxidase, POD)、酸性磷酸酶(Phosphatase, ACP)、碱性磷酸酶(Alkaline phosphatase, AKP)和溶菌酶(Lysozyme, LSZ)活性的影响.实验周期为40 d,每隔10 d取样1次,检测刺参体腔液和体壁中免疫相关酶活性的变化.结果显示:褐藻寡糖组刺参体腔液中POD、AKP和ACP活性均呈现先增高后降低的趋势,POD在第10 d时极显著提高(P<0.01),比对照组提高306%,AKP实验期间均与对照差异显著(P<0.05),活性最高时比对照组提高298%,ACP和LSZ分别在第20和40天与对照组差异显著(P<0.05),分别比对照组提高66%和26%;褐藻寡糖组刺参体壁中POD、AKP、ACP和LSZ活性与体腔液相比提高幅度较小,POD、AKP和ACP活性分别在第20,20和30天与对照组差异显著(P<0.05),分别比对照组提高了24%、20%和35%,LSZ活性略有提高但无显著性差异(P>0.05).研究结果表明,褐藻寡糖均能提高刺参体腔液和体壁中POD、ACP、AKP和LSZ活性,显著增强了刺参非特异性免疫水平,将其应用为刺参免疫增强剂具有广阔的前景.  相似文献   

4.
本研究测定了壳寡糖对海南热带糙海参(Holothuria scabra)体腔液和体壁组织中免疫相关因子,酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、溶菌酶(LSZ)和溶血素活性的影响。结果表明,投喂0.5%壳寡糖对糙海参体腔液中AKP、ACP、LSZ和溶血素活性均有明显增强作用(P0.05),其中对ACP和LSZ活力有极显著的影响(P0.01),且投喂6 d内活性均持续增强;0.5%壳寡糖对体壁组织匀浆液中AKP、ACP活性明显增强(P0.05),但随着时间延长,对体壁组织中LSZ和溶血素作用不明显。壳寡糖可以提高海南热带糙海参(Holothuria scabra)的非特异性免疫力。  相似文献   

5.
为了探讨微生物多糖剂量效应在水产动物对不良环境刺激反应中的作用,本研究利用从南极冰海水中分离得到的南极细菌Pseudoalteromonas sp.3-3-1-2产生的胞外多糖,采用注射不同浓度的胞外多糖溶液的方式处理刺参,定期记录其生长状况并测定体腔液免疫相关指标的变化。结果表明,南极细菌胞外多糖处理后的刺参保护率升高,即较高浓度(4mg/mL)的细菌多糖可以有效降低刺参的死亡率。细菌多糖可以降低体腔液中MDA含量,虽然体腔液ACP、CAT和SOD活性在处理前期有所受到抑制,但是试验后期细菌多糖处理明显增强了上述免疫酶活性,以保护细胞免受氧自由基诱导的氧化损伤。处理过程中刺参体腔液的溶菌酶活性降低,但是细菌多糖的处理减弱了溶菌酶活性下降的幅度。此外,与2mg/mL处理组相比,4mg/mL处理组对刺参体腔液免疫酶的促进作用稍弱,但无显著差异。研究结果表明,极地细菌胞外多糖可对刺参产生一定的免疫保护作用,从而提高刺参逆境下的生长活力。  相似文献   

6.
根据山东荣成沿岸风电机组产生的声波范围选取其中178Hz的峰值声音,声压级控制于(85±5)d B,在实验室水槽中,采用实验生态学方法研究了178Hz声波影响下的刺参(Apostichopus japonicus)幼参的行为反应、耗氧率以及体腔液抗氧化酶(CAT、SOD)浓度的变化。通过平均聚集率的变化比较,发现刺参对178Hz的声波胁迫环境的行为反应敏感;利用空瓶法测得幼参耗氧率显著低于对照组(P0.05);通过测定刺参体腔液免疫活性发现在该频率声波干扰下的刺参CAT活性显著高于对照组(P0.05),而SOD活性于对照组差异不明显(P0.05)。研究结果说明声波对刺参幼参的呼吸和免疫会产生明显影响,可为我国近海刺参养殖和风电发展策略提供参考。  相似文献   

7.
以鲻鱼(Mugil cephalus)幼鱼为研究对象,研究低浓度氨氮长时间胁迫对组织细胞免疫指标和遗传物质代谢的影响。实验分0.35、0.7、1.5和3mg/L氨氮处理组,分别于0、5、10、15、20d取样并进行相关指标测定。结果显示:肝脏和鳃丝的丙二醛(MDA)含量表现出先上升后下降的趋势,MDA活性与氨氮浓度呈一定的正相关。氨氮对MDA的影响具有不同组织和不同时序的选择性。不同浓度氨氮胁迫下,鳃丝和肝脏Na+-K+-ATP活性均呈现先升高后降低,并随着时间的增加逐渐趋于稳定。Na+-K+-ATP活性与氨氮浓度呈一定的负相关性,尤其是3mg/L处理组与对照组差异性显著(P0.05)。在氨氮浓度0.7mg/L和1.5mg/L时,肌肉中RNA/DNA均表现出不同程度的增加,各浓度组与对照组差异不显著;而高浓度(3mg/L)比值基本无变化。肝脏和鳃丝的Na+-K+-ATP酶的mRNA表达量,在氨氮胁迫第5d时检测到达最高,随后表达量缓慢回落,实验20d除3mg/L处理组表达量仍高于对照组水平外,其他处理组均降至对照组水平。Na+-K+-ATP酶的表达水平变化趋势与Na+-K+-ATP活性基本一致。结果表明,在一定浓度的氨氮长时间胁迫作用下,抗氧化免疫系统和肌肉中的核酸代谢受到了一定的影响。  相似文献   

8.
为研究稀土元素镧对刺参生长、免疫反应及抗病力的影响,本文在基础饲料中添加不同剂量镧,制备了5种实验饲料,饲料中镧的浓度分别为0、10、25、50和75mg/kg。以初始体重(6.72±0.01)g的仿刺参(Apostichopus japonicas Selenka)为研究对象,用制备的饲料在室内进行8周的养殖实验。养殖实验结束后对刺参进行称重,计算特定生长率,随机选取4头解剖取样,测定刺参体腔液的相关免疫酶活性,剩余刺参通过腹腔注射刺参腐皮综合症致病菌灿烂弧菌(Vibrio splendidus)进行14d的攻毒实验。实验表明:与对照组相比,饲料中添加50mg/kg处理组的特定生长率提高了36.92%;当饲料中稀土元素镧添加量为50mg/kg时,刺参体腔细胞吞噬活性、呼吸爆发活力、酸性磷酸酶(ACP)活性和碱性磷酸酶(AKP)活性显著高于对照组;当饲料中镧添加量为10~50mg/kg时,刺参体腔细胞总超氧化物歧化酶(T-SOD)活性和总一氧化氮合酶(T-NOS)活性有升高的趋势,但是没有显著性差异;攻毒实验显示,50mg/kg处理组的刺参累计发病率显著低于对照组。研究表明,饲料中添加50mg/kg的稀土元素镧可以促进刺参生长,同时可以提高刺参的非特异性免疫酶活性。  相似文献   

9.
通过刺参中国群体(C)和韩国群体(K)群体间杂交和群体内自繁,获得了4个交配组合CC(C♀×C♂)、KK(K♀×K♂)、CK(C♀×K♂)和KC(K♀×C♂)的子一代。实验研究了干露胁迫对4组刺参体腔液中儿茶酚胺类激素水平和免疫指标的影响,比较了刺参中韩群体杂交和自交子一代对干露胁迫的应激反应。结果显示:受到干露胁迫的4组刺参体腔液内儿茶酚胺类激素水平都出现上升的趋势,其中KK和KC组激素水平上升幅度大于CC和CK组。4组刺参体腔液内细胞数在胁迫开始后逐渐上升,KK和KC组在胁迫结束时显著高于初始值。4组刺参体腔液细胞吞噬活性都呈"降低-升高-又下降"的趋势,但在整个实验过程中变化不显著。干露导致4组刺参体腔液内超氧化物歧化酶活性显著上升,同时,KK和KC组的过氧化氢酶活性显著上升。4组刺参体腔液内溶菌酶活性在胁迫过程中受到抑制,但变化不显著。上述结果表明,刺参中韩群体杂交和自交子一代对干露胁迫的应激程度不同,CC和CK组子一代对干露胁迫具有更好的抗性。  相似文献   

10.
通过拌饵投喂和水体泼洒2种使用方式,研究了不同浓度的蜡样芽孢杆菌(Bacillus cereus,编号BC-01)对刺参(Apostichopus japonicus)幼参的生长、肠道消化酶和体腔液非特异性免疫相关酶活性的影响。其中,水体泼洒实验组芽孢杆菌使用量分别为106、108和1010cfu·m-3(以活菌量计),拌饵投喂实验组芽孢杆菌添加量分别为107、109和1011cfu·kg-1(以活菌量计),以投喂基础饲料且水体无芽孢杆菌泼洒组为对照组,整个实验持续56d。结果表明:(1)水体泼洒106 cfu·m-3和拌饵投喂109 cfu·kg-1的芽孢杆菌可以显著促进刺参的生长,并显著降低刺参体重变异系数(P0.05)。(2)泼洒108 cfu·m-3芽孢杆菌实验组的刺参肠道蛋白酶活性以及泼洒106和108 cfu·m-3芽孢杆菌实验组的脂肪酶活性均显著高于对照组(P0.05)。投喂芽孢杆菌能显著提高刺参肠道蛋白酶活性(P0.05),投喂107 cfu·kg-1芽孢杆菌的实验组刺参肠道脂肪酶活性和投喂109和1011cfu·kg-1芽孢杆菌的实验组淀粉酶活性均显著高于对照组(P0.05)。(3)水体泼洒芽孢杆菌则显著提高刺参体腔液LSZ活性(P0.05),但对SOD活性影响不大(P0.05)。1010cfu·m-3芽孢杆菌泼洒浓度可以显著增强刺参体腔液AKP和ACP活性(P0.05)。而投喂109和1011cfu·kg-1芽孢杆菌可以显著提高刺参体腔液过氧化物歧化酶(SOD)、碱性磷酸酶(AKP)、酸性磷酸酶(ACP)和溶菌酶(LSZ)活性(P0.05)。可以看出,芽孢杆菌BC-01以饵料添加方式对刺参体腔液免疫酶活性的促进作用优于水体泼洒。综合比较表明,芽孢杆菌BC-01拌饵添加的适宜浓度为109 cfu·kg-1,对刺参的生长、消化功能和非特异性免疫能力均具有显著促进作用。  相似文献   

11.
哈维氏弧菌对条纹斑竹鲨4种酶活性的影响   总被引:2,自引:0,他引:2  
以哈维氏弧菌(Vibrio harveyi)对条纹斑竹鲨(Chiloscyllium plagiosum)进行病原接种试验,分别在4、8、12、24、48、72、96h后测定肝脏、脾脏、鳃及血清的酸性磷酸酶(acid phosphatase,ACP)、碱性磷酸酶(alkaline phosphatase,AKP)、超氧化物歧化酶(superoxide dismutase,SOD)和血清中溶菌酶(lysozyme,LSZ)的活力.实验结果表明:对照组条纹斑竹鲨的这4种酶的活力呈现出明显的组织差异性,血清中SOD活力为124.32 U/cm3,显著高于其他3种酶的活力;其他组织中3种酶的活力由高到低依次为SOD、ACP、AKP.在实验组条纹斑竹鲨被感染4~72h期间,血清中SOD活力明显下降,ACP活力持续下降,感染96h后除LSZ外,其他3种酶的活力都呈回升趋势;其他组织中ACP与AKP活力变化均为被感染4h后下降,12h后明显回升,SOD则在被感染4h后活力上升,而后下降,96h后回升.这4种酶的活力的变化主要是应激作用与非特异性免疫防御作用共同作用导致的结果.  相似文献   

12.
贻贝(Mytilus edulis)发育早期酸性和碱性磷酸酶活性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用组织化学和分光光度技术对贻贝卵、胚胎和早期幼虫酸性磷酸酶(ACP)和碱性磷酸酶(AKP)活性进行了定位和定量研究,以探讨贝类早期发育过程中的免疫防御机制。组织化学显示,从卵细胞到D型面盘幼虫各个时期都呈ACP和AKP阳性,卵细胞中阳性颗粒较大且分布比较均匀,受精卵中央着色较深,卵裂期核区呈强阳性且大分裂球内阳性颗粒较多,原肠胚和担轮幼虫外层细胞阳性较强,面盘幼虫外套膜边缘膜、内脏团和面盘基部呈强阳性。生化测定ACP和AKP活力,均是卵细胞最低,随着发育酶活力逐步提高,其中ACP活力在受精后和囊胚期明显提高,囊胚期达到最高峰,其后又略有下降;AKP活力在卵裂期、担轮幼虫和面盘幼虫提高较大,面盘幼虫期酶活力最高。ACP和AKP可能在贻贝的发育早期抵抗病原生物侵染方面发挥重要作用。  相似文献   

13.
牛蒡寡糖对大菱鲆生长和免疫机能的影响   总被引:5,自引:0,他引:5  
将自主研发的牛蒡寡糖作为添加剂添加到大菱鲆的基础饲料中,探讨其对大菱鲆(Scophthalmus maxi-mus)的生长和免疫机能的影响。经过60 d不同剂量(1.0%,2.0%,4.0%,6.0%)的饲喂试验,分别从每组随机抽取鱼体,测定其生长指标和血清中ACP,AKP,LSZ,SOD和PO等多种免疫相关酶的活力以及血液中白细胞的吞噬活性。结果表明,牛蒡寡糖作为一种非特异性免疫调节剂对大菱鲆表现出优良的促生长作用,还能显著提高大菱鲆的免疫相关酶活力和白细胞的吞噬活性,从而提高大菱鲆的非特异性免疫力,其适宜添加量为4.0%。牛蒡寡糖可以开发成为水产动物的促生长剂和免疫增强剂。  相似文献   

14.
由于黄河口区域盐度偏低且不稳定,刺参(Apostichopus japonicus)的生长和存活受到严重威胁。为评估4个不同品系(日本刺参F2代RC-F2、抗病刺参F3代KC-F3、多刺刺参F2代DC-F2、青青刺参F1代QQ-F1)的低盐耐受力及其生理生化响应,本实验以青岛野生群体(QW)为对照,通过测定低盐胁迫下幼参的生长、存活以及非特异性免疫酶活力变化,评价了4个刺参不同选育品系对低盐的耐受状况。结果表明,在盐度17以下,除了QQ-F1表现为正生长,其他群体均为负生长。RC-F2、KC-F3、DC-F2、QQ-F1和QW的30天半致死盐度(LS50-30d)分别为15.02、15.19、16.48、14.26和15.13,QQ-F1显著低于其他4个群体;盐度14时,5个群体的半致死时间(ST50)分别为19.84 d、18.43 d、10.11 d、23.54 d和19.01 d,QQ-F1的ST50显著长于其他4个群体。在低盐胁迫时QQ-F1的ACP、AKP、SOD、LZM酶指标的下降幅度显著低于其他4个群体。不同选育群体的低盐耐受力排序为QQ-F1RC-F2QWKC-F3DC-F2,QQ-F1群体表现出良好的低盐耐受能力,在低盐度海域或盐度不稳定的海域具有良好的推广应用前景。本实验研究结果可为刺参健康养殖、良种性状评价、选育与推广等方面提供参考依据。  相似文献   

15.
水体铜对中华绒螯蟹(Eriocheir sinensis)代谢酶活力的影响   总被引:10,自引:0,他引:10  
采用生态学单因子梯度试验方法,研究了水环境中添加0·01、0·10、1·00、5·00mg/L的铜(Cu2 )对中华绒螯蟹肝胰腺、血淋巴和鳃代谢酶活力的影响。结果表明,随着Cu2 浓度的增高,肝胰腺和血淋巴的铜锌超氧化物歧化酶(Cu-Zn SOD)、酸性磷酸酶(ACP)、碱性磷酸酶(AKP)活力和血蓝蛋白均呈先增加后减少的变化趋势。鳃钠钾三磷酸腺苷酶(Na ,K -ATPase)、钙镁三磷酸腺苷酶(Ca2 ,Mg2 -ATPase)和谷丙转氨酶(GPT)活力均随着Cu2 浓度的增高而降低。随着Cu2 浓度的增高,肝胰腺髓性过氧化物酶(MPO)活力呈先减少后增加的变化趋势。水环境中添加0·01mg/L Cu2 就可对中华绒螯蟹代谢酶产生显著影响,并随着Cu2 浓度的增高,对中华绒螯蟹机体的影响逐渐加剧。表明代谢酶活力的变化可以灵敏地反映Cu2 的胁迫程度和毒性。  相似文献   

16.
张超  李永仁  郭永军  梁健 《海洋科学》2020,44(3):113-122
为研究港原油对毛蚶部分抗氧化酶和代谢酶的影响,设置0.01、0.1、1、3mg/L大港原油水溶液性成分(WSF),采用暴露法研究毛蚶天津群体的鳃、斧足中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)抗氧化酶等抗氧化酶及酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、钠/钾泵(Na^+/K^+ATPase)、钙泵(Ga2+/Mg2+ATPase)等代谢相关酶的活性变化,测定丙二醛(MDA)含量,采用整合生物标志物(Integratedbiomarkerresponse,IBR)进行分析。结果表明,毛蚶鳃和斧足中SOD、CAT、GPX表现出一定的剂量-效应关系, MDA含量呈先升高后降低的趋势, 3 mg/L组表现出MDA累积;ACP、AKP、Na^+/K^+ATPase、Ga2+/Mg2+ATPase表现出一定剂量-效应关系,酸性磷酸酶较碱性磷酸酶响应更迅速, Na^+/K^+ATPase较Ga2+/Mg2+ATPase更易受WSF影响;鳃中酶类活性受WSF影响更明显。鳃中SOD、GPX、MDA较斧足高,而CAT则相反。斧足、鳃组织RIB值呈现先下降后上升趋势,与WSF浓度及暴露时间存在剂量-效应关系和时间-效应关系,两组之间存在差异性,斧足累积RIB值高于鳃组织。  相似文献   

17.
采用实验生态学方法,开展了汞胁迫下拟穴青蟹(Scylla paramamosain)的消化和免疫因子变动的研究。在实验室条件下,测定了0.00、0.005、0.01、0.02、0.04、0.08mg/L浓度Hg2+在1d、3d、5d、7d、9d胁迫时间下的消化和免疫因子变化。结果表明,汞胁迫下拟穴青蟹AMS活性快速升高,但激活效应随胁迫时间延长而逐渐下降,后期表现为抑制效应。汞胁迫能激发Pepsin活性,短期内Pepsin活性和胁迫浓度、胁迫时间呈正相关;长期高浓度胁迫(0.04、0.08mg/L),则激发效应减弱。汞胁迫对LPS活性的影响主要表现为抑制作用。免疫因子的研究结果表明,汞胁迫对AKP有激发作用,可迅速刺激机体AKP活力上升。低浓度汞胁迫对AKP活性提升最显著(0.005、0.01、0.02mg/L),高浓度组AKP活性先升后降。汞胁迫对ACP活性有激发作用,且存在显著的时间效应和浓度效应。汞胁迫下SOD活性短期内即显著升高,且SOD活力随胁迫时间延长而持续升高。汞胁迫对LZM活性有激活作用,且激活效应存在时间效应和浓度效应。汞胁迫对PO活力快速产生抑制作用,抑制作用存在时间效应而无显著的浓度效应。汞胁迫对拟穴青蟹消化和免疫因子能产生胁迫效应,对Pepsin、AMS、AKP、ACP、SOD、LZM表现为激发,而对LPS、PO表现为抑制。  相似文献   

18.
以大、中、小3种不同规格的刺参(Apostichopus japonicus)为对象,在pH为7.3、7.5、8.2、8.7、8.9不同环境中养殖30d,观测刺参行为、生长及溶菌酶(LZM)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性。结果显示:当pH为7.5、8.7时, 3种不同规格刺参均能正常活动、摄食、生长,未表现出异常状况;若超出此范围,刺参出现粪便细短、残饵增多、摄食量减少等现象,尤其在pH 8.9时,中规格刺参有明显棘刺收缩的现象,小规格刺参不同程度地出现身体收缩、棘刺平滑状态,而大规格刺参无明显表观不适现象。不同pH对3种规格刺参的特定生长率(SGR)有显著影响,随着pH升高或者降低,刺参SGR均逐渐下降,与对照组差异显著(P0.05),规格越小刺参受到抑制作用越大;刺参LZM、SOD、CAT活性随pH胁迫时间的延长呈现先升高后下降的趋势,在第10天时达到最高,与对照组差异显著(P0.05),至30 d胁迫结束时,在pH 7.3、8.9条件下,刺参免疫酶活性显著低于对照组(P0.05),而pH为7.5、8.7时,刺参免疫酶活性与对照差异不显著; pH胁迫对不同规格刺参非特异性免疫酶活性的影响存在差异,在相同胁迫条件下,酶活性依次为大规格中规格小规格,当pH7.3、8.9时,小中大规格分别在胁迫20 d、25 d、25 d后免疫酶活性显著低于对照组(P0.05)。研究表明, pH胁迫会对刺参生长及免疫产生明显的影响,在刺参养殖过程中, pH属关键的理化因子之一,应密切关注其变化。  相似文献   

19.
为了研究微塑料对黑海参(Holothuria atra)免疫及消化生理的影响,将体重为(47.61±6.97) g的黑海参暴露于添加了不同浓度(0、10~2、10~4、10~6粒/L)聚苯乙烯微塑料的海水中,分析了黑海参的免疫和消化生理指标的变化情况。结果表明,海水中的微塑料浓度对黑海参体腔细胞的数量和吞噬活性,体腔液中酸性磷酸酶(ACP)、溶菌酶(LZM)和超氧化物歧化酶(SOD)活性均有显著影响(P0.05),而对碱性磷酸酶(AKP)活性没有显著影响。随着微塑料浓度升高,黑海参的体腔细胞数量以及体腔液中ACP、LZM和SOD活性呈先持续增加后降低的趋势,体腔细胞数量、体腔液中ACP活性均在104粒/L浓度达到峰值,体腔液中LZM和SOD活性则在10~2粒/L浓度达到峰值;而体腔细胞的吞噬活性随着微塑料浓度的增加而持续增加。黑海参消化道内的淀粉酶受海水中的微塑料浓度的影响显著(P0.05),胰蛋白酶活性和脂肪酶活性没有显著变化。随着微塑料浓度升高,黑海参肠道淀粉酶活性呈先持续增加,在10~4粒/L浓度达到峰值,而后又降低;胰蛋白酶活性随着微塑料浓度的增加持续增加;而三种微塑料浓度下黑海参的脂肪酶活性均低于空白组。由此可见,海水中添加微塑料后,黑海参体内产生了免疫防御反应,并倾向于优先消化淀粉和蛋白质以快速获取能量从而适应周围环境的改变;海水中高浓度的微塑料可能对黑海参的体腔细胞结构产生损伤,导致其免疫防御能力下降,影响其正常生理活动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号